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STRONG COUPLING CONSTANT FROM τ DECAY
WITHIN A DISPERSIVE APPROACH TO

PERTURBATIVE QCD

B. MAGRADZE

Abstract. We present a new dispersive framework for the extraction
of the strong coupling constant αs from τ -lepton decays. A new
feature of our procedure is the use of the quark-hadron duality on
the limited region sd < s < m2

τ . The duality point sd and the

MS strong coupling constant αs(m2
τ ) are self-consistently extracted

from the τ data for the non-strange vector spectral function. We use
the 2005 ALEPH and 1998 OPAL experimental data on the vector
spectral function. We compare the new framework with the contour
improved perturbation theory up to order α5

s. The new procedure
yields systematically lower values for αs.

îâäæñéâ. öâéëåŽãŽäâĲñèæŽ ŽýŽèæ áæïìâîïæñèæ éæáàëéŽ úèæ-
âîæ ñîåæâîåéëóéâáâĲæï αs çëêïðŽêðŽï îæùýãæåæ éêæöãêâèëĲæï
àŽêïŽäôãîæïŽåãæï τ èâìðëêæï áŽöèâĲæáŽê. çãŽîç-ßŽáîëêñèæ
áñŽèëĲŽ àŽéëõâêâĲñèæŽ öâäôñáñè Žîâöæ sd < s < m2

τ . áñŽèë-
Ĳæï ûâîðæèæ sd áŽ MS ïóâéæï Ĳéæï éñáéæãŽ åãæå-öâåŽêýéâĲñèŽá
àŽêæïŽäôãîŽ τ èâìðëêæï áŽöèâĲæï ŽêŽèæäæå ãâóðëîñè Žîýöæ.
àŽéëõâêâĲñèæŽ 2005 ALEPH áŽ 1998 OPAL çëèŽĲëîŽùæâĲæï àŽäë-
éãâĲæï öâáâàâĲæ ãâóðëîñèæ ïìâóðîŽèñîæ òñêóùææïŽåãæï \ŽîŽ-
ñùêŽñî" Žîýöæ. ŽýŽèæ éâåëáæ öâáŽîáŽ \çëêðñîäâ àŽñéþëĲâïâ-
Ĳñè öâöòëåâĲæï åâëîæŽï" α5

s îæàæï øŽåãèæå. ŽýŽèæ ìîëùâáñ-
îæå éæôâĲñèæŽ öâáŽîâĲæå ñòîë áŽĲŽèæ îæùýãæåæ éêæöãêâèëĲâĲæ
Ĳéæï éñáéæãŽïŽåãæï.

1. Introduction

As is well known, the inclusive hadronic decays of the τ -lepton may be
reliably studied within perturbative QCD (see seminal work [1] and the
references therein). A general approach to analyzing the perturbative and
non-perturbative aspects of the τ -system observables is the renormalization
group improved perturbation theory augmented with the Wilson’s Operator
Product Expansion (OPE) [2]. The characteristic energy scale is relatively
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small, mτ ≈ 1.8GeV (mτ being the mass of the τ -lepton). Hence, the non-
perturbative effects of QCD cannot be completely ignored. The original
study [1] has shown that they are small and under control within the OPE.
In the following years, the inclusive hadronic quantities of the τ system
have been intensively exploited to precisely determine the strong coupling
constant αs(m2

τ ). This became feasible because the observables of the τ
system are sensitive to the concrete value of αs and the accuracy of the
experimental data for a variety of the observables has been considerably
improved (for the recent review see [3]).

In the past few years, the determination of the strong coupling constant
from non-strange hadronic τ -data has received a renewed interest. It was
pointed out [4] that there is no good agreement between recent two highest
precision low-energy determinations of αs. These determinations come from
the finite energy sum rule (FESR) analysis of hadronic τ decay data [5] and
from a lattice perturbation theory analysis of ultraviolet-sensitive lattice
observables [6].

αs(M2
z ) = 0.1212± 0.0011 (τ decay), (1)

αs(M2
z ) = 0.1170± 0.0012 (lattice). (2)

Moreover, different determinations of αs from the same τ data [7, 8, 9]
are not fully consistent within their mutual errors (see work [10] and the
references therein). This discrepancy has stimulated a number of new theo-
retical investigations on the application of the FESR in τ decays (see works
[4, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. The standard FESR technique
based on the truncated OPE series has been reconsidered. The small but
still significant non-perturbative effects have been included into analysis
[19]. On the one hand, the impact of the higher order terms of the OPE
(neglected in the standard analyzes) has been estimated [4, 15, 16, 18]. It
was confirmed that their influence on the extracted value of αs is not small
in the separate vector and axial vector channels. To suppress these contri-
butions in the FESR the so-called pinched weights introduced [4, 15, 16, 18].
On the second hand, using the physically motivated model [10, 11, 19] the
impact of the non-perturbative corrections coming from the possible duality
violations (DVs) [20] has been estimated. In the separate vector and axial
vector channels the DVs was found to be appreciable (see recent work [19]
and references therein). The pinched weights have also been employed to
reduce the effects of DVs [18]. Possible non-perturbative corrections to the
FESR (direct instantons, duality violation and tachyonic gluon mass) which
cannot be described within the OPE have been estimated in [13].

As is well known, in the time-like region the renormalization group (RG)
invariance cannot be used unambiguously. For this reason, two different
methods are used to perform the RG resummation within the FESR. These
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are fixed order perturbation theory (FOPT) and contour improved per-
turbation theory (CIPT) [21, 22]. These two approaches lead to differing
results. The values of αs extracted from τ decays employing CIPT have
always been higher. A critical comparison of these two approaches may
be found in recent works [23, 24]. In [24] FOPT was approved as a better
approximation to the true result. In contrast, the authors of [4] and [5]
favored CIPT.

Note that the non-physical singularities of the perturbative running cou-
pling (the Landau pole problem) which occur at small space-like momenta
may, supposedly, deteriorate the extracted values of the parameters [25].
In particular, CIPT suffers from this shortcoming [24]. To cope with this
problem dispersive or analytic approaches to perturbative QCD have been
developed [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. In works
[27] and [28], the τ lepton decay rate has been analyzed within a simple
and effective dispersive technique, Analytic Perturbation Theory (APT)
(for reviews see [29, 38, 39]). However, the minimal analytic QCD model
(the same APT) predicts, from the non-strange τ lepton decay data, too
large value for the strong coupling constant, αs(m2

τ ) = 0.403 ± 0.015 [28].
The advantages and shortcomings of the three approaches to the τ decays
(FOPT, CIPT and APT) were thoroughly analyzed in [30]. It should be
noted that APT as well as its generalized versions suggested more later
[31, 33, 34, 35, 36, 37] proved to be very useful from the phenomenological
point of view. A remarkable feature of these modified expansions is the
better convergence and improved stability property with respect to change
of the renormalization scheme. Nevertheless, one should keep in mind that
an analytic approach based only on perturbation theory cannot be defined
unambiguously, in fact, there is no a unique recipe for removing the Landau
singularities from the running coupling.

In our earlier work [40] we have suggested a dispersive approach to ana-
lyze the τ decay data. In contrast to CIPT, the new approach is based on
the improved approximations to the Adler function which incorporate cor-
rect analyticity and RG invariance properties of the exact function. More-
over, the approximations correctly reproduce the required ultraviolet and
infrared properties of the exact Adler function. Another feature of the
new framework is the use of the quark-hadron duality in the limited region
sd < s < m2

τ . The QCD scale parameter ΛMS and the duality point sd may
be determined, self-consistently, from the experimental data [40].

In the present article, we investigate the new framework more thoroughly.
We revise part of the results of work [40]. We present a more accurate test
of the convergence of the numerical results in perturbation theory. The
numerical value of the duality point sd is found to be remarkable stable
with respect to higher order QCD corrections. More importantly, we study
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the stability of the results with respect to small change of the experimental
data.

In Section 2 we critically analyze the FOPT and CIPT approaches to
the τ -decay. A dispersive modification of the CIPT suggested in [40] is dis-
cussed in more detail. In Section 3 we give corrected numerical values for αs

and sd extracted from the 2005 ALEPH data. We thoroughly investigate
the stability of the results comparing the new and CIPT determinations
of αs order by order in perturbation theory. In addition, we analyze the
ALEPH non-strange data employing the renormalization scheme invariant
(RSI) framework suggested in [41]. We also analyze the 1998 OPAL [9] vec-
tor data within the new dispersive framework. Conclusions are summarized
in Section 4.

2. Theoretical Framework

Let us briefly recall some basic facts about the QCD analysis of the
hadronic decays of the τ -lepton through the FESR [42]. The non-strange
vector component of the τ -hadronic width is determined as

Rτ,V = 6|Vud|2SEW

m2
τ∫

0

wτ (s)v1(s)d s, (3)

where

wτ (s) =
1

m2
τ

(
1− s

m2
τ

)2 (
1 + 2

s

m2
τ

)
,

Vud is the flavor CKM matrix element, SEW denotes a short-distance elec-
troweak correction 1 and v1(s) is the vector spectral function defined
through the correlation function 2

v1(s) = 2π ImΠūd,V (−s). (4)

It is more convenient to define a renormalization scale invariant quantity,
the Adler function

D(Q2) = −4π2Q2 d

dQ2
Πūd,V (Q2), (5)

here, we have defined s = q2 = −Q2. In the exact theory, the correlation
function Πūd,V (z) and the Adler function are analytic functions except the
cut running along negative z-axis. This implies the FESR relation

Rτ,V = − 3ı

4π
|Vud|2SEW

−s0+ıε∮

−s0−ıε

(
1− z

s0

)(
1 +

z

s0

)3

D(z)
d z

z
, (6)

1In what follows, we neglect the small additive electroweak correction δ′EW .
2We use the normalization of the spectral function with the naive parton prediction

v1,naive = 1/2.
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the integration contour of the integral in (6) is a circle of radius s0 (s0 = m2
τ ).

In the case of massless quarks, the Adler function has the perturbation
theory expansion [23]

D(Q2) =
∞∑

n=0

as(µ2)n
n+1∑

k=1

kcnkLk−1, where L = ln
Q2

µ2
, (7)

as(µ2) = αs(µ2)/π and αs(µ2) denotes the strong coupling constant normal-
ized at the scale µ. It follows from the renormalization scale invariance of
the Adler function that only the coefficients cn1 are independent. All other
coefficients are determined in terms of the cn1 and β-function coefficients
through the RG equation [23, 24]. In practice the series (7) is truncated at
some finite order.

The approximations to the Adler function obtained by truncation of the
series (7) have correct analytical properties of the exact function. In the case
of FOPT, the series (7) is inserted into contour integral (6) and integrated
term-by-term. Afterwards, the normalization scale is determined choosing
µ = mτ [23]. However, we could start from the original formula (3) with
perturbation theory expansion for the spectral function. The expansion for
the spectral function is obtained by insertion of the series (7) into inver-
sion formula (15) (see below) and integrating term-by-term. So, we could
achieve the same result without using the FESR relation (6). Thus, within
FOPT, formulas (3) and (6) are equivalent. However, the approximations
to the Adler function employed within FOPT do not describe correctly the
asymptotic behavior of the exact function for Q2 → ∞. In the standard
analysis of the τ data this fact is irrelevant. However, as we shall see latter,
this is not the case for the new framework accepted in this paper.

Since the Adler function is the renormalization scale invariant quantity,
one may choose µ2 = Q2 in series (7). Thus, one obtains the RG improved
expansion

D(Q2)|RG = 1 + d(Q2)|RG = 1 +
∞∑

n=1

dnan
s (Q2) (8)

where dn = cn1, as(Q2) = αs(Q2)/π, αs(Q2) being the running coupling.
The first two coefficients in the expansion (8) are the renormalization scheme
invariant. The known coefficients in the MS scheme for nf = 3 quark flavors
take values d1 = 1, d2 ' 1.6398, d3 ' 6.3710 and d4 ' 49.0757. The last
coefficient was calculated recently by the authors of [12] by using power-
ful computational techniques. The approximations to the Adler function
constructed by truncation the series (8) have correct ultraviolet asymptot-
ical behavior (d(Q2) → 0 as Q2 → ∞), however they violate the cut-plane
analyticity of the exact Adler function due to the non-physical Landau sin-
gularities of the perturbative running coupling. One may assume, without
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loss of generality, that the running coupling has only one Landau singular-
ity located on the positive Q2 axis [40]. This is true for the asymptotic
solutions and for more accurate Lambert-W solutions to the RG equation
[43, 44, 45]. In [40], we have derived the violated dispersion relation for the
QCD correction to the Adler function:

d(Q2)|RG = d(Q2)|APT + dL(Q2), (9)

where the function d(Q2)|APT satisfies the normal DR

d(Q2)|APT =
1
π

∞∫

0

ρeff(σ)
σ + Q2

d σ, (10)

with the effective spectral density determined as

ρeff(σ) = Im{d(−σ − ıε)|RG}. (11)

It is to be noted here that the function

D(Q2)APT = 1 + d(Q2)|APT (12)

is the analytic image of the perturbative Adler function determined in the
sense of the Analytic Perturbation Theory (APT) approach of Shirkov and
Solovtsov [26, 27]. The second term in (9) is the contribution coming from
the Landau singularity. It is represented by the contour integral [40]

dL(Q2) = − 1
2πı

∮

C+
L

d(ζ)|RGI

ζ −Q2
d ζ, (13)

here, the integral is taken round the circle {ζ : ζ = sL + sL exp (ıφ),−π <
φ ≤ π} in the positive (anti-clockwise) direction, with sL being the Landau
singular point.

In the popular framework, referred to as contour improved perturbation
theory (CIPT) [21, 22], the (truncated) expansion (8) is inserted into the
FESR integral (6) and then integrated term by term. At this point, one
ignores the fact that with the approximation (8) formulas (3) and (6) are
not equivalent. Indeed, the FESR relation (6) cannot be derived because
of violated analytical properties of the approximation (8). This inadequacy
was repeatedly discussed in the literature (see for example [24] and [30]).
Nevertheless, CIPT has been very successful from the phenomenological
point of view. On the other hand, APT is free from this drawback. However,
the analysis of the τ decay data based on APT with massless quarks gave
too large value for the strong coupling constant [28]. Furthermore, in the
infrared region, the Adler function can not be reproduced correctly within
APT, CIPT or FOPT. Thus, in APT the running coupling αs(Q2) has a
finite limit as Q2 → 0 [26]. This leads to the apparent contradiction in the
case of the Adler function. In fact, the Adler function vanishes at Q2 = 0,
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as is manifested by Chiral Perturbation Theory [47]. In work [31], APT
has been modified by considering the quark mass threshold effects for the
light quarks. In this way, correct descriptions of the Adler function and τ
data were achieved. However, too large values for the effective quark masses
(mu ∼ md ∼ 330 MeV) were predicted.

As is well known, in the exact theory the Adler function satisfies the
dispersion relation (DR)

D(Q2) = Q2

∞∫

0

2v1(s)ds

(s + Q2)2
. (14)

The hadronic vector spectral function may be calculated in terms of the
Adler function via the contour integral

v1(s) =
1

4πı

−s+ıε∮

−s−ıε

D(z)
z

d z, (15)

where the path of integration, connecting the points −s∓ ıε on the complex
z-plane, avoids the cut running along the real negative z-axis. The integral
being traversed in a positive (anticlockwise) sense. From the violated DR
(9), we may also derive the integral representation

D(Q2)|RG = Q2

∞∫

−sL

2vRG
1 (s)ds

(s + Q2)2
, (16)

where the singular integral at the lower bound should be treated in the
sense of distribution theory 3. It is to be noted that the spectral function
vRG
1 (s) may be again calculated via the inversion formula (15), but now the

integration contour should also avoid the non-physical cut running along
the positive interval 0 < z < sL (see Fig. 1).

The dispersion relation (14) may be used to construct the approximations
to the Adler function with correct analyticity properties. To approximate
the hadronic spectral function, one may use the global duality ansatz em-
ployed previously in works [46, 47]

v1(s) = θ(sd − s)vnp
1 (s) + θ(s− sd)vpQCD

1 (s), (17)

where vpQCD
1 (s) is the perturbation theory approximation to the spectral

function, vnp
1 (s) denotes the non-perturbative component of the spectral

function confined, presumably, in the low energy region, and sd is the onset
of perturbative continuum, an infrared boundary in Minkowski region above

3We have confirmed formula (16) in the case of the one-loop order β-function.
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Re(Q2)

Im(Q2)

sL

−s− ıε

−s+ ıε

1

Figure 1. The integration contour in the formula (15) in
the case of the approximation D(Q2)|RG violating the DR.
Branch points on the real axis are represented by the blobs
and branch cuts by the zigzagging lines. sL denotes the
Landau singularity.

which we trust pQCD 4. One may also construct a “semi-experimental”
spectral function

v“s.exp”
1 (s) = θ(sd − s)vexp

1 (s) + θ(s− sd)vpQCD
1 (s), (18)

where vexp
1 (s) denotes the genuine experimental part of the total “semi-

experimental” spectral function. It was measured with high precision by
ALEPH [7, 8] and OPAL [9] collaborations in the range 0 <

√
s < mτ =

1.777 GeV. Formula (18) extends the spectral function beyond the range
accessible in the experiment. Formulas (17) and (18) provide practical re-
alizations of the concept of the quark-hadron duality (see the original work
[46]). In [47], this ansatz was used to determine the duality point sd for
a given value of ΛMS, the QCD scale parameter in the MS scheme. The
perturbative component vpQCD

1 (s) was constructed from the FOPT series
(7) by choosing the normalization scale µ2 = sd. Such a framework may
be considered as a modification of FOPT. In [40], we have used the same
ansatz for the spectral function. However, our strategy was somewhat dif-
ferent. Starting from the ansatz (18), we have determined the parameters
ΛMS and sd self-consistently from the τ data. In contrast to [47], we have
used the RG improved approximation vRG

1 (s) to the spectral function. The
function vRG

1 (s) is calculated by insertion of the (truncated) RG improved
series (8) into inversion formula (15). For s > 0, one finds [40]

vpQCD
1 (s) = vRG

1 (s) = vAPT
1 (s), (19)

4It is assumed that 0 < sd < m2
τ .
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where vAPT
1 (s) is the spectral function determined in the sense of the Shirkov-

Solovtsov APT

vAPT
1 (s) =

1
2
(1 + r(s)), where r(s) =

1
π

∞∫

s

ρeff(σ)
σ

dσ. (20)

It follows from the duality relation (18) that one may calculate in QCD
perturbation theory the decay rate of the τ lepton into hadrons of invariant
mass larger than

√
sd

RQCD
τ,V |s>sd = 6|Vud|2SEW

m2
τ∫

sd

wτ (s)vAPT
1 (s)d s,= Rexp

τ,V |s>sd (21)

so that

Φτ (sd, Λ2) =

m2
τ∫

sd

wτ (s)vAPT
1 (s)d s =

m2
τ∫

sd

wτ (s)vexp
1 (s)d s. (22)

Using relation (20), one may express the left-hand side of (22) in terms of
the effective spectral density [40]

Φτ (sd, Λ2) = (1− ŝd)3(1 + ŝd)
(1 + r(sd))

4
−

− 1
4π

1∫

ŝd

y−1(1− y)3(1 + y)ρeff(m2
τy)d y,

(23)

where ŝd = sd/m2
τ .

Inserting the duality ansatz (18) into DR (14) one constructs the “semi-
experimental” Adler function

D(Q2)|“s.exp” = D(Q2, sd)|exp + D(Q2, sd)|pQCD, (24)

where the experimental and QCD components of the Adler function are
determined by

D(Q2, sd)|exp = Q2

sd∫

0

2vexp
1 (s)d s

(s + Q2)2
,

D(Q2, sd)|pQCD = Q2

∞∫

sd

2vpQCD
1 (s)d s

(s + Q2)2
.

(25)

In general, the QCD component vpQCD
1 (s) may contain the non-perturbative

corrections coming from the OPE as well as the duality violating terms
[19] not included into the OPE. Intuitively, it seems to us that the non-
perturbative corrections are more essential in the region 0 < s < sd. In
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what follows, we will ignore these non-perturbative corrections into QCD
component of the spectral function and employ the perturbative approxi-
mation (19). The power suppressed part of the “semi-experimental” Adler
function is defined as

D(Q2)|pw.s = D(Q2)|“s.exp” −D(Q2)|RG, (26)

it can be represented in the form [40]

D(Q2)|pw.s = 2

sp∫

0

K(Q2, s)(vexp
1 (s)− vAPT

1 (s))d s− dL(Q2), (27)

where K(Q2, s) = Q2/(Q2 + s)2. Formula (27) enables us to derive the
asymptotic expansion at large Q2

D(Q2)|pw.s ∼
∞∑

n=1

ηn

(
Λ2

Q2

)n

, (28)

where Λ ≡ ΛMS is the QCD scale parameter in the MS scheme and the
coefficients ηn depend on the dimensionless ratios Λ2/m2

τ and sd/m2
τ . In

the case of massless quarks, the gauge invariant operator of dimension two
cannot be constructed. Thus η1 = 0. This condition from the OPE leads
to the equation relating the parameters sd and Λ with the experimental
spectral function [40]

Φas(sd, Λ2) =
1

m2
τ

sd∫

0

vexp
1 (s)d s, (29)

where

Φas(sd, Λ2) =
ŝd

2
(1 + r(sd)) +

1
2πm2

τ

sd∫

0

ρeff(σ)d σ +
cL

2
Λ2

m2
τ

, (30)

with ŝd = sd/m2
τ and the coefficient cL is a positive number independent

of Λ

cL = Λ−2 1
2πı

∮

C+
L

d(ζ)|RGd ζ =
1
2π

sL

Λ2

π∫

−π

d(sL + sLeıφ)|RGdφ, (31)

here sL being the Landau singularity of the running coupling. It is propor-
tional to Λ2 5. Numerical values of the coefficient cL calculated in the MS

5Analytic expressions for sL in the MS scheme up to fourth order in perturbation
theory may be found in [45].
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Table 1. Numerical values of the coefficient cL in the MS
scheme calculated by means of the four-loop order exact
numeric running coupling. For the coupling, the RG equa-
tion is solved numerically.

Approximations to the Adler function
LO NLO N2LO N3LO N4LO

cL 0.301262 0.453421 0.555401 0.651373 0.721687

scheme are listed in Table 1. In the calculations we have used the approx-
imations to the Adler function of increasing order 6. All approximations
have been constructed with the four-loop order exact (numeric) running
coupling. For the unknown O(α5

s) correction to the Adler function, we use
the geometric estimate d5 = d4(d4/d3) = 378 [5].

An important remark is in order here. The advantage of the approxima-
tion vAPT

1 (s) is that it correctly describes asymptotic behavior of the exact
function as s → ∞; in this limit vAPT

1 (s) → 1/2. In contrast, in the same
limit, the FOPT approximation vFOPT

1 (s) increases as a polynomial of loga-
rithm. This shortcoming of FOPT is irrelevant as far as the duality relation
(22) is concerned. However, Eq. (29) depends on the ultraviolet proper-
ties of the Adler function. This discussion suggests that a more consistent
framework should be constructed in the contour improved scheme. In this
work, we will refer to the new framework as the dispersive contour improved
perturbation theory (DCIPT) 7. Although technically the DCIPT resembles
APT, there are significant differences between the two frameworks. Thus,
in the DCIPT we do not mention modifications of the QCD β-function and
running coupling.

3. Numerical Results

The parameters sd and Λ may be extracted from the data by solving the
system of equations

Φτ (sd, Λ2) =

m2
τ∫

sd

wτ (s)vexp
1 (s)d s, (32)

Φas(sd, Λ2) =
1

m2
τ

sd∫

0

vexp
1 (s)d s, (33)

6We use the abbreviation NkLO to denote the order O(αk+1
s ) approximation to the

Adler function.
7In [40], we used the abbreviation APT+.
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Table 2. Central values for the parameters in the MS
scheme extracted from the 2005 ALEPH vector τ data
order-by-order within the DCIPT. These results correspond
to the four-loop order running coupling.

Observable Approximation to the Adler function
LO NLO N2LO N3LO N4LO

sd GeV2 1.707 1.710 1.709 1.707 1.705
Λ GeV 0.486 0.378 0.348 0.332 0.323
αs(m2

τ ) 0.401 0.337 0.321 0.313 0.308

where the functions Φτ and Φas are defined in formulas (23) and (30). The
right-hand sides of Eqs. (32)-(33) are determined in terms of the empirical
function vexp

1 (s). We have reconstructed the experimental vector spectral
function from the 2005 ALEPH spectral data for the vector invariant mass
squared distribution [8]. This was done, with the values |Vud| = 0.9746 ±
0.0006 and SEW = 1.0198 quoted in [7]. To interpolate the spectral function
between the fixed experimental values of the energy squared, we use cubic
splines. Evidently, the mean values of the parameters should be determined
from the mean value of vexp

1 (s). The error analysis is based on the system
of equations (32)-(33) [40]. To determine the experimental uncertainties on
the extracted values of the parameters, we use covariance matrices provided
by ALEPH. Unfortunately, in the earlier work [40], we used (inconsistently)
the N2LO value cL = 0.555401 (see Table 1) in all other orders. In this
work, we present corrected results.

In general, the system (32)-(33) has more than one solution. For phe-
nomenological reasons, we look for a solution in the limited region 280MeV
< Λ < 420MeV. In this region, the system has only one solution. In Table
2, we give the central values for the parameters extracted from the 2005
ALEPH data within the new (DCIPT) framework. Formally, we can write
a series for the numerical value of the coupling constant as follows:

αs(m2
τ )|N4LO = αs(m2

τ )|LO +
4∑

k=1

∆k,

where ∆k = αs(m2
τ )|NkLO − αs(m2

τ )|Nk−1LO. Using the numbers listed in
Table 2, we obtain the series

αs(m2
τ )|DCIPT

N4LO = 0.401− 0.064− 0.016− 0.009− 0.005. (34)

In [40], from the same data, we have obtained the CIPT series

αs(m2
τ )|CIPT

N4LO = 0.485− 0.095− 0.023− 0.013− 0.007. (35)
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Table 3. The changes of the leading term induced by the
consecutive corrections in the series (34) and (35).

Perturbative orders NLO N2LO N3LO N4LO
DCIPT 15.9% 4.0% 2.2% 1.2%
CIPT 19.6% 4.7% 2.7% 1.4%

In Table 3, we give the changes (in percents) of the leading term induced by
the consecutive corrections in the DCIPT and CIPT series. One sees that
the DCIPT series (34) converges more rapidly.

In this paper, we will estimate only the so-called indicative theoretical
errors. These are defined as a half of the last retained term in the series
[41]. As is pointed out in [41], this definition of the error is heuristic and
indicative. From the DCIPT series (34), we obtain the estimates

αs(m2
τ )|NLO = 0.337± 0.016exp ± 0.032th

αs(m2
τ )|N2LO = 0.321± 0.016exp ± 0.008th

αs(m2
τ )|N3LO = 0.313± 0.014exp ± 0.004th

αs(m2
τ )|N4LO = 0.308± 0.014exp ± 0.002th ± (0.0045d5), (36)

here we have also included the experimental errors 8. Analogically, in the
case of CIPT we have found (see appendix to [40])

αs(m2
τ )|NLO = 0.390± 0.011exp ± 0.048th

αs(m2
τ )|N2LO = 0.367± 0.009exp ± 0.012th

αs(m2
τ )|N3LO = 0.354± 0.008exp ± 0.007th

αs(m2
τ )|N4LO = 0.347± 0.008exp ± 0.003th ± (0.0065d5). (37)

The N4LO estimates in (36) and (37) correspond to the central value d5 =
378. The additional theoretical error in the coupling constant induced from
the uncertainty in the fifth order unknown coefficient (d5 = 378±378) takes
the values 0.0045 (≈ 1.5%) and 0.0065 (≈ 1.9%) in the new and standard
extraction procedures respectively. Comparing formulas (36) and (37), one
sees that within the DCIPT the indicative theoretical errors take smaller
values. In contrast to this, the experimental errors on the values of αs

increase by the factor of 1.75 within the new procedure. It is remarkable
that the more reliable estimate of the theoretical error presented in [5] within
CIPT (at N4LO) is close to our estimate of the error presented in formula
(37).

8For the error analysis we use formulas derived in [40].
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Table 4. Comparison of the DCIPT and CIPT τ decay
determinations of the strong coupling constant at the scale
MZ = 91.187 GeV. Two errors are given, the experimental
(first number) and the error from the evolution procedure
(second number).

Approximation αs(M
2
z )|DCIPT αs(M

2
z )|CIPT

N2LO 0.1187± 0.0019± 0.0005 0.1238± 0.0009± 0.0005
N3LO 0.1176± 0.0018± 0.0005 0.1224± 0.0009± 0.0005
N4LO 0.1170± 0.0018± 0.0005 0.1217± 0.0009± 0.0005

Similarly, determining the theoretical and experimental errors on the
parameter sd, we find stable results

sd|NLO = 1.710± 0.054exp ± 0.002th GeV2

sd|N2LO = 1.709± 0.054exp ± 0.001th GeV2

sd|N3LO = 1.707± 0.054exp ± 0.001th GeV2

sd|N4LO = 1.705± 0.054exp ± 0.001th GeV2. (38)

It is seen from (38), that the estimate for the duality point sd decreases
very slowly as the order of the perturbation theory increases. Practically,
it is constant, sd ≈ 1.71± 0.05 GeV2.

Usually, it is convenient to perform evolution of the αs results to the ref-
erence scale Mz = 91.187GeV. This is done by using the RG equation and
appropriate matching conditions at the heavy quark (charm and bottom)
thresholds (see [48] and references therein). The three-loop level matching
conditions in the MS scheme were derived in [49]. In this paper, we follow
the work [50]. We perform the matching at the matching scale mth = 2µh

where µh is a scale invariant MS mass of the heavy quark µh = mh(µh). We
assume for the scale invariant MS masses the estimates of the Particle Data
Group µc = 1.29+0.05

−0.11 GeV and µb = 4.19+0.18
−0.06 GeV [51]. In the evolution

procedure, we use the exact numeric four-loop running coupling. In Table 4,
we compare the estimates for αs(M2

z ) obtained from the two (DCIPT and
CIPT) τ -decay determinations of the coupling constant.

As is stated above, we have used the MS scheme four-loop running cou-
pling uniformly in all calculations, whereas the order of approximation to
the Adler function has been varied consecutively. To perform a more ac-
curate test, let us now employ the same orders to approximate the β and
Adler functions. The coefficient cL is accordingly recalculated. In Table
5, we present the results of the improved test. Comparing the numbers in
Tables 2 and 5, we see that the extracted values for the parameters, beyond
LO, are very close (the N2LO and N3LO results practically coincide).
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Table 5. Testing the stability of the results with regard
to higher order perturbation theory corrections. Here, the
approximations to the β and Adler functions are chosen
consistently, at the same orders.

Perturbative order cL sd GeV2 αs(m2
τ )|DCIPT

LO 0.444444 1.721 0.394
NLO 0.336798 1.713 0.335
N2LO 0.527261 1.709 0.321
N3LO 0.651373 1.707 0.313

Let us now employ the renormalization scheme invariant extraction met-
hod (RSI) of [41] to extract the numerical values of the coupling constant
from the 2005 ALEPH V + A spectral data. We shall also include into
consideration the recently calculated O(α4

s) term in the series expansion of
the Adler function. The advantage of this technique is that one starts from
the physical quantity, the effective charge defined by

aτ =
ατ

π
= δ

(0)
th , (39)

where δ(0) is the perturbative correction to the τ -decay rate. The running
coupling aτ defines the internal scheme for the physical quantity. The nu-
merical value for the QCD scale in the internal scheme, Λτ , is extracted by
using the equation aτ (m2

τ ) = δ
(0)
exp. The MS scheme scale parameter is de-

termined according to the relation ΛMS = Λτ exp{−5.20232/(2β0)}, where
β0 = 9/2. Formulas for calculation of the coefficients of the function βτ

(the β-function in the internal scheme) may be found in works [3, 41]. For
the experimental value of the perturbative part of the τ decay rate in the
non-strange channel, we use the updated value

δ(0)
exp|V +A = 0.2042± 0.0050exp,

evaluated recently in [24]. For consistency, we use the same orders to ap-
proximate the β and Adler functions in the MS-scheme. In Table (6), we
compare the RSI and DCIPT determinations of the coupling constant order-
by-order in perturbation theory. The relevant channels which have been
used to extract the coupling are indicated by subscripts. It is seen from the
Table, that beyond NLO the two determinations of the coupling constant
are in good agreement.

As is known, mathematically, the extraction of QCD parameters from ex-
perimental data via the sum rules constitutes the so-called ill-posed inverse
problem (analytical continuation of an approximately known function) [17].
Small changes in the input data may lead to large changes in the output. In
this regard, it is desirable to check the new framework. To do such a test,
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Table 6. Comparison of the RSI and DCIPT determina-
tions of the MS coupling constant from the τ -decay data.
Experimental errors are given only.

Perturbative order αs(m2
τ )|RSI

V +A αs(m2
τ )|DCIPT

V

NLO 0.278± 0.003 0.335± 0.016
N2LO 0.319± 0.004 0.321± 0.016
N3LO 0.312± 0.004 0.313± 0.014

one may extract the values of the parameters using the data from different
τ -decay experiments. As a different experimental data, let us employ the
1998 OPAL experimental data on the non-strange isovector vector spectral
function which is publicly available 9. The data are arranged in 100 bins
with bin size 0.032GeV2, starting from s = 0.016GeV2. Note that, the
OPAL data correspond to the branching fractions available in 1998, as well
as the then-current values of Vud and the electronic branching fraction Be.
These parameters have been updated since then. The 2005 ALEPH analysis
is more recent and based on more statistics. However, it was pointed out in
[19] that the correlations due to unfolding have been omitted in the original
ALEPH analysis. Thus the publicly available covariance matrices [8] should
be corrected. Fortunately, the above mentioned obstacles have little rele-
vance to the problem under investigation. In fact, our aim is to investigate
the impact of the specific formulation of the quark-hadron duality (as given
in (18)) on the extracted value of αs.

Inserting into the system of equations (32)-(33) the empirical vector spec-
tral function reconstructed from the 1998 OPAL data 10, we solve the sys-
tem numerically. We use the N2LO and N3LO approximations to the Adler
function combined for consistency with the three- and four-loop order MS
running couplings respectively. To determine the experimental uncertain-
ties on the extracted values of the parameters we use covariance matrices
provided by OPAL (relevant formulas were derived in the appendix to [40]).
For the duality point, we obtain stable result

sd|N2LO = (1.680± 0.100exp) GeV2,

sd|N3LO = (1.679± 0.100exp) GeV2, (40)

the central value in (40) decreases very slowly as the order in perturbation
theory increases. We see that the numerical values for the duality point
extracted from the ALEPH and OPAL data are close (cf. (38) and (40).

9I would like to thank S. Menke and S. Peris for making the data available to me.
10We use cubic splines to interpolate the data.
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For the strong coupling, from the OPAL data, we find the values

αs(m2
τ )|N2LO = 0.296± 0.025exp

αs(m2
τ )|N3LO = 0.290± 0.023exp, (41)

the central values here are somewhat smaller as compared to the corre-
sponding values extracted from the ALEPH data (cf. formulas (36) and
(41)). However, the two determinations of the coupling constant are con-
sistent within their mutual errors. It should be remarked that, in the case
of the OPAL data, we have obtained larger experimental uncertainties on
the numerical values of the parameters. For comparison, the original OPAL
analysis of the same data, within CIPT, gave the value [9]

αs(m2
τ )|N3LO = 0.348± 0.009exp ± 0.019th. (42)

Comparing the numbers in formulas (41) and (42), one sees that the DCIPT
determination of αs is significantly smaller, and the two determinations are
not consistent within their mutual errors. Performing evolution of the αs

values (41) to the Z0-mass scale, we obtain

αs(M2
z )|N2LO = 0.1154± 0.0034exp ± 0.0005ev,

αs(M2
z )|N3LO = 0.1145± 0.0033exp ± 0.0005ev. (43)

4. Conclusion

We have extracted numerical values for the MS scheme strong coupling
constant αs from the τ -lepton decay data. The data provided by the 2005
ALEPH and 1998 OPAL experiments are employed. We examine in detail
the dispersive approach to the τ -decay suggested in our earlier work [40].
The errors observed in some numerical results of [40] have been corrected.
Accordingly some of the conclusions of [40] are changed.

The new framework is based on the approximations to the Adler function
which have correct analytical properties. Thus the application of the FESR
(6) is mathematically justified. Moreover, these approximations correctly
reproduce the infrared and ultraviolet behavior of the exact Adler function.
In contrast, in the standard approaches (FOPT, CIPT or APT) some of
these properties of the Adler function are violated. The global quark-hadron
duality is used in the limited region of the energy squared sd < s < m2

τ

(Ed =
√

sd ≈ 1.31GeV). In the low energy region, 0 < s < sd, the hadronic
spectral function is reconstructed from the experimental data. This en-
abled us to reduce the effects of duality violations coming from the low
energy region. In fact, one expects in this region sizeable non-perturbative
corrections to the Adler function which cannot be reproduced within the
OPE (for example, the non-perturbative contributions from the p-meson
resonance).
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Technically, the new method is based on the system of equations (32)-
(33). The first equation follows from the concept of global quark-hadron du-
ality employed on the limited interval of the energy squared, sd < s < m2

τ .
The second equation is a consequence of the OPE which imposes the re-
strictions on the ultraviolet behavior of the Adler function. The parameters
αs and sd are simultaneously extracted from the data. We have exam-
ined numerical stability of the extracted values of the parameters order-
by-order in perturbation theory. The new framework (DCIPT) and the
standard (CIPT) are systematically compared. We have demonstrated that
the DCIPT determinations of the strong coupling constant are more stable
against perturbation theory corrections (see Table 3). The central value of
the coupling constant definitely became smaller as compared to the CIPT
result (cf. Eqs. (36) and (37)). The changes in the central values are not
within the quoted experimental and theoretical errors. Using the error es-
timated within the DCIPT, σ =

√
σ2

exp + σ2
th ≈ 0.0151, we find that at

N3LO the central values of αs(m2
τ ) in formulas (36) and (37) differ from

each other in about 2.7 standard deviation. However, assuming the error
estimated within CIPT , σ ≈ 0.0107, one finds even large difference, 3.8 σ
11. A shortcoming of the new procedure is the increased experimental error
on the extracted values of αs. This is a direct consequence of the reduction
of the duality region.

Having included into analysis the fourth order coefficient d4 and the
geometric estimate d5 = 378, we have observed excellent agreement between
the lattice and τ -decay determinations of the strong coupling constant. At
N4LO, the central value for αs ( see Table 4) coincides with the central
value quoted in [6] (see formula (2)). For this reason, we believe that the
DCIPT provides better approximation as compared to CIPT.

For comparison purposes, we have extracted the strong coupling constant
from the 2005 ALEPH V+A data by using the RSI method of work [41],
extending the result of [41] up to N3LO (see Table 6). Good agreement
between the RSI and DCIPT determinations of αs has been observed.

The duality point sd is found to be surprisingly stable with respect to
higher order QCD corrections: sd = 1.71±0.05exp±0.00th GeV2 (see Tables
2 and 5). In Table 5, we have performed a more accurate test of stability of
the numerical results, choosing consistently the orders of the approximations
to the β- and Adler functions.

To examine the stability of the numerical results with respect to the
change in the input data, we have also analyzed the 1998 OPAL data for
the non-strange vector spectral function. The extracted values for the pa-
rameters from the ALEPH and OPAL data are found to be consistent.

11Due to the large experimental error within the DCIPT, σ(DCIPT)/σ(CIPT) ≈ 1.4.
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The procedure suggested here can obviously be extended for analyzing
the non-strange τ -data from the axial-vector (A) and vector plus axial-
vector (V+A) channels.
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