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ON THE GIRSANOV TRANSFORMATION OF BMO MARTINGALES
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Abstract. Using properties of backward stochastic differential equations (BSDEs) we give

an alternative proof of the isomorphism of the Girsanov transformation of BMO martingales

and improve an estimate of BMO norms.
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Let
(
Ω,F , P

)
be a probability space with filtration F = (Ft)0≤t≤T satisfying the

usual conditions of right-continuity and completeness. Throughout the paper M is
assumed to be a continuous local P -martingale on the finite time interval [0, T ], equal
to zero at time t = 0.

Recall that (see Kazamaki [2]) a continuous uniformly integrable martingale (Mt,Ft)
with M0 = 0 is from the class BMO if

||M ||BMO = sup
τ

∥∥∥E[⟨M⟩T − ⟨M⟩τ |Fτ

]1/2∥∥∥
∞
<∞,

where the supremum is taken over all stopping times τ ∈ [0, T ] and ⟨M⟩ is the square
characteristic of M .

Denote by E(M) the stochastic exponential of a continuous local martingale M

Et(M) = exp{Mt −
1

2
⟨M⟩t}

and let Eτ,T (M) = ET (M)/Eτ (M).
Let M be such that E(M) is a uniformly integrable martingale and define a new

probability measure P̃ by dP̃ = ET (M)dP . To each continuous local P -martingale X
we associate the process X̃ = ⟨X,M⟩ −X, which is a local P̃ -martingale according to
Girsanov’s theorem. We denote this map by φ : L(P ) → L(P̃ ), where L(P ) and L(P̃ )
are classes of P and P̃ local martingales.

It was proved by Kazamaki [1, 2] that if M ∈ BMO(P ), then BMO(P ) and
BMO(P̃ ) are isomorphic under the mapping ϕ and for all X ∈ BMO(P ) the inequality

||X̃||BMO(P̃ ) ≤ CKaz(M̃) · ||X||BMO(P ) (1)

is valid (see Theorem 3.6 from [2]), where

C2
Kaz(M̃) = 2p · 21/p sup

τ

∥∥∥EP̃
[{

Eτ,T (M̃)
}− 1

p−1

∣∣∣Fτ

]∥∥∥(p−1)/p

∞
, (2)
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M̃ = ⟨M⟩ −M and p is such that

||M̃ ||BMO(P̃ ) <
√
2(
√
p− 1). (3)

We give an alternative proof of this assertion, which improves also the constant in
inequality (1).

Theorem 1. IfM ∈ BMO(P ), then ϕ : X → X̃ is an isomorphism of BMO(P )
onto BMO(P̃ ). In particular, the inequality

1(
1 +

√
2
2
||M ||BMO(P )

) ||X||BMO(P ) ≤ ||X̃||BMO(P̃ )

≤
(
1 +

√
2

2
||M̃ ||BMO(P̃ )

)
||X||BMO(P ) (4)

is valid for any X ∈ BMO(P ).
Proof. Let us consider the process

Yt = EP̃
[
⟨X⟩T − ⟨X⟩t

∣∣Ft

]
= E

[
Et,T (M)(⟨X⟩T − ⟨X⟩t)

∣∣Ft

]
. (5)

Since ⟨X̃⟩ = ⟨X⟩ under either probability measure, it is evident that

||Y ||∞ = ||X̃||2
BMO(P̃ )

, where

||Y ||∞ = ||Y ∗
T ||L∞ and Y ∗

T = sup
t∈[0,T ]

|Yt|.

For any X ∈ BMO(P ) the process Y is a positive bounded semimartingale with
the decomposition

Yt = Y0 + At +

∫ t

0

φsdMs + Lt, (6)

where A is a predictable process of bounded variation and L is a local martingale
orthogonal to M . It is easy to see that the triple (Y, φ, L) is a solution of the BSDE{

Yt = Y0 − ⟨X⟩t −
∫ t
0
φsd⟨M⟩s +

∫ t
0
φsdMs + Lt,

YT = 0.
(7)

Let 0 < p < 1 and ε > 0. Applying the Ito formula for (Yτ + ε)p − (YT + ε)p

where 0 < p < 1, ε > 0 and taking conditional expectations we obtain (without loss of
generality we assume that all stochastic integrals are martingales, otherwise one can
use the localization arguments)

(
Yτ + ε

)p − εp = E
[ ∫ T

τ

p(Ys + ε)p−1d⟨X⟩s
∣∣∣Fτ

]
+
p(1− p)

2
E
[ ∫ T

τ

(Ys + ε)p−2d⟨Lc⟩s
∣∣∣Fτ

]
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+E
[ ∫ T

τ

(p(1− p)

2
(Ys + ε)p−2φ2

s + p(Ys + ε)p−1φs

)
d⟨M⟩s

∣∣∣Fτ

]
−E
[
Στ<s≤T

(
(Ys + ε)p − (Ys− + ε)p − p(Ys− + ε)p−1∆Ys

)∣∣∣Fτ

]
, (8)

where, Lc is the continuous martingale part of L.
Because f(x) = xp is concave for p ∈ (0, 1), the last term in (8) is positive. There-

fore, using the inequality

p(1− p)

2
(Ys + ε)p−2φ2

s + p(Ys + ε)p−1φs +
p

2(1− p)
(Ys + ε)p ≥ 0

from (8) we obtain

(Yτ + ε)p − εp ≥ E
[ ∫ T

τ

p(Ys + ε)p−1d⟨X⟩s
∣∣∣Fτ

]
− p

2(1− p)
E
[ ∫ T

τ

(Ys + ε)pd⟨M⟩s
∣∣∣Fτ

]
. (9)

Since 0 < p < 1

p
(
||Y ||∞ + ε

)p−1
E
[
⟨X⟩T − ⟨X⟩τ

∣∣∣Fτ

]
≤ E

[ ∫ T

τ

p(Ys + ε)p−1d⟨X⟩s
∣∣∣Fτ

]
,

from (9) we have

p
(
||Y ||∞+ε

)p−1
E
[
⟨X⟩T−⟨X⟩τ

∣∣∣Fτ

]
≤
(
Yτ+ε

)p−εp+ p

2(1− p)
E
[ ∫ T

τ

(Ys+ε)
pd⟨M⟩s

∣∣∣Fτ

]
and taking norms in both sides of the latter inequality we obtain

p
(
||Y ||∞+ ε

)p−1 · ||X||2BMO(P ) ≤
(
||Y ||∞+ ε

)p− εp+ p

2(1− p)

(
||Y ||∞+ ε

)p||M ||2BMO(P ).

Taking the limit when ε→ 0 we will have that for all p ∈ (0, 1)

||X||2BMO(P ) ≤
(1
p
+

1

2(1− p)
||M ||2BMO(P )

)
||Y ||∞.

Therefore,

||X||2BMO(P ) ≤ min
p∈(0,1)

(1
p
+

1

2(1− p)
||M ||2BMO(P )

)
||Y ||∞

=
(
1 +

√
2

2
||M ||BMO(P )

)2
||Y ||∞, (10)

since the minimum of the function f(p) = 1
p
+ 1

2(1−p) ||M ||2BMO(P ) is attained for p∗ =
√
2/(

√
2 + ||M ||BMO(P )) and f(p

∗) =
(
1 +

√
2
2
||M ||BMO(P )

)2
.
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Thus, from (10)

1(
1 +

√
2
2
||M ||BMO(P )

) ||X||BMO(P ) ≤ ||X̃||BMO(P̃ ).

Now we can use inequality (10) for the Girsanov transform of X̃.
Since dP/dP̃ = E−1

T (M) = ET (M̃)dP , M̃, X̃ ∈ BMO(P̃ ) and

φ(X̃) = ⟨X̃, M̃⟩ − X̃ = X,

from (10) we get the inverse inequality:

||X̃||BMO(P̃ ) ≤
(
1 +

√
2

2
||M̃ ||BMO(P̃ )

)
||X||BMO(P ). 2

Let us compare the constant

C(M̃) = 1 +

√
2

2
||M̃ ||BMO(P̃ )

from (4) with the corresponding constant CKaz(M̃) from (1) (Kazamaki [2]).
Since 21/p > 1 and by Jensen’s inequality

EP̃
[{

Eτ,T (M̃)
}− 1

p−1

∣∣∣Fτ

]
≥ 1,

the constant CKaz(M̃) is more than
√
2p, where from (3) p >

(
1 +

√
2
2
||M̃ ||BMO(P̃ )

)2
.

Therefore, we obtain that at least

C2(M̃) <
1

2
C2
Kaz(M̃).
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