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Abstract. Recently, the QCD renormalization-group (RG) equation at higher
orders in MS-like renormalization schemes has been solved for the running
coupling as a series expansion in powers of the exact two-loop-order coupling.
In this work, we prove that the power series converge to all orders in perturbation
theory. Solving the RG equation at higher orders, we determine the running
coupling as an implicit function of the two-loop-order running coupling. Then
we analyze the singularity structure of the higher-order coupling in the complex
two-loop coupling plane. This enables us to calculate the radii of convergence of
the series solutions at the three- and four-loop orders as a function of the number
of quark flavours nf . In parallel, we discuss in some detail the singularity struc-
ture of the MS coupling at the three- and four-loops in the complex-momentum
squared plane for 0� nf � 16. The correspondence between the singularity struc-
ture of the running coupling in the complex-momentum squared plane and the
convergence radius of the series solution is established. For sufficiently large nf
values, we find that the series converges for all values of the momentum-squared
variable Q2 ¼ �q2 > 0. For lower values of nf , in the MS scheme, we determine
the minimal value of the momentum-squared Q2

min above which the series con-
verges. We study properties of the non-power series corresponding to the pre-
sented power-series solution in the QCD analytic perturbation-theory approach
of Shirkov and Solovtsov. The Euclidean and Minkowskian versions of the non-
power series are found to be uniformly convergent over the whole ranges of the
corresponding momentum-squared variables.

1 Introduction

It is known that the QCD running coupling at the two-loop order in MS-like (mass-
less) renormalization schemes can be solved explicitly as a function of the scale in
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terms of the Lambert W function [1–3]. The Lambert W function is the multi-
valued solution of

WkðzÞ expfWkðzÞg ¼ z; ð1Þ
the branches of W are denoted WkðzÞ, k ¼ 0; � 1; . . . . An exhaustive review of the
Lambert W function may be found in ref. [4]. The relevant branch of WðzÞ which is
used to determine the coupling depends on the number of light-quark flavours nf .
For a real positive momentum-squared Q2 1 (and above the Landau singularity
if 0� nf � 8) the two-loop coupling takes the form

�ð2Þ
s ðQ2; nf Þ ¼

�ð�0=�1Þð1 þW�1ðzQÞÞ�1; if 0� nf � 8;

�ð�0=�1Þð1 þW0ðzQÞÞ�1; if 9� nf � 16;

�
ð2Þ

where zQ ¼ �ðeb1Þ�1ðQ2=L2Þ�1=b1 , �0 and �1 are the first two �-function coeffi-
cients, b1 ¼ �1=�

2
0, and L � LMS is the conventional MS-scheme QCD parameter.

Using formula (2), the analytical structure of the two-loop coupling in the complex
Q2 plane was determined [1, 2, 5]. The motivation for these studies was a need for
the development of dispersive methods [6–25]. The dispersive approach has been
devised to extend properly modified perturbation-theory calculations towards the
low-energy region [6, 7, 15]. The most simple and elaborated variant of the dis-
persive approach, the Shirkov-Solovtsov analytic perturbation theory (APT), was
formulated in refs. [7] and [9] (for a review on APT and many original references
see refs. [10] and [24]). It should be remarked that in the time-like region APT is
equivalent to the ‘‘contour-improved perturbation theory’’ proposed previously in
ref. [26] (see also refs. [27–31]). The relation between this framework and APT
was discussed in refs. [12, 32]. More sophisticated nonperturbative modifications
of the (minimal) analytic QCD model of Shirkov and Solovtsov were also pre-
sented [18–23]. A generalization of APT to non-integer (fractional) powers of the
running coupling has also been proposed and successfully used to calculate the
three-point functions in QCD [23].

The two-loop explicit solution (2) was soon found to have a more important
application. In ref. [33], the running coupling in the k-th order ðk� 3Þ in an
MS-like renormalization scheme was expanded in powers of the exact two-loop-
order coupling (here and hereof we omit the argument nf )

�ðkÞ
s ðQ2Þ ¼

X1
n¼1

cðkÞn �ð2Þn
s ðQ2Þ: ð3Þ

On this basis, the author of ref. [33] has proposed a new method for reducing the
scheme ambiguity for QCD observables. A similar expansion (motivated differ-
ently for an observable depending on a single scale) was suggested in ref. [34].
Note that the analogical expansion but in powers of the approximate (asymptotic)
two-loop coupling has previously been introduced in ref. [35]. This expansion was
used to construct the running coupling with consistent matching conditions at the
quark thresholds in the three-loop order. However, if the asymptotic two-loop
coupling is used, the coefficients of the expansion depend on the scale Q2. The
main advantage of Eq. (3) is that it allows us to write QCD observables, in massless

1 Here Q2 ¼ �q2 ¼ �ðq0Þ2 þ q2 and Q2 > 0 in the Euclidean domain
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renormalization schemes, as series in powers of the renormalization-scheme-
independent quantity, the exact explicit two-loop coupling (2). One could introduce
a similar expansion in powers of the one-loop scheme-independent coupling as
well. However, such a series would not be useful, since it could not describe the
double logarithmic singularities of the higher-order coupling. Recently, the series
(3) has been used to construct exact explicit expressions for Euclidean and
Minkowskian observables within APT [32, 36] (see also ref. [31]). In practice,
the first few terms in series (3) give the excellent approximations to the coupling
even in the infrared region [32, 36].

The main purpose of this paper is to present a detailed mathematical investiga-
tion of the series (3). In Sect. 2 we discuss in some details the singularity structure
of the MS coupling, in higher orders, in the complex Q2 plane. In particular, we
determine the locations of the Landau singularities of the coupling (at the three-
and four-loops) as a function of nf for the nf values into the range of validity of the
asymptotic freedom of QCD. A similar investigation (but for large nf values when
the �-function has a positive fixed point) has previously been undertaken by the
authors of refs. [16, 17] using a different technique, whose work does not overlap
the material in Sect. 2 to a marked extent. In Sect. 3 we prove that the series (3) in
the MS-like renormalization schemes has a positive radius of convergence to all
orders in perturbation theory. In the proof we use the methods of the analytical
theory of differential equations. In Sect. 4 we solve a higher-order RG equation for
the running coupling implicitly as a function of the two-loop running coupling. By
means of the obtained transcendental equation, we determine the analytical struc-
ture of the higher-order coupling in the complex two-loop coupling plane. As a
result, we evaluate analytically the radii of convergence of series (3) at three- and
four-loops as a function of nf . In Sect. 5 we determine the convergence region of
the series solution with respect to the momentum-squared variable Q2. For suffi-
ciently large nf values (nf �14 in the MS scheme), we find that the series converges
for all Q2 > 0. For the lower nf values, we determine the minimal value Q2

min above
which the series converges. We compare this scale, at nf ¼ 3, with the infrared
boundary of perturbative QCD estimated within two different nonperturbative
frameworks. In Sect. 6 we study properties of the dispersive images of the series
solution (3), the non-power series determined in the sense of the QCD analytic
perturbation-theory approach of Shirkov and Solovtsov, both in the space- and
time-like regions. Our conclusions are given in Sect. 7. In the Appendix we collect
some relevant formulas which we need in our computations.

2 The Analytic Structure of the Coupling to Higher Orders

In this section, we will determine the location of the Landau singularities of the
coupling in the complex Q2 plane at the three-loop and four-loop orders. As we
shall see, there is a close relation between these singularities and the convergence
properties of the series (3). For large nf values2, we will reproduce a part of the

2 Note that QCD as a realistic theory appears only for 6 flavours and below. However, there are

different theoretical motivations to consider the multi-flavour theory for 6 < nf � 16 (see, for

example, refs. [37–39])
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results of refs. [16, 17] using another technique. Let us first give some familiar
aspects of the RG equation in the way we prefer to formulate it. It is more con-
venient to introduce the dimensionless variable u ¼ Q2=L2 and a modified running
coupling, aðuÞ ¼ �0�sðQ2Þ, satisfying the RG equation

u
daðuÞ
du

¼ ���
ðkÞðaðuÞÞ ¼ �

Xk�1

n¼0

bna
nþ2ðuÞ; ð4Þ

where ���
ðkÞðaÞ ¼ �0�

ðkÞða=�0Þ and bn ¼ �n=�
nþ1
0 (for our notations see the

Appendix). The MS scheme values of the first three coefficients b1;2;3 are listed
in Table A.1. With this normalization of the coupling relevant perturbative formu-
las in higher-order applications of renormalization group become simple [8, 19,
27]. Suppose that the solution to Eq. (4) aðuÞ has a singularity at some finite point,
u ¼ uL, in the complex u-plane, i.e., aðuÞ ! 1 as u ! uL. It follows then from the
differential equation (4) that

aðkÞðuÞ � ðuðkÞL =ðu� u
ðkÞ
L ÞÞ1=k

as u ! u
ðkÞ
L :

However, to confirm the existence of the singularities and to determine their posi-
tions, a detailed investigation is required in each finite order of perturbation theory.

Let us integrate Eq. (4) for sufficiently large real positive values of u ¼ expðtÞ
in the neighborhood of a real point u0 ¼ expðt0Þ,

t ¼ ln u ¼ T ðkÞðaÞ where T ðkÞðaÞ ¼
ða
a0

f ���ðkÞða0Þg�1
da0 þ t0; ð5Þ

this can also be written

t ¼ a�1 þ b1 lnðaÞ þ eTT ðkÞðaÞ þ~tt0; ð6Þ
where eTT ðkÞðaÞ is a regular at zero function

eTT ðkÞðaÞ ¼
ða
a0

GðkÞða0Þ da0: GðkÞðaÞ ¼ 1= ���
ðkÞðaÞ þ 1=a2 � b1=a: ð7Þ

Here the integration constant has been redefined: ~tt0 ¼ t0 � a�1
0 � b1 lnða0Þ. The

conventional definition of the scale L parameter [40] leads us to the condition

~tt0 ¼ �eTT ðkÞð0Þ 3. With this choice Eq. (6) reads

t ¼ a�1 þ b1 lnðaÞ þ
ða

0

GðkÞða0Þ da0: ð8Þ

We could write in place of Eq. (8) another but related formula [41],

t ¼ a�1 � b1 lnðb1 þ a�1Þ þ
ða

0

gðkÞða0Þ da0; ð9Þ

where

gðkÞðaÞ ¼ ð ���ðkÞðaÞÞ�1 � ð ���ð2ÞðaÞÞ�1 ¼ ð1 þ b1aÞ�1

�Xk�1

n¼0

bna
n

��1 Xk�1

n¼2

bna
n�2;

ð10Þ

3 The term proportional to 1= ln2ðuÞ in the asymptotic expansion of aðuÞ at large u should be suppressed
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and ���
ð2ÞðaÞ is the two-loop ���-function. The function T ðkÞðaÞ can be expressed in

terms of the elementary functions. In the three-loop case, we can write

T ð3ÞðaÞ ¼ a�1 þ b1 lnðaÞ þ T
ð3Þ
1 ðaÞ � T

ð3Þ
1 ð0Þ; ð11Þ

where

T
ð3Þ
1 ðaÞ ¼

�0:5b1 lnðPð3ÞðaÞÞ þ 2b2 � b2
1ffiffiffiffiffiffiffiffi

Dð3Þ
p arctan

�
b1 þ 2b2affiffiffiffiffiffiffiffi

Dð3Þ
p �

; if 0� nf � 5;

lnða� a1Þ
ða1 � a2Þð1 þ b1a1Þ

� lnða2 � aÞ
ða1 � a2Þð1þ b1a2Þ

; if 6� nf � 16;

8>><
>>:

ð12Þ
Pð3ÞðaÞ ¼ b2a

2 þ b1aþ 1, Dð3Þ ¼ 4b2 � b2
1, and a1;2 ¼ ð�b1 �

ffiffiffiffiffiffiffiffiffiffiffi
�Dð3Þ

p
Þ=ð2b2Þ. In

the MS scheme Dð3Þ > 0 ð< 0Þ if 0� nf � 5 (6� nf � 16) (see Tables 1 and 2).
Let us specify the locations of the roots of the algebraic equation

PðkÞðaÞ ¼ ���
ðkÞðaÞ=a2 ¼ �

Xk�1

n¼0

bna
n ¼ 0; ð13Þ

the non-trivial zeros of the ��� function, for different values of nf . For 0� nf � 7, in
the four-loop order in the MS scheme Eq. (13) has one negative real root a1 < 0
and a pair of complex conjugate roots a2 ¼ �aa3 (see Table 3). We will assume that

Table 1. The three-loop MS quantities: The complex zeros of the ���-

function a1;2 and the singularity locations t
ð3Þ
rhp and t

ð3Þ
lhp� in the t-plane

as a function of nf for 0 � nf � 5

nf a1;2 t
ð3Þ
rhp t

ð3Þ
lhp�

0 �0.393 � 0.882i 0.844 �1.539 � 2.648i

1 �0.399 � 0.892i 0.839 �1.506 � 2.628i

2 �0.415 � 0.916i 0.830 �1.433 � 2.578i

3 �0.447 � 0.965i 0.810 �1.293 � 2.482i

4 �0.526 � 1.071i 0.766 �1.026 � 2.322i

5 �0.819 � 1.349i 0.650 �0.423 � 2.067i

Table 2. Same as in Table 1, but for 6 � nf � 16

nf a1 a2 t
ð3Þ
�

6 �1.49 7.09 0.173� 0.077i

7 �0.877 1.24 �0.159� 1.05i

8 �0.651 0.660 �0.019� 2.36i

9 �0.509 0.409 0.620� 4.26i

10 �0.403 0.264 2.17 � 7.21i

12 �0.245 0.104 13.6 � 21.3i

14 �0.125 0.028 98.7 � 89.9i

16 �0.023 0.001 6216 � 2852i
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Imða2Þ< 0. Then Eq. (8) can be written as

t ¼ a�1 þ b1 lnðaÞ þ T
ð4Þ
1 ðaÞ � T

ð4Þ
1 ð0Þ; ð14Þ

where T
ð4Þ
1 ðaÞ is a regular at zero function

T
ð4Þ
1 ðaÞ ¼ �b�1

3

�
E1 lnða� a1Þ þ ReðE2Þ ln½ða� a2Þða� a3Þ	

þ 2 ImðE2Þ arctan

�
a� Reða2Þ
jImða2Þj

��
; ð15Þ

with

Ei ¼ fa2
i ðai � ajÞðai � akÞg�1; i 6¼ j 6¼ k;

and ði; j; kÞ is a cyclic permutation of ð1; 2; 3Þ. Eq. (15) was derived for real posi-
tive values of a. It may be continued analytically in the complex a-plane choosing
the relevant branches for each elementary function on the right-hand side. For
unphysical values 8� nf � 16, in the four-loop case Eq. (13) has three real roots:
a1 < 0, 0< a2 < a3 (see Table 4). Let a be positive lying in the interval 0< a< a2.
Formula (8) may now be rewritten

t ¼ a�1 þ b1 lnðaÞ � b�1
3

X3

i¼1

Ei lnða�1
i ðai � aÞÞ: ð16Þ

For complex values of a, the analytical continuation of Eq. (16) can be easily
performed assuming that each logarithm on the right-hand side of Eq. (16) has
its principal value.

Table 4. Same as in Table 3, but for 8 � nf � 16

nf a1 a2 a3 t
ð4Þ
�

8 �0.623 0.699 6.476 �0.093� 2.37i

9 �0.482 0.426 4.810 0.522� 4.28i

10 �0.362 0.281 1.937 1.95 � 7.32i

12 �0.193 0.112 0.548 13.1 � 21.9i

14 �0.085 0.030 0.196 98.1 � 91.8i

16 �0.014 0.001 0.031 6219 � 2858i

Table 3. The four-loop MS quantities for 0 � nf � 7

nf a1 a2;3 t
ð4Þ
rhp t

ð4Þ
lhp�

0 �0.797 0.130� 0.782i 1.164 �1.294 � 0.961i

1 �0.794 0.134� 0.784i 1.163 �1.284 � 0.930i

2 �0.793 0.142� 0.792i 1.158 �1.256 � 0.871i

3 �0.796 0.159� 0.810i 1.145 �1.199 � 0.768i

4 �0.802 0.190� 0.844i 1.114 �1.099 � 0.593i

5 �0.806 0.259� 0.906i 1.035 �0.940 � 0.295i

6 �0.795 0.444� 1.012i 0.821 �0.707� 0.217i

7 �0.741 1.124� 0.973i �0.047 �0.423� 1.074i
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We have to determine the analytical continuation of the coupling starting from
the implicit solution (5). This implies a preliminary study of the analytical proper-
ties of the inverse function t ¼ T ðkÞðaÞ in the complex coupling plane. The one-
valued branch of this function may be defined in the cut complex a-plane choosing
the cuts carefully. The physical branch may be determined from the requirement
that the branch yields a real positive t for real positive and sufficiently small values
of a. It is convenient to determine the analytical continuation of T ðkÞðaÞ starting
directly from the integral representation (9). The integral there should be regarded
as a line integral in the complex a-plane. The line must be deformed to avoid
singularities of the integrand. It is seen from Eq. (6) that the function T ðkÞðaÞ
has a simple pole as well as a logarithmic branch point at a ¼ 0. In addition, there
are logarithmic singularities at the roots of the algebraic equation (13). For
0< nf � 5, in the three-loop case (in the MS scheme) Eq. (13) has a pair of com-
plex conjugate roots, while it has two real (positive and negative) roots for
6� nf � 16 (see Tables 1 and 2). The four-loop case has already been discussed
above. We must make a branch cut along the negative a-axis fa: �1< a< 0g
corresponding to the logarithmic branch point at zero. In the cases where there is a
pair of complex conjugate branch points (say a2;3 in the four-loop case), we must
choose additional branch cuts. One possibility is to choose the cuts parallel to
the imaginary axis (see Fig. 1a), so that these branch points are connected by
the cut running through infinity. In the four-loop case, we choose the cuts
fa: �1< ImðaÞ< Imða2Þ; Imða3Þ< ImðaÞ<1;ReðaÞ ¼ Reða3Þg (see Fig. 1a).
The analytical continuation of T ðkÞðaÞ in the cut complex a-plane will be deter-
mined uniquely if we require that T ðkÞðaÞ is real for a real positive and sufficiently
small values of a. Note that the above considered choice for the cuts is not unique.
We could, for example, choose the cuts running along straight lines connecting the
complex conjugate branch points to the origin. Nevertheless, a former possibility
(which we accept in this paper) seems to be preferable: With this choice t as a
function of the phase of a will be continuous in the neighborhood of a ¼ 0 with the
exception of the cut running along the negative a-axis.

Consider now the theoretical cases with only real roots. Let a1 be the nega-
tive root, and a2 be the positive one (in the four-loop case a2 is the smallest
positive root). Then the branch cuts may be chosen along the real intervals
fa: �1< a< 0g and fa: a2 < a<1g (see Fig. 1b). To determine the physical
branch, we require that T ðkÞðaÞ is real in the real interval a2ð0; a2Þ. We may now
analyze the singularity structure of the running coupling a ¼ ~aaðtÞ � aðuÞ in the
complex t-plane, and hence in the complex u-plane too. Evidently, the singular
points are determined by the limiting values of the function T ðkÞðaÞ as a tends

Fig. 1. The singularity struc-

ture of the function t ¼ T ð4ÞðaÞ.
Two different situations are

shown. Branch cuts are repre-

sented by bold lines and branch

points by the blobs
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to infinity4. In general, the limiting values may depend on the way along which
a tends to infinity. Consider, for example, the three-loop case for 6� nf � 16. We
start from formula (11). Let a be a point in the complex plane a ¼ jaj expði�Þ,
where � is the phase of a. The analytical continuation to this point gives

T ð3ÞðaÞ ¼ expð�i�Þjaj�1 � 0:5b1 lnðjPð3ÞðaÞjjaj�2Þ � 0:5b2
1 � b2ffiffiffiffiffiffiffiffiffiffiffiffi
�Dð3Þ

p ln

���� a2ða� a1Þ
�a1ða2 � aÞ

����
þ i b1� � 0:5b1ð�1 þ �2Þ � ð0:5b2

1 � b2Þð�1 � �2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
�Dð3Þ

p� �
; ð17Þ

where Pð3ÞðaÞ ¼ b2a
2 þ b1aþ 1 ðb2 < 0Þ and �i ði ¼ 1; 2Þ denote the increments

of the arguments of ð~aa� a1Þ and ða2 � ~aaÞ as ~aa goes from 0 to the point a along a
contour G: �1 ¼ DG argð~aa� a1Þ and �2 ¼ DG argða2 � ~aaÞ. We can now calculate
limiting values of T ð3ÞðaÞ as a tends to the sides of the branch cuts along the real
axis. We find, at the sides,

� ¼ 0; �1 ¼ 0; �2 ¼ ��; if ReðaÞ> a2; ImðaÞ ¼ � �;

� ¼ � �; �1 ¼ � �; �2 ¼ 0; if ReðaÞ< a1; ImðaÞ ¼ � �;
ð18Þ

where � ! 0þ is assumed. Using Eq. (17) with Eq. (18), we may easily calculate
the limits of T ð3ÞðaÞ when a goes to infinity along the upper or lower side of
the right (left) cut. One may confirm that the result will be the same regardless

of the branch cut chosen. It depends only on the side of the cut: t
ð3Þ
� ðnf Þ ¼

lima!1 T ð3Þða� i�Þ ¼ lima!�1 T ð3Þða� i�Þ. Thus we find, for 6� nf � 16,

t
ð3Þ
� ðnf Þ ¼ �0:5b1 lnjb2j þ

b2 � 0:5b2
1ffiffiffiffiffiffiffiffiffiffiffiffi

�Dð3Þ
p lnja2=a1j � i

�
0:5b1 þ

b2 � 0:5b2
1ffiffiffiffiffiffiffiffiffiffiffiffi

�Dð3Þ
p �

�:

ð19Þ
Consider now the four-loop case for 8� nf � 16. Using arguments similar to those
employed in the three-loop case, we find the singular points

t
ð4Þ
� ðnf Þ ¼ b�1

3

X3

k¼1

Ek lnjakj � iðE2 þ E3Þ�: ð20Þ

Now it is sufficient to show that the obtained limits do not depend on the special
choice of the directions in the complex a-plane. To see this, let us take the contour
integral in Eq. (9) along a closed contour chosen as follows. Let the contour consist
of two different curves with a common starting point at zero. Let both curves lie in
the upper (lower) complex plane and being connected by the arc of a circle with the
centre at zero and radius R. The integrand has no singularity inside the contour, and
the value of the integral is therefore zero (Cauchy’s theorem). Consider the limit
when the radius of the circle tends to infinity. Then the integral along the arc tends
to 0, so that the integrals along the two different curves tend to the same limit. Thus
the result stated follows.

It is important to determine whether or not the singular points t
ðkÞ
� ðnf Þ are

located inside the strip ��< ImðtÞ � �. The strip is an image of the first (physical)

4 We assume that the coupling does not have singular points where it takes finite values

78 B. A. Magradze



sheet of the complex Q2 plane under t ¼ lnðQ2=L2Þ. Depending on the value of nf
there are two cases to consider. The first case is that the points lie inside the strip so
that the unphysical Landau singularities appear in the first sheet. Then the running
coupling is not causal, and thus the perturbation theory is incomplete: The non-
perturbative contributions are required to remove the unphysical singularities [1, 7,
15, 16]. This case corresponds to real-world QCD, where nf � 6. In the second
case, the singular points may arise beyond the strip, so that there are not real or
complex singularities on the first sheet of the momentum-squared variable, and
thus the perturbation theory is consistent with causality. The singularities still may
be present only on the time-like axis Q2 < 0. The second possibility may be real-
ized for sufficiently large nf values. The value of nf above which the causal ana-
lytical structure of the coupling is restored can be found from the equation

ImftðkÞðn�f Þg ¼ ��: ð21Þ
With the three-loop formula (19), we find the solution to (21) n

�ð3Þ
f � 8:460, and

with the four-loop formula (20) n
�ð4Þ
f � 8:455. Thus, the three- and four-loop

MS-scheme results almost coincide. We remark that the three-loop estimation
was obtained previously in ref. [16]. The two-loop condition for a causality of
the coupling can be found in ref. [1]. In our notation it reads b1ðnf Þ ��1; this
gives for the lower boundary of the causal region the value n

�ð2Þ
f � 9:68.

Note that for nf > n�f the �-function has a positive infrared stable fixed point
(see Tables 2 and 4). So that the running coupling is trapped in the range between 0
(the ultraviolet fixed point) and the infrared fixed point at all energies. The fact that
QCD in perturbation theory for sufficiently large nf values has an infrared fixed
point has long been discussed [37]. Of particular interest is the case when the fixed
value of the coupling is sufficiently small. Then, presumably, the theory may be
reliably described within the perturbation theory for all energies including the
infrared region. The corresponding interval of nf values is called a conformal
window [3, 16, 17, 38]. It is believed that there is a phase transition in QCD with
respect to nf inside the range of validity of asymptotic freedom 0� nf � 16. For
small values of nf below the critical point ðnf <Ncr

f < 16Þ the theory is defined via
the confining phase. Above this point, there is a conformal window Ncr

f < nf � 16,
where the theory is defined via the non-Abelian Coulomb phase with neither colour
confinement nor dynamical chiral symmetry breaking. One possible way to deter-
mine the critical point is to use the Oehme-Zimmermann criterion for the gluon
confinement, the superconvergence rule for the transverse gluon propagator [39].
This gives the value Ncr

f ¼ 13Nc=4 (¼ 9.75 for Nc ¼ 3 colours). Another possibility
is to apply arguments of dynamical chiral symmetry breaking [3, 38, 42, 43]. This
gives a slightly large value Ncr

f � 4Nc. Assuming the value for Ncr
f as predicted by

the superconvergence rule, the authors of refs. [16, 17] have given arguments that
the perturbative running coupling inside the conformal window (and beyond the
one-loop approximation) is always causal, i.e., n�f <Ncr

f . Note that the infrared
fixed value of the coupling inside the window is not large: It coincides with the
root a2 (in the three-loop case, for nf ¼ 10, a2 � 0:26).

Consider now the cases where Eq. (13) has complex roots. In the MS scheme
this takes place at three-loops if 0� nf � 5 and at four-loops if 0� nf � 7. The cor-
responding cuts in the a-plane are chosen as shown in Fig. 1a. We first calculate the
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limit of T ðkÞðaÞ as a tends to infinity along a line going to infinity in the right half-
plane ReðaÞ>Reða2Þ. Evidently, the result will not depend on the particular choice
of the direction as far as the line belongs to the right half-plane ReðaÞ>Reða2Þ.
Choosing the path along the positive semi-axis and using the three- and four-loop
formulas (12) and (15), we calculate the limits, t

ðkÞ
rhpðnf Þ ¼ lima!1 T ðkÞðaÞ,

t
ð3Þ
rhpðnf Þ ¼ �0:5b1 lnðb2Þ þ

2b2 � b2
1ffiffiffiffiffiffiffiffi

Dð3Þ
p �

�

2
� arctan

�
b1ffiffiffiffiffiffiffiffi
Dð3Þ

p ��
; ð22Þ

t
ð4Þ
rhpðnf Þ ¼ b�1

3

�
� 2 ImðE2Þ

�
0:5�þ arctan

	
Reða2Þ
jImða2Þj


�

þ E1 lnja1j þ 2 ReðE2Þ lnja2j
�
: ð23Þ

Here the subscript ‘‘rhp’’ shows that the limits are calculated along the way going to
infinity through the right half-plane ReðaÞ>Reða2Þ. Let us now calculate the limits
of T ðkÞðaÞ when a tends to infinity through the left half-plane ReðaÞ<Reða2Þ. We
may take without loss of generality the ways along the sides of the cut running on
the negative semi-axis. The limiting values of T ðkÞðaÞ from above and below
the cut, T

ðkÞ
� ðaÞ ¼ lim�!0þ T

ðkÞða� i�Þ, may be determined by the analytical con-
tinuation of the right-hand sides of Eqs. (11) and (14). The singularities are then
determined by the limiting values t

ðkÞ
lhp � ¼ lima!�1 T

ðkÞ
� ðaÞ. This gives

t
ð3Þ
lhp � ðnf Þ ¼ t

ð3Þ
rhpðnf Þ � �ð2b2 � b2

1Þ=
ffiffiffiffiffiffiffiffi
Dð3Þ

p
� i�b1; ð24Þ

t
ð4Þ
lhp � ðnf Þ ¼ t

ð4Þ
rhpðnf Þ þ 2� ImðE2Þ=b3 � i�ðb1 � E1=b3Þ: ð25Þ

Equivalently, by the analytical continuation of Eq. (9) for negative values of a we
obtain the useful formula

t
ðkÞ
lhp� ðnf Þ ¼ �b1 ln b1 þ p:v:

ð�1

0

gðkÞða0Þ da0 � i�ðb1 þ res½gðkÞðaÞ; aðkÞ1 	Þ; ð26Þ

where a
ðkÞ
1 denotes the real negative root of Eq. (13) (which is present only in the

4th-order case) and the integral here is considered in the ‘‘principal value sense’’
(p.v.). It is seen from Tables 1 and 3 that in these cases the Landau singularities are
present in the first sheet of the Q2-plane.

3 The Proof of the Convergence of the Series

Inserting series (3) into the RG equation (A.1), we recursively determine the coef-
ficients fcðkÞn g1n¼3 in terms of c2 (c1¼ 1) and the �-function coefficients. However,
the coefficient c

ðkÞ
2 still remains undetermined. This reflects the arbitrariness

in the definition of the L-parameter. With the conventional definition of the param-
eter, we find that c

ðkÞ
2 ¼ 0. This follows from Eqs. (2) and (3) if we use the asymp-

totic expansion for the Lambert W function (see pp. 22–23 in ref. [4])

WkðzÞ ¼ L1 � L2 þ L2=L1 þ L2ð�2 þ L2Þ=2L2
1 þ L2ð6 � 9L2 þ 2L2

2Þ=6L3
1

þ OððL2=L1Þ4Þ; ð27Þ
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where for the branch W�1ðzÞ for real negative z ðz ! 0� as Q2 ! 1Þ we must put
L1 ¼ lnð�zÞ and L2 ¼ lnð�lnð�zÞÞ. Several first coefficients calculated in the four-
loop case are:

c
ð4Þ
1 ¼ 1; c

ð4Þ
2 ¼ 0; c

ð4Þ
3 ¼ �2

�0

; c
ð4Þ
4 ¼ �3

2�0

;

c
ð4Þ
5 ¼ 5

3

�2
2

�2
0

� �1�3

6�2
0

; c
ð4Þ
6 ¼ � 1

12

�1�
2
2

�3
0

þ 1

12

�3�
2
1

�3
0

þ 2
�2�3

�2
0

; . . . :

Inserting these values of the coefficients into series (3) and using Eq. (27), one may
readily reproduce the conventional asymptotic representation for the coupling (see,
for example, ref. [44])

�asyðQ2Þ ¼ 1

�0L
� �1

�3
0

ln L

L2
þ 1

�3
0L

3

�
�2

1

�2
0

ðln2L� ln L� 1Þ þ �2

�0

�
þ O

�
ln3L

L4

�
;

ð28Þ
where L¼ ln(Q2=L2)
 1.

Let us change the variable according to Q2 ! � ¼ �0�
ð2Þ
3 ðQ2Þ and introduce

the new function wð�Þ � wðkÞð�Þ ¼ �
ðkÞ
s ðQ2Þ=�ð2Þ

s ðQ2Þ � 1. The RG equation (A.1)
may be rewritten as

�
dw

d�
¼ f ðkÞð�;wÞ; ð29Þ

where

f ðkÞð�;wÞ ¼ ðwþ 1Þ2

1 þ b1�

Xk�1

n¼0

bn�
nð1 þ wÞn � ðwþ 1Þ; ð30Þ

with bn ¼ �n=�
nþ1
0 . The function of two variables f ðkÞðw; �Þ has the Taylor

expansion

f ðkÞðw; �Þ ¼
X1
m;n¼0

�ðkÞm;nw
m�n; ð31Þ

with �
ðkÞ
0;0 ¼ 0, �

ðkÞ
1;0 ¼ 1, and �

ðkÞ
0;1 ¼ 0. In the four-loop case, the expansion is

f ð4Þðw; �Þ ¼ wþ b1�wþ b2�
2 þ w2 þ ðb3 � b1b2Þ�3 þ � � � : ð32Þ

We may now use the analytical theory of differential equations [45, 46] to inves-
tigate Eq. (29). With the initial condition w(0)¼ 0, this equation has a singularity:
For �¼ 0 and w¼ 0 the ratio f ðkÞð�;wÞ=� is undefined. Nevertheless, in the special
case where �

ðkÞ
0;0 ¼ 0, �

ðkÞ
1;0 ¼ 1, and �

ðkÞ
0;1 ¼ 0, Eq. (29) may still have an ana-

lytic solution satisfying the initial condition w(0)¼ 0 (see, e.g., refs. [45] and
[46]). For the sake of clarity, the following discussion is quite detailed. The expan-
sion (31) converges in the domain D ¼ f0< jwj< r1; 0< j�j< r2g, where r1 and r2

are some positive numbers chosen in the range fr1; r2: r1 <1; r2 < 1=jb1jg. It
follows then from the classical theory that there exists a positive number M(k) such
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that j f ðkÞðw; �Þj �MðkÞ for ðw; �Þ � D, and the coefficients �
ðkÞ
m;n satisfy the inequal-

ities [45, 46] ���ðkÞm;n

��� �ðkÞm;n; where �ðkÞm;n ¼ MðkÞr�m
1 r�n

2 : ð33Þ
Under these conditions, we will show that there exists a regular solution to Eq. (29)

wð�Þ � wðkÞð�Þ ¼
X1
n¼2

�ccðkÞn �n; ð34Þ

where �cc
ðkÞ
n ¼ ��n

0 c
ðkÞ
nþ1, with c

ðkÞ
n being the coefficients in the original series (3).

We recall that according to our choice �cc
ðkÞ
1 ¼ ��1

0 c
ðkÞ
2 ¼ 0. Inserting expansions

(31) and (34) into Eq. (29) we recursively determine the coefficients �cc
ðkÞ
n ,

�cc
ðkÞ
2 ¼ �

ðkÞ
0;2; 2�cc

ðkÞ
3 ¼ �

ðkÞ
1;1�cc

ðkÞ
2 þ �

ðkÞ
0;3; . . . : ð35Þ

Consider now the auxiliary function ~ww ¼ ~wwð�Þ satisfying the equation

~ww ¼ f
ðkÞ
1 ð~ww; �Þ � MðkÞ

ð1 � ~ww=r1Þð1 � �=r2Þ
�MðkÞ

�
1 þ ~ww

r1

þ �

r2

�
; ð36Þ

it has the Taylor expansion

f
ðkÞ
1 ð~ww; �Þ ¼

X
m¼0;n¼0

�ðkÞm;n~ww
m�n; ð37Þ

with the coefficients �
ðkÞ
m;n defined in Eq. (33). Eq. (36) has a series solution

~wwð�Þ � ~wwðkÞð�Þ ¼
X1
n¼2

	ðkÞn �n: ð38Þ

Inserting the expansions (37) and (38) into Eq. (36) we find the recurrence formulas

	
ðkÞ
2 ¼ �

ðkÞ
0;2; 	

ðkÞ
3 ¼ �

ðkÞ
1;1	

ðkÞ
2 þ �

ðkÞ
0;3; . . . : ð39Þ

Let us compare Eqs. (35) with Eqs. (39). Making use of Eq. (33), we obtain the

inequalities
���ccðkÞn

��<	
ðkÞ
n for n ¼ 2; 3; . . . . It follows then from the comparison test

that the series (34) is absolutely convergent in the disk of convergence of the series
(38). Evidently, the series (38) has a positive radius of convergence. The radius is
equal to the modulus of the nearest-to-the-origin singularity �

ðkÞ
nr of the function

~ww ¼ ~wwð�Þ. The value ~ww can be solved explicitly from the quadratic equation (36).
The singularities of the majorant function ~wwð�Þ are therefore located at the zeros of
the discriminant of the quadratic equation. Hence we find the singular points

�
ðkÞ
1 ¼ r2; �

ðkÞ
2 ¼�r1r2=M

ðkÞ; �
ðkÞ
3;4 ¼ r2 �lðkÞ=2� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðkÞ2 þ 8l

p� �
; ð40Þ

where lðkÞ ¼ 1 þ r1=M
ðkÞ. To obtain the best possible estimation, we have to max-

imize
���ðkÞnr

�� with respect to r1 and r2. The quantity MðkÞ ¼ maxw;�j f ðkÞðw; �Þj may be
determined according to the maximum modulus principle. The modulus j f ðkÞðw; �Þj
takes its maximum on the circles jwj ¼ r1 and j�j ¼ r2. We find that the max-
imum of j f ðkÞðw; �Þj is attained for real positive values of w and �. Furthermore,
�
ðkÞ
nr ¼ �

ðkÞ
3 . We choose the values r1¼ 0.25 and r2¼ 0.42 in the three-loop case,

while r1¼ 0.21 and r2¼ 0.32 in the four-loop case. Using ‘‘Maple 7’’ [47], we
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determine numerically the maximal values of j f ðkÞðw; �Þj on these circles. For
nf ¼ 3, we have found that M(3)� 0.695 and M(4)� 0.596. Computing the modulus
of the numbers (40) and comparing them, we determine the radii of convergence

of the majorant series (38): ~


ð3Þ
maj ¼ j�ð3Þ3 j � 0:045 and ~



ð4Þ
maj ¼ j�ð4Þ3 j � 0:033. Thus

we have found that the radii of convergence of the original series (3) in the MS
scheme in the three- and four-loop orders, at nf ¼ 3, are bounded below as

ð3Þ � ~



ð3Þ
maj=�0 � 0:06 and 
ð4Þ � ~



ð4Þ
maj=�0 � 0:05. As we shall see, the actual values

of 
(k) are significantly larger than the obtained lower bounds.
We remark that the above proof of the convergence of the series holds in all

MS-like (massless) renormalization schemes, since in the proof we have not used
specific values of the �-function coefficients and the condition c2¼ 0 is common
for all these schemes.

4 Determination of the Radius of Convergence of the Series

By a change of variable Q2 ! � ¼ að2ÞðuÞ ðu ¼ Q2=L2Þ Eq. (4) can be rewritten

da

d�
¼

Pk�1
n¼0 bna

nþ2

�2 þ b1�3
; ð41Þ

where a ¼ FðkÞð�Þ ¼ aðkÞðuÞ � �0�
ðkÞ
s ðQ2Þ. In the following we will sometimes, but

not always, omit the superscript ‘‘(k)’’ referring to the order of perturbation theory.
In the preceding section, we have shown that the series (34) or equivalently the series

a ¼ Fð�Þ ¼
X1
n¼1

~ccn�
n; ð~ccn ¼ ��nþ1

0 cnÞ ð42Þ

has a positive convergence radius. It is possible then to define the inverse function
� ¼ F�1ðaÞ, which can be expanded in powers of a,

� ¼ F�1ðaÞ ¼
X1
n¼1

dna
n: ð43Þ

By using arguments similar to those employed in Sect. 3, one can verify that the
series (43) also has a finite radius of convergence. Under this condition, we may
apply the classical method for estimating the convergence radius of series (see
ref. [48] pp. 146–148). The main argument is that the function a ¼ Fð�Þ must
have at least one singular point on the circle of convergence of the series (42).
There are two possible cases. First, suppose that �0 be a finite singularity of Fð�Þ,
where the function takes a finite value, a0 ¼ Fð�0Þ<1, while its derivative does
not exist. In terms of the inverse function � ¼ F�1ðaÞ these conditions read

dF�1ðaÞ
da

����
a¼a0

¼ 0: ð44Þ

Using Eq. (41) at �¼ �0, we may rewrite Eq. (44) in the form

d�

da

����
a¼a0

¼ �2
0ð1 þ b1�0ÞPk�1
n¼0 bna

nþ2
0

¼ 0; ð45Þ
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for a finite a0 (which is not a root of
Pk�1

0 bna
n
0 ¼ 0) Eq. (45) has only two

solutions: �0 ¼ 0 and

�0 ¼ �1=b1 ð¼ �81=64 for nf ¼ 3Þ: ð46Þ
The solution �0 ¼ 0 must be rejected, since at � ¼ 0 Eq. (45) does not hold because
of the initial condition Fð�Þ=� ! 1 as � ! 0 (see Eq. (42)). Secondly, suppose that
there exists a curve C going to infinity in the domain of analyticity of � ¼ F�1ðaÞ
such that F�1ðaÞ ! �s <1 as a tends to infinity along this curve. Then, F(�) has a
singularity at � ¼ �s.

First, we shall consider Eq. (41) in the three- and four-loop orders for
0� nf � 5 and 0� nf � 7, respectively. Let us integrate Eq. (41) in the real range
f�; a: �> 0; a> 0g. We write the result in the symmetrical form

1=�� b1 lnðb1 þ 1=�Þ ¼ 1=a� b1 lnðb1 þ 1=aÞ þ
ða

0

gðkÞða0Þ da0; ð47Þ

where the function g(k)(a) is defined by Eq. (10), and we have determined the
integration constant according to the previous choice (see Sect. 2). Eq. (47) may
be continued for complex values of a and �. Then the integral with respect to a
should be regarded as a line integral in the complex a-plane. The contour connect-
ing the origin to a must avoid singular points of the integrand.

Note that all the coefficients in series (42) are real, so are the coefficients in the
inverse series (43). Therefore, � as a function of a must be real for real values of a
provided that a is any point inside the circle of convergence of the inverse series. It
is seen from Eq. (41) that there exists a real neighborhood of the origin �¼ 0,
where the function F(�) is real and strictly increasing. Thus, in the three-loop case,
the derivative F0ð�Þ> 0 if �> � 1=b1, provided that 0� nf � 5 ðb1 > 0Þ. In the
four-loop case, the same is true if �>maxð�1=b1; a

ð4Þ
1 Þ, where a

ð4Þ
1 is the real neg-

ative root of Eq. (13),
�
a
ð4Þ
1 ðnf ¼ 3Þ � �0:796

�
. From this with the initial condi-

tion F�1ð0Þ ¼ 0, it follows that there exists a sufficiently small real interval
including the origin, where the function � ¼ F�1ðaÞ is real and strictly increasing.
Inside this interval F�1ðaÞ> 0 ðF�1ðaÞ< 0Þ if a> 0 ða< 0Þ. Fortunately, we may
solve the transcendental equation (47) for � explicitly as a function of a in terms of
the Lambert W function

� ¼ F�1ðaÞ ¼ �b�1
1 ð1 þWnðzÞÞ�1; ð48Þ

where z ¼ �ðaÞ ¼ �ðeb1Þ�1
expð�TðaÞ=b1Þ, and

TðaÞ ¼ a�1 � b1 lnðb1 þ a�1Þ þ
ða

0

gða0Þ da0: ð49Þ

It follows from the above discussion that in the region a > 0 inside the conver-
gence disc of the series (43) (where � > 0) the required branch in Eq. (48) is
W�1ðzÞ, so that

� ¼ F�1ðkÞðaÞ ¼ �b�1
1

�
1 þW�1

�
�ðkÞðaÞ

���1
: ð50Þ

Formula (50) may be continued beyond the convergence circle on the positive
a-semi-axis. It follows from Eq. (49) that the function z ¼ �ðaÞ is negative and
monotonically decreasing in the infinite interval a2ð0;1Þ. For the considered
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values of nf (with the exception of the nf ¼ 7 case at four-loops) �(a) takes values
in the range ð�e�1; 0�Þ for a2ð0;1Þ. The branch W�1ðzÞ is real and negative
with W�1ðzÞ2ð�1;�1Þ for z2ð�e�1; 0�Þ (see Fig. 2). Therefore, the function
� ¼ F�1ðaÞ determined by Eq. (50) is real and positive in the entire positive
a-semi-axis. However, in the four-loop case at nf ¼ 7, we find that z2ð�e�1; 0�Þ
only inside the interval a2ð0; abÞ, where ab � 1:003, and z< � e�1 if a > ab.
Since W�1ðzÞ has a branch point at z ¼ �e�1, the function F�1ð4ÞðaÞ at nf ¼ 7 will
have a branch point at a¼ ab. The corresponding branch cut may be chosen along
the positive interval fa: ab < a<1g. Formula (50) still holds on the upper side
of the cut: On the sides of the cut the function F�1ð4ÞðaÞ at nf ¼ 7 takes complex
conjugate values. Using Eq. (50), we calculate the limit of F�1(a) as a ! 1 along
the positive a-semi-axis. So we find a singularity of the function a ¼ Fð�Þ,

�
ðkÞ
s:1 ¼ �b�1

1 ð1 þW�1ð�ðkÞð1ÞÞ�1 ¼ að2Þ
�
u
ðkÞ
rhp

�
: ð51Þ

Here we have used the formula

�ðkÞð1Þ ¼ lim
a!þ1

�ðkÞðaÞ ¼ �ðb1eÞ�1
expð�T ðkÞð1Þ=b1Þ ¼ �ðb1eÞ�1

�
u
ðkÞ
rhp

��1=b1 ;

ð52Þ
where u

ðkÞ
rhp ¼ expðtðkÞrhpÞ being the Landau singularity located on the positive u-semi-

axis (see the three- and four-loop formulas (22) and (23)). The last equality in
Eq. (52) follows from Eq. (9). In the four-loop order, at nf ¼ 7, we find a pair
of complex conjugate singular points, �s:1� ¼ lima!þ1 F�1ð4Þða� i0Þ, where
�s:1þ is determined by Eq. (51).

Formally we may continue Eq. (47) for negative real values of the variables in
the region fa; �: �1=b1 < a< 0;�1=b1 <�< 0g. Assuming that each logarithm in
Eq. (47) has its principal value, we obtain in this region the equation

1=�� b1 lnð1=j�j � b1Þ ¼ 1=a� b1 lnð1=jaj � b1Þ þ
ða

0

gða0Þ da0: ð53Þ

Note that the right-hand side of Eq. (53) is in fact regular at a ¼ �1=b1: The
logarithmic singularities of the last two terms are cancelled in the sum. For nega-
tive values of a, the path of integration of the integral on the right of Eq. (53) goes

Fig. 2. The two real branches of W(z). The

solid line corresponds to W0(z) and the

dotted line in the range W < �1 refers to

W�1ðzÞ
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along the negative a-axis, but avoids the poles of g(a) by small semi-circles above
or below the axis. Eq. (53) has exactly one real negative solution for � inside the
interval a2ð~aa; 0Þ, where ~aa ¼ �1 in the three-loop order and it is the finite nega-
tive root of Eq. (13) in the four-loop order. This solution is determined in terms of
the branch W0ðzÞ,

� ¼ F�1ðkÞðaÞ ¼ �b�1
1 ð1 þW0ð~��ðkÞðaÞÞÞ�1; ð54Þ

where ~��ðkÞðaÞ ¼ ðeb1Þ�1
expð�eTT ðkÞðaÞ=b1Þ and

eTT ðkÞðaÞ ¼ a�1 � b1 lnð�a�1 � b1Þ þ
ða

0

gðkÞða0Þ da0: ð55Þ

It is instructive to check that our choice for the branches on the real a-axis in fact
follows from the analytical continuation. To see this, let us expand expressions (50)
and (54) as a ! 0þ and a ! 0�, respectively. We must use expansion (27) for
W�1ðzÞ as z ! 0�. The same formula, but with L1 ¼ ln~zz and L2 ¼ ln ln~zz holds
for W0ð~zzÞ as ~zz ! 1 (see formula (4.19) in ref. [4]). One may verify that both
expansions reproduce the same convergent power series (43), so that Eqs. (50) and
(54) represent the same analytical function in two different regions. Let us now
discuss the analytical structure of the function � ¼ F�1ðaÞ starting from Eq. (48).
In general, F�1ðaÞ may have singularities at the same points where TðaÞ is singular.
Nevertheless, as we have shown, F�1ðaÞ is regular at a ¼ 0, while TðaÞ is singular
there. Furthermore, F�1ðaÞ may have additional singularities ab� arising due to the
common branch point of W0ðzÞ and W�1ðzÞ at z ¼ �e�1. To determine locations of
these singularities we numerically solve the equation

z ¼ �ðkÞðaÞ ¼ �e�1 ð56Þ

at the three- and four-loop orders. The approximate locations of these singularities
for different nf values are given in Table 5. Note that not all roots of Eq. (56) give
rise to the singularities of F�1ðaÞ on the first sheet of the Riemannian surface.
Thus in the four-loop case, for nf ¼ 7, Eq. (56) has the roots ab� � 0:16� 0:40i.
But one may verify that these points are not singular on the first sheet. To make
the function � ¼ F�1ðaÞ single-valued, we must draw cuts in the complex a-plane
taking into account the branch points of T(a) and those of the W-function. We

Table 5. Locations of the extra singularities in the a-plane at the three- and

four-loop orders

nf a
ð3Þ
b�

��að3Þb�
�� a

ð4Þ
b�

��að4Þb�
��

0 0.038 � 0.732i 0.733 0.156 � 0.600i 0.616

1 0.038 � 0.741i 0.742 0.159 � 0.600i 0.620

2 0.039 � 0.762i 0.763 0.166 � 0.609i 0.632

3 0.042 � 0.806i 0.807 0.179 � 0.629i 0.654

4 0.046 � 0.902i 0.904 0.207 � 0.668i 0.700

5 0.060 � 1.186i 1.187 0.275 � 0.744i 0.793

6 0.498 � 0.888i 1.018

7 1.003 1.003
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draw cuts in the complex a-plane attached to the complex conjugate branch points
(say a2,3 in the four-loop case, the roots of Eq. (13)) and running to infinity
parallel to the imaginary a axis: fa : ReðaÞ ¼ Reða2;3Þ, �1< ImðaÞ< Imða2Þ,
Imða3Þ< ImðaÞ<1g. In the four-loop case, we must draw an extra cut attached
to the real branch point at a1 < 0 and running along the negative semi-axis
fa : �1< a< a1g. We also make the branch cuts running parallel to the imagi-
nary axis fa : ReðaÞ ¼ Reðab�Þ;�1< ImðaÞ< Imðab�Þ; ImðabþÞ< ImðaÞ<1g
attached to the branch points at ab� , the roots of Eq. (56). However, in the four-
loop case, for nf ¼ 7, the branch cut must be chosen along the positive real axis
fa : 1:003< a<1g. With this choice of the cuts, the function � ¼ F�1ðaÞ will be
analytic in the disc with the centre of origin and radius rc ¼ minfjab�j; jaijg
ðai; i ¼ 1; 2; . . . denote the roots of Eq. (13)). For 0� nf � 5, the points ab� are
closest to the origin singularities both in the three- and four-loop orders. Let us
define a ¼ r expði�Þ and z ¼ �ðaÞ ¼ jzj expðiFÞ, where

jzj ¼ ðeb1Þ�1
expð�Re TðaÞ=b1Þ and F ¼ �� Im TðaÞ=b1: ð57Þ

Let a describe the semi-circle of radius r< rc lying in the upper half-plane
ð0� �� �Þ starting from the positive semi-axis. Then the image under z ¼ �ðaÞ
describes a curve in the z-plane. This curve intersects the real negative z-semi-axis
for two or more times at different points. The number of the intersections depends
on the value of r: It increases when r decreases. At the intersections the boundary
of the branch of W is reached, so that the branch of the W-function must be changed
when z passes these points. To define the analytical continuation along the semi-
circle, we demand that the function � ¼ F�1ðaÞ � eFF�1ð�ðaÞÞ will be continuous as a
function of the phase of a. This will be achieved, if we use the rules of counter-
clockwise continuity [4] for selecting the branches of W when the curve crosses the
branch cut. These rules are given by

W�1ðxþ i0Þ ¼ W1ðx� i0Þ if � e�1 < x< 0;

W1ðx� i0Þ ¼ W0ðxþ i0Þ if �1< x< � e�1;

Wnðxþ i0Þ ¼ Wnþ1ðx� i0Þ if �1< x< 0 and n� 1: ð58Þ

We start at a ¼ r< rc on the positive semi-axis with the branch W�1ðzÞ and pass
the semi-circle f� : 0� �� �g selecting the relevant branches according to the
rules (58). Using ‘‘Maple 7’’ [47], we have plotted the function z ¼ �ðaÞ along
the semi-circles for various values of r in the interval 0< r< rc. In this way, we
have determined the variations of the phase F ¼ argðzÞ along the semi-circles.
Then we have confirmed that the analytical continuation on the negative interval
�rc < a< 0, with the rules (58), really leads to the branch W0ðzÞ.

Having the analytical structure of F�1ðaÞ established, we can construct explicit
expressions for F�1ðaÞ in the entire cut complex a-plane. This enables us to cal-
culate the limits of F�1ðaÞ as a tends to infinity along different directions in the
complex plane and determine thereby the singularities of the function a ¼ Fð�Þ
in the complex �-plane. Using the arguments based on Cauchy’s theorem (see
Sect. 2), one may justify that it is sufficient to calculate the limits choosing the
directions only along the real a-axis.
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Let us now define the analytical continuation along the entire negative a-semi-
axis. In the three-loop case, we may represent Eq. (55) in the form

eTT ð3ÞðaÞ ¼ a�1 � b1 lnðkaj�1 � b1jÞ þ p:v:

ða
0

gð3Þða0Þ da0 ð59Þ

for all a< 0. Thus eTT ð3ÞðaÞ is real, and therefore ~��ð3ÞðaÞ> 0 for all a< 0. Hence

W0ð~��ð3ÞðaÞÞ> 0 (see Fig. 2), so that F�1ð3ÞðaÞ< 0 for all a< 0. It is evident that the
required branch, in this case, will be W0ðzÞ on the entire negative a-semi-axis.
Making a ! �1 in Eq. (54) and using Eq. (59), we find the real singular point

�
ð3Þ
s:2 ¼ lim

a!�1
F�1ð3ÞðaÞ ¼ �ðb1ð1 þW0ð~��ð3Þð�1ÞÞÞÞ�1; ð60Þ

where ~��ð3Þð�1Þ ¼ ðeb1Þ�1
expð�eTT ð3Þð�1Þ=b1Þ, and

eTT ð3Þð�1Þ ¼ lim
a!�1

eTT ð3ÞðaÞ ¼ �b1 ln b1 � p:v:

ð0

�1
gð3ÞðaÞ da ¼ Re

�
t
ð3Þ
lhp:�

�
; ð61Þ

the last equality in Eq. (61) follows from Eq. (26).

In the four-loop order, the function eTT ð4ÞðaÞ is real only inside the finite interval
ða1; 0Þ of the negative semi-axis, where a1 is the root of Eq. (13) (a1 � �0:796 for
nf ¼ 3). The function has a logarithmic branch point at a ¼ a1. The corresponding

branch cut may be chosen along the infinite interval ð�1; a1Þ. To continue eTT ð4ÞðaÞ
in the complex a-plane, we use formula (55). The limiting values of this analytic
function from above and below the left-hand cut are given by

eTT ð4Þ
� ðaÞ ¼ 1=a� b1 lnðjb1 � 1=jakÞ þ p:v:

ða
0

gð4ÞðsÞ ds� i��; ð62Þ

where � stands for the residue

� ¼ lim
a!a1

ða� a1Þgð4ÞðaÞ ¼ ðb2 þ b3a1Þfb3ð1 þ b1a1Þða1 � a2Þða1 � a3Þg�1;

and ai, i ¼ 1; . . . ; 3, denotes the roots of Eq. (13). Formula (54) enables us to define
the analytical continuation of the function � ¼ F�1ð4ÞðaÞ in the cut complex
a-plane. In particular, we need to calculate the boundary values of F�1ð4ÞðaÞ as
ImðaÞ ! 0� along the left-hand cut fa : �1< a< a1g. It is easy to convince that
the required branch of W along the sides of the left-hand cut will be W0ðzÞ, pro-
vided that j�=b1j< 1. This condition holds only for 0� nf � 5 (for example,
�=b1 � 0:690 at nf ¼ 3). Therefore, for 0� nf � 5, formula (54) is valid also along
the sides of the cut. But, for 6� nf � 7, we have j�=b1j> 1. Then one may check
that the relevant branches on the opposite sides of the cut should be W�1. We may
now calculate the limit of F�1ð4ÞðaÞ as a approaches infinity going along the upper
or lower side of the cut. So we determine the singularities of Fð4Þð�Þ. We use
Eq. (54) with Eq. (62) if 0� nf � 5. However, for 6� nf � 7, the branch W0 in
Eq. (54) should be replaced by W�1. Then we find the singular points

�
ð4Þ
s:2� ¼ lim

a!�1
F�1ð4Þða� i0Þ ¼

�
�b�1

1 ð1þW0ð~��ð4Þ� ð�1ÞÞÞ�1; if 0� nf � 5;

�b�1
1 ð1þW�1ð~��ð4Þ� ð�1ÞÞÞ�1; if 6� nf � 7;

:

ð63Þ
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where ~��
ð4Þ
� ð�1Þ ¼ ðeb1Þ�1

exp


� eTT ð4Þ

� ð�1Þ=b1

�
, and by Eqs. (62) and (26)

eTT ð4Þ
� ð�1Þ ¼ lim

a!�1
eTT ð4Þða� i0Þ ¼ Reðtlhp�Þ� i��: ð64Þ

Here the subscript ‘‘�’’ shows that the limits were evaluated keeping the upper
(lower) side of the cut. Evidently, �

ð4Þ
s:2� ¼ ���

ð4Þ
s:2þ:

In Tables 6 and 7, we tabulate the singularities �0ðnf Þ ¼ �b�1
1 , �

ðkÞ
s:1ðnf Þ, and

�
ðkÞ
s:2ðnf Þ at the three- and four-loop orders, respectively. In the third order, we see

that the singular points �
ð3Þ
s:2 are closer to the origin than the points �0 or �

ð3Þ
s:1 ,

so that the radius of convergence of the series (42) is equal to
���ð3Þs:2

��. On the con-
trary, in the fourth order, we find that ~

ð4Þ ¼

���ð4Þs:1

�� if 0� nf � 5, and ~

ð4Þ ¼
���ð4Þs:2

�� if
6� nf� 7. We recall that the radius of convergence of the original series (3) is
determined by 
ðkÞ ¼ ~

ðkÞ=�0 (
ð3Þ ¼ 0:965 and 
ð4Þ ¼ 0:720 for nf ¼ 3).

Table 6. Positions of the singularities in the �-plane at the three-loop order

nf 0 1 2 3 4 5

�0 �1.186 �1.195 �1.219 �1.266 �1.353 �1.520

�
ð3Þ
s:1 0.627 0.635 0.653 0.691 0.776 1.029

�
ð3Þ
s:2 �0.594 �0.601 �0.618 �0.653 �0.731 �0.956

~

 0.594 0.601 0.618 0.653 0.731 0.956

Table 7. Positions of the singularities in the �-plane at four-loops. n1 and n2 denote the labels of the

branches of the W-function used to calculate the singularities �s:1 and �s:2� , respectively. ~

 is the radius

of convergence of the series (42)

nf �0 �s:1 j�s:1j n1 �s:2� j�s:2�j n2 ~



0 �1.186 0.485 – �1 �0.545� 0.334i 0.639 0 0.485

1 �1.195 0.488 – �1 �0.544� 0.341i 0.642 0 0.488

2 �1.219 0.497 – �1 �0.546� 0.354i 0.650 0 0.497

3 �1.266 0.516 – �1 �0.550� 0.380i 0.668 0 0.516

4 �1.353 0.554 – �1 �0.552� 0.429i 0.699 0 0.554

5 �1.520 0.641 – �1 �0.533� 0.526i 0.748 0 0.641

6 �1.885 0.934 – �1 �0.394 � 0.672i 0.779 �1 0.779

7 �3.008 �0.887� 1.531i 1.769 �1 �0.105 � 0.614i 0.623 �1 0.623

Table 8. Numerical examination of the series (42) to third and fourth orders at nf ¼ 3

n ~

ð3Þn ~

ð4Þn n ~

ð3Þn ~

ð4Þn

10 1.04 0.737 80 0.692 0.550

20 0.807 0.632 90 0.688 0.547

30 0.752 0.597 100 0.685 0.544

40 0.727 0.579 110 0.682 0.542

50 0.713 0.568 120 0.680 0.540

60 0.703 0.560 130 0.678 0.538

70 0.697 0.554 140 0.677 0.537
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Looking at the numbers in Tables 6 and 7 one sees that the convergence radii in
the range 0� nf � 6 increase as nf increases. But, for fixed values of nf , they decrease
as the order of perturbation theory increases. In order to examine the obtained for-
mulas, we calculate numerically the coefficients of the series (42) ~ccn for large values
of n. In Table 8, we study the behaviour of the quantity ~

ðkÞn ¼ ðj~ccjðkÞn Þ�1=n

in the three-
and four-loop orders at nf ¼ 3. It is seen from the table that our predictions are in
good agreement with the expected limiting relation ~

ðkÞn ! ~

ðkÞ as n ! 1. The the-
oretical predictions are ~

ð3Þ ¼ 0:653 and ~

ð4Þ ¼ 0:516 for nf ¼ 3 (see Tables 6 and 7).

Next consider the theoretical cases with large nf values where the �-function
has non-trivial real zeros. This takes place in the three-loop case for nf ¼ f6�16g.
From now on we shall confine ourselves to the three-loop case. There are now two
different cases which should be considered separately. For nf ¼ f6�8g (b1 > 0 and
b2 < 0) the equation �ð3ÞðaÞ ¼ �e�1 has one real positive root ab ð0< ab < a2Þ and
a pair of complex conjugate roots ab� with Reðab�Þ< 0 (see Table 9). On the real
interval a1 < a< ab, the real analytic solution to Eq. (47) is

� ¼ �b�1
1 ð1 þW�1ðzÞÞ�1; if 0< a< ab;

�b�1
1 ð1 þW0ðzÞÞ�1; if a1< a< 0;

�
ð65Þ

where z ¼ �ð3ÞðaÞ (see Eq. (49)). To determine uniquely the analytical continuation
of the right-hand side of Eq. (65), we make branch cuts on the a-plane. There are
the branch points at a1;2, the roots of Eq. (13), and at ab and ab� , the roots of
�ð3ÞðaÞ ¼ �e�1. They are listed in Table 9 as a function of nf . We make branch cuts
along the infinite intervals of the real axis fa: �1< a< a1g and fa: ab < a<1g.
There is a double branch cut along the interval fa: a2 < a<1g. We also make
branch cuts along the straight lines joining the points ab� with the point a1. Now
we may continue analytically the function (65) and determine its boundary values
along the sides of the right-hand cut using the rules of counter-clockwise continuity
(58). Choosing the ways along the sides of this cut, we take the limit a ! 1. Thus
we find a pair of complex conjugate singular points

�s:1� ¼ lim
a!1

F�1ða� i0Þ ¼ �b�1
1 ð1 þW�nðz�ÞÞ�1; ð66Þ

Table 9. The location of the branch points a1;2, ab, and ab� of � ¼ F�1ð3ÞðaÞ for

nf ¼ f6�16g

nf a1 a2 ab ab�

6 �1.489 7.089 2.418 �2.258 � 0.296i

7 �0.877 1.238 0.813 �0.846 � 0.101i

8 �0.651 0.660 0.541 �0.552 � 0.006i

9 �0.509 0.409 �0.360 0.439 � 0.036i

10 �0.403 0.264 �0.253 0.266 � 0.034i

11 �0.318 0.169 �0.177 0.159 � 0.027i

12 �0.245 0.104 �0.121 0.089 � 0.018i

13 �0.182 0.059 �0.078 0.043 � 0.011i

14 �0.125 0.028 �0.044 0.015 � 0.006i

15 �0.072 0.010 �0.020 0.002 � 0.002i

16 �0.023 0.001 �0.004 �0.0013 � 0.0002i
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where z� ¼ lima!1 �ð3Þða� i0Þ,
z� ¼ ðeb1Þ�1

exp½M1 lnðja1jÞ=b1 �M2 lnða2Þ=b1	 exp½� i�M1=b1	;
with M1;2 ¼ ða1 � a2Þ�1ð1 þ b1a1;2Þ�1

. It is obvious from Cauchy’s theorem that
if we calculate the limits choosing the directions along the left-hand cut, we
shall reproduce the same values, i.e., �s:2� ¼ �s:1� . Comparing the modulus of
the numbers �0 ¼ �b�1

1 and �s:1� (see Table 10), we determine the radii of con-
vergence of the series (42) for nf ¼ f6�8g. In this table, we also indicate the
required branch of the W-function which is used in formula (66).

Next consider the cases with nf ¼ f9�16g (b1 < 0; b2 < 0). Then the equation
�ð3ÞðaÞ ¼ �e�1 has a real negative root ab ða1 < ab < 0Þ and a pair of complex
conjugate roots ab� (see Table 9). The solution to Eq. (47), which takes real values
inside the real interval ab < a< a2, is then given by

� ¼
�
�b�1

1 ð1 þW0ðzÞÞ�1; if 0< a< a2;

�b�1
1 ð1 þW�1ðzÞÞ�1; if ab < a< 0;

ð67Þ

where z ¼ �ð3ÞðaÞ ¼ ðejb1jÞ�1
exp½TðaÞ=jb1j	. Now we choose the cuts along the

real axis fa: �1< a< a1g, fa: �1< a< abg, and fa: a2 < a<1g. We also
make cuts along the straight lines joining the branch points ab� with a2. By means
of the same procedure that was used in the previous case we calculate the locations
of the singularities �s:1� ¼ �s:2� . They are determined by the same formula (66).
The relevant branches of the W-function are listed in Table 10. In this table we
tabulated the magnitudes of �0; j�s:1�j ¼ j�s:2�j, and ~

, the convergence radius of
the series (42), for nf ¼ f6�16g.

5 The Momentum Scale Associated with the Convergence Radius
of the Series

The convergence region of the series (42) in the real-momentum squared space
may be easily determined, since the mapping Q2 ! � ¼ að2ÞðQ2Þ for real positive
Q2 >Q2

L � 0 is monotonic (Q2
L being the real Landau singularity of the two-loop

Table 10. The locations of the singularities of a ¼ Fð�Þ and the convergence radii of

the series (42) at three-loops in the theoretical cases when nf ¼ f6�16g

nf W�n �0 j�s:1�j ~



6 W�1 1.885 2.114 1.885

7 W�1 3.008 0.664 0.664

8 W�19 48.17 0.417 0.417

9 W�1 2.08 0.291 0.291

10 W�1 0.761 0.208 0.208

11 W�1 0.360 0.148 0.148

12 W�1 0.180 0.102 0.102

13 W�1 0.087 0.067 0.067

14 W�1 0.037 0.039 0.037

15 W�1 0.011 0.018 0.011

16 W�1 0.001 0.003 0.001
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coupling which is present if 0� nf � 8:05). First, we consider the series for large
(mainly unphysical) nf values. Note that the quantity �0 ¼ �b�1

1 in the Banks-Zaks
domain (nf > 8:05) is the infrared fixed point of the two-loop coupling � ¼ að2ÞðuÞ,
so that 0<�< jb1j�1

for all Q2 2ð0;1Þ. From Table 10 we see that ~

 ¼ �0 inside
the interval nf ¼ f14�16g. This means that the series (42) at three-loops for
nf ¼ f14�16g converges in the whole interval Q2 2ð0;1Þ. Let n��f be the lowest
value of nf for which this equality holds (n��f ¼ 14 in the MS scheme).
For nf < n��f , the series (42) converges in the more restricted domain Q2

min <
Q2 <1 ðQ2

min > 0Þ. The value of Q2
min may be determined from the equation

� ¼ að2ÞðuÞ ¼ �b�1
1 ð1 þWnðzQÞÞ�1 ¼ ~

; ð68Þ

where zQ ¼ �ðeb1Þ�1
u�1=b1 and u ¼ Q2=L2 (see Eq. (2)). Solving Eq. (68), we

obtain

umin ¼ Q2
min=L

2 ¼ ðb1 þ ~

�1Þ�b1 expð~

�1Þ:
The results for the dimensionless quantity

ffiffiffiffiffiffiffiffi
umin

p ¼ Qmin=L
�
Qmin ¼

ffiffiffiffiffiffiffiffiffi
Q2

min

p �
to

the three- and four-loop orders, for nf ¼ f0�6g, are tabulated in Table 11. We
compare

ffiffiffiffiffiffiffiffi
umin

p
with the ratio

ffiffiffiffiffiffiffiffi
urhp

p ¼ Qrhp=L, where Qrhp ¼
ffiffiffiffiffiffiffiffi
Q2

rhp

p
, and Q2

rhp is
the real space-like Landau singularity of the coupling. It is seen from the table that
in general the quantity Q2

min cannot be identified with the real Landau singularity
Q2

rhp. The equality Q2
min ¼ Q2

rhp occurs only in the cases where the convergence ra-
dius ~

 is determined via the real (space-like) Landau singularity. This happens,
for example, in the MS scheme in the four-loop case for nf ¼ f0�5g. However, in
the case where ~

 is determined via the complex Landau singularities, Q2

lhp� , the
relation between Q2

min and Q2
lhp� is more complicated. Then we observe the in-

equality Q2
min >Q2

rhp. Such a situation occurs, for instance, in the MS scheme in the
three-loop case for nf ¼ f0�5g.

It is reasonable to compare Qmin with the infrared boundary of QCD, the momen-
tum scale 
c that separates the perturbative and nonperturbative regimes of the
theory in the confining phase. Several estimates for this quantity were suggested
using different nonperturbative methods. In the recent work [20] a useful nonper-
turbative approximation for the QCD �-function has been constructed. The model
gives a number of consistent results for various nonperturbative quantities. In partic-
ular, it was obtained that ð
c=LQCDÞ3-loop � 3:204 and ð
c=LQCDÞ4-loop � 3:526

Table 11. The ratios

ffiffiffiffiffiffiffiffi
u
ðkÞ
min

q
¼ Q

ðkÞ
min=L and

ffiffiffiffiffiffiffiffi
u
ðkÞ
rhp

q
¼ Q

ðkÞ
rhp=L in the MS scheme to

the three- and four-loop orders for nf ¼ f0�6g

nf

ffiffiffiffiffiffiffiffi
u
ð3Þ
min

q ffiffiffiffiffiffiffiffi
u
ð3Þ
rhp

q ffiffiffiffiffiffiffiffi
u
ð4Þ
min

q ffiffiffiffiffiffiffiffi
u
ð4Þ
rhp

q
0 1.571 1.525 1.790 1.790

1 1.566 1.521 1.788 1.788

2 1.558 1.514 1.784 1.784

3 1.541 1.500 1.773 1.773

4 1.505 1.467 1.745 1.745

5 1.416 1.384 1.678 1.678

6 1.283 – 1.623 1.507
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with the perturbative MS-scheme component of the total �-function in the third and
fourth order. Another approach to determine the infrared boundary is to use argu-
ments based on dynamical chiral symmetry breaking in QCD. There are the results
obtained within the nonperturbative framework of Schwinger-Dyson equations
[42, 43]. It was found in ref. [42] that the critical value of the coupling, needed to
generate the chiral condensate, is �c ¼ �=4 (for Nc ¼ 3 QCD). It is reasonable to
identify the corresponding scale with the infrared boundary [49]. To obtain approx-
imations to 
c, we may use the perturbative expressions for the coupling in the MS
scheme. With this simplifying assumption, the equation �

ðkÞ
s ð
2

cÞ ¼ �=4 in the three-
and four-loop orders, for nf ¼ 3, yields the estimates

ð
c=LMSÞ3-loop ¼ 1:972 and ð
c=LMSÞ4-loop ¼ 2:115:

The two different estimates considered above are consistent with the inequality
Q2

m <
2
c . Thus it seems reasonable to believe that the series expansion (42) in

the MS scheme may be safely used in the whole perturbative region 
2
c <Q2 <1.

6 Application to Analytic Perturbation Theory

In the analytic perturbation-theory (APT) approach of Shirkov and Solovtsov,
Euclidean and Minkowskian QCD observables (which depend on the single scale)
are represented by asymptotic expansions over non-power sets of specific functions
fAðkÞ

n ðuÞg1n¼1 and fAðkÞ
n ð�ssÞg1n¼1, respectively (see refs. [11, 12]); here u ¼ Q2=L2

and �ss ¼ s=L2. These sets are constructed via the integral representations in the
following way,

AðkÞ
n ðuÞ ¼ 1

�

ð1
0

%
ðkÞ
n ð&Þ d&
& þ u

; AðkÞ
n ð�ssÞ ¼ 1

�

ð1
�ss

%
ðkÞ
n ð&Þ
&

d&; ð69Þ

where the spectral densities to the k-th order are determined from powers of the
running coupling: %

ðkÞ
n ð&Þ ¼ � ImðaðkÞnð�& þ i0ÞÞ. In APT the power series (42)

give rise to the following series of functions,

AðkÞ
m ðuÞ ¼

X1
n¼m

CðkÞm;nA
ð2Þ
n ðuÞ; m ¼ 1; 2; . . . ; ð70Þ

AðkÞ
m ð�ssÞ ¼

X1
n¼m

CðkÞm;nA
ð2Þ
n ð�ssÞ; m ¼ 1; 2; . . . ; ð71Þ

%ðkÞm ð&Þ ¼
X1
n¼m

CðkÞm;n%
ð2Þ
n ð&Þ; m ¼ 1; 2; . . . ; ð72Þ

where CðkÞm;m ¼ 1. The sets of coefficients fCðkÞm;ng
1
n¼m;m ¼ 1; 2; . . . ; are constructed

from the set of coefficients of the original series, f~ccðkÞn g1n¼1, according to the rules

for products of power series: CðkÞ1;n ¼ ~cc
ðkÞ
n ; CðkÞ2;n ¼

Pn�1
j¼1 ~cc

ðkÞ
n�j~cc

ðkÞ
j , etc. The spectral den-

sities at the two-loop order can be expressed analytically in closed form [32, 50],

%ð2Þn ð&Þ ¼ b�n
1 Imð1 þW�1ðz&ÞÞ�n

with z& ¼ ðeb1Þ�1&�1=b1 exp½�i�ð1=b1 � 1Þ	:
ð73Þ
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Now we are going to prove that the series of functions (70), (71), and (72)
are uniformly convergent over the whole ranges of the corresponding variables:
0< u<1; 0<�ss<1, and 0< & <1. Suppose that the series (72) is uniformly
convergent. Then the series (70) and (71) will also be uniformly convergent. To see
this, let us insert the series (72) into integral representations given in Eq. (69) and
integrate term by term. This yields the series (70) and (71), which must be uni-
formly convergent, as the results of term-by-term integration of the uniformly
convergent series. Evidently, the factors 1=ð& þ uÞ and 1=& inside the integrals will
not destroy this statement.

Let us now write W�1ðz&Þ ¼ W ¼ X þ iY; ð1 þWÞ�1 ¼ R expðiCÞ, where
R ¼ ððX þ 1Þ2 þ Y2Þ�1=2

and C ¼ arcsinð�YRÞ (for the branch W�1, we have
�3�<Y< 0Þ. According to this, we may rewrite the two-loop spectral densities
(73) as

%ð2Þn ð&Þ ¼ ðR=b1Þn sinðnCÞ; n ¼ 1; 2; . . . : ð74Þ
It is seen from Eq. (74) that the moduli of the spectral densities are bounded above

j%ð2Þn ð&Þj< ð�maxÞn; ð75Þ
where �max ¼ Rmax=b1 and Rmax is the maximal value of R in the range
0< & <1. We find it useful to use ‘‘Maple 7’’ [47] for determining Rmax numeri-
cally. In Table 12 we listed numerical values of �max in the phenomenologi-
cally interesting case nf ¼ f0�6g. Note that all the power series

P1
n¼m CðkÞm;n�

n,
m ¼ 1; 2; . . . ; have the same radius of convergence, ~

ðkÞ, as the original series
(42). This follows from the definitionX1

n¼m

CðkÞm;n�
n ¼

�X1
l¼1

~cc
ðkÞ
l �l

�m

: ð76Þ

Consider now the set of numerical series of positive termsX1
n¼m

jCðkÞm;nj�nmax; m ¼ 1; 2; . . . : ð77Þ

Looking at the numbers in Table 12, we see that �max is inside the convergence disk
of the series (76), 0<�max < ~

ðkÞ. Hence all the numerical series (77) are conver-
gent. Combining this fact with the bounding conditions (75), we find that the series
of functions

P1
n¼m jCðkÞm;n%

ð2Þ
n ð&Þj;m ¼ 1; 2; . . . ; are uniformly convergent by the

comparison test due to Weierstrass. Then all the series (72) are uniformly con-
vergent. Hence by the arguments given above, the series of functions (70) and (71)
are also uniformly convergent.

Table 12. The quantity �max versus the convergence radii ~

ðkÞ

nf 0 1 2 3 4 5 6

�max 0.237 0.237 0.238 0.240 0.243 0.249 0.259

~

ð3Þ 0.594 0.601 0.618 0.653 0.731 0.956 1.885

~

ð4Þ 0.485 0.488 0.497 0.516 0.554 0.641 0.779
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The series (70) and (71) enable us to calculate the infrared limits of the APT
expansion functions. Thus we may reproduce the remarkable results of Shirkov
and Solovtsov [7, 10] in a mathematically rigorous way5. It is seen from the
definition (69) that limu!0þ AðkÞ

n ðuÞ ¼ lim�ss!0þ A
ðkÞ
n ð�ssÞ. Therefore, we shall con-

sider only the Minkowskian set of functions. In the two-loop order, one may
calculate the infrared limits of the expansion functions using the explicit formulas
obtained in ref. [50]. The first two Minkowskian functions are given by

A
ð2Þ
1 ð�ssÞ ¼ 1 � ��1 Im ln W1ðzsÞ;

A
ð2Þ
2 ð�ssÞ ¼ ��1b�1

1 Im lnfW1ðzsÞ=ð1 þW1ðzsÞÞg; ð78Þ
where zs ¼ ðeb1Þ�1�ss�1=b1 exp½i�ð1=b1 � 1Þ	. The functions with higher values of
the index are determined by the recurrence relation (see ref. [50])

A
ð2Þ
nþ2ð�ssÞ ¼ �b�1

1

�
A

ð2Þ
nþ1ð�ssÞ þ

1

n

d

d ln�ss
Að2Þ

n ð�ssÞ
�
: ð79Þ

The asymptotics of W1ðzsÞ as jzsj ! 1 may be determined using Eq. (27) with
L1 ¼ ln zs þ i2� [4]. Combining Eqs. (78) and (79) and taking the limit �ss ! 0þ, we
find

Að2Þ
n ð�ssÞ � �n;1 þ ð1 þ b1Þ ln�n�ssþ Oðln�n�1�ssÞ ! �n;1; ð80Þ

hence limu!0þAð2Þ
n ðuÞ ¼ lim�ss!0þA

ð2Þ
n ð�ssÞ ¼ �n;1. These relations may be extended

to higher orders by means of the expansions (70) and (71). Thus we can write

lim
u!0þ

AðkÞ
m ðuÞ ¼

X1
n¼m

CðkÞm;n lim
u!0þ

Að2Þ
n ðuÞ ¼ CðkÞm;1 � �m;1: ð81Þ

The calculation of the limit of the sum of the series term-by-term, as u ! 0, is
justified by the uniform convergence of the series. It should be stressed that these
results (in particular, the finiteness of AðkÞ

1 ð0Þ originally obtained in ref. [7]) are
direct consequences of the asymptotic freedom (AF) of the theory. This interesting
relationship has been recently elucidated by Alekseev [19] using a different tech-
nique. In this connection we remark that the recurrence formula (79) follows
directly from the AF, as it was shown in refs. [50, 32]. The universality of
AðkÞ

1 ð0Þ and A
ðkÞ
1 ð0Þ (the scheme independence and invariance with respect to

higher-loop corrections) is evident.

7 Conclusion

The main objective of this investigation was to study convergence properties of the
new expansion (3). In Sect. 2 we have systematically discussed the analyticity
structure of the modified coupling aðQ2=L2Þ at three- and four-loops in the complex
u ¼ Q2=L2 plane for all nf values in the range 0� nf � 16. For higher values of nf ,
when the �-function has only real zeros, we have reproduced the part of results of
refs. [16, 17] using a different technique. For low values of nf , when the �-function

5 An alternative derivation of these results in the context of the asymptotic solutions to the RG

equation was recently given in ref. [19]
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has complex zeros, we have determined the analytical continuation of the function
t ¼ TðaÞ choosing the cuts properly in the complex coupling plane. With this choice,
we have found that the running coupling has a pair of complex conjugate singular
points in the first Riemann sheet of the Q2 plane besides the real singularity on the
positive semi-axis. In many cases, just these complex singularities determine the
radius of convergence of the series (3) (e.g., 0� nf � 5 at 3 loops).

In Sect. 3 we have proved that in the MS-like schemes the power series (3) has
a finite radius of convergence to all orders in perturbation theory for all nf ¼ 0�16.
Therefore, the series inside its circle of convergence represents the exact solution
to the RG equation (A.1). In the proof we have used methods of analytical theory
of differential equations.

In Sect. 4 we have determined the analytical structure of the modified coupling
in higher orders as a function of the two-loop order coupling � ð� ¼ að2ÞðQ2=L2ÞÞ.
We have considered the three- and four-loop cases for 0� nf � 16 and 0� nf � 7,
respectively. We have found the helpful Eq. (48), the implicit solution for the
higher-order coupling determined via the Lambert W function. By means of this
formula, we have determined the analytical continuation of the inverse function
� ¼ F�1ðaÞ in the complex a-plane. This enabled us to find the locations of the
singularities of the coupling a ¼ Fð�Þ in the �-plane (see Tables 6 and 7). The
correspondence between the singularities of the coupling in the Q2 and � planes has
been established. Comparing various singularities of the coupling in the �-plane,
we have determined the radii of convergence of the series (42) ~

ðkÞ. From a practical
viewpoint, the radii of convergence of the original series (3), 
ðkÞ ¼ ~

ðkÞ=�0,
are found to be sufficiently large. For example, 
ð3Þ ¼ 0:965 and 
ð4Þ ¼ 0:720 at
nf ¼ 3. The obtained predictions for the convergence radius have been examined
by the independent numerical calculation. One further important property of the
series is the high convergence rate. In previous papers [32, 36], we observed that in
the three- and four-loop orders partial sums of these series with the first few terms
give very good approximations to the coupling even in the infrared region. This
was confirmed in conventional perturbation theory as well as in APT.

In Sect. 5 we have determined the convergence region of the series (42) in the
momentum-squared space. For sufficiently large nf values (nf � 14 in the MS
scheme), we have found that the series converges in the whole physical range
0<Q2 <1. For lower nf values, we have evaluated the lower boundary of the
convergence region Q2

min. We have compared this scale with the estimations of the
infrared boundary of QCD, 
c, obtained within two different non-perturbative
approaches and found that Q2

min <
2
c . This is in agreement with the possibility that

the series (3) in the MS scheme may be used safely in the whole perturbative region

2
c <Q2 < 0.

In Sect. 6 we have studied the convergence properties of the non-power series
constructed from the series (42) according to the rules of the QCD analytic per-
turbation theory of Shirkov and Solovtsov both in the space- and time-like regions.
We have shown that the Euclidean and Minkowskian variants of these non-power
series are uniformly convergent over the whole domains of the corresponding
momentum-squared variables. A mathematically rigorous proof of an interesting
result of ref. [7], the finiteness and universality of the analytic coupling at zero
momentum, has been presented.
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The series solution (3) may be useful in high-precision calculations of QCD
observables beyond the two-loop order in the low-momentum regime. It clearly
provides more accurate results than the standard asymptotic expansion (28) for the
coupling (see ref. [36]). This series may be used in different variants of the analytic
approach to perturbative QCD suggested in refs. [9, 18, 22, 23]. It may also be ap-
plied in the contexts of the ‘‘contour-improved’’ perturbation theory of refs. [26–31]
and resummation methods proposed in refs. [51] and [52]. Another possible appli-
cation of the series is to construct the running coupling with consistent matching
conditions at quark thresholds in MS-like renormalization schemes [12, 19, 50, 53].
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Appendix

The RG equation to the k-th order reads

d�sðQ2Þ
d lnQ2

¼ �ðkÞð�sðQ2ÞÞ ¼ �
Xk�1

n¼0

�nf�sðQ2Þgnþ2: ðA:1Þ

The running coupling satisfies the normalization condition �sð
2Þ ¼ g2=ð4�Þ, where 
 is the renor-

malization point and g is the gauge coupling of QCD. In the class of schemes, where the �-function is

mass-independent, �0 and �1 are universal,

�0 ¼ ð4�Þ�1ð11 � 2nf =3Þ; �1 ¼ ð4�Þ�2ð102 � 38nf =3Þ: ðA:2Þ

The results for the coefficients �2 and �3 in the MS scheme can be found in refs. [54] and [55],

�2 ¼ ð4�Þ�3ð2857=2 � 5033nf =18 þ 325n2
f =54Þ; ðA:3Þ

�3 ¼ ð4�Þ�4

�
149753

6
þ 3564�3 �

�
1078361

162
þ 6508

27
�3

�
nf

þ
�

50065

162
þ 6472

81
�3

�
n2
f þ

1093

729
n3
f

�
: ðA:4Þ

Here � is the Riemann zeta-function (�3 ¼ 1.202056903. . . ). The values of the first three coefficients

b1,2,3 (bn ¼ �n=�
nþ1
0 ) in the MS scheme are tabulated in Table A.1.

Table A.1. The MS-scheme ���-function coefficients b1,2,3 for nf ¼ 0–16

nf b1 b2 b3 nf b1 b2 b3

0 102=121 2857=2662 1.9973 9 �12=25 �1201=250 1.0105

1 804=961 62365=59582 1.9913 10 �222=169 �41351=4394 5.0716

2 690=841 48241=48778 1.9449 11 �336=121 �49625=2662 21.273

3 64=81 3863=4374 1.8428 12 �50=9 �6361=162 84.088

4 462=625 21943=31250 1.6662 13 �564=49 �64223=686 360.81

5 348=529 9769=24334 1.3969 14 �678=25 �70547=250 2009.6

6 26=49 �65=686 1.0297 15 �88 �2823=2 21254

7 120=361 �12629=13718 0.6107 16 �906 �81245=2 2263651

8 6=289 �22853=9826 0.3549

A Novel Series Solution to the Renormalization-Group Equation in QCD 97



References

1. Gardi, E., Grunberg, G., Karliner, M.: J. High Energy Phys. 7, 007 (1998)

2. Magradze, B. A.: In: Proceedings of the 10th International Seminar ‘‘QUARKS-98’’, Suzdal,

Russia, 1998 (Bezrukov, F. L., et al., eds.), Vol. 1, p. 158. Moscow: Russian Academy of Sciences,

Institute for Nuclear Research 1999; Magradze, B. A.: Proc. A. Razmadze Math. Inst. 118, 111

(1998)

3. Appelquist, T., et al.: Phys. Rev. D58, 105017 (1998)

4. Corless, R. M., et al.: Adv. Comp. Math. V5, 329 (1996)

5. Magradze, B. A.: Int. J. Mod. Phys. A15, 2715 (2000)

6. Dokshitzer, Yu., Marchesini, G., Webber, B. R.: Nucl. Phys. B469, 93 (1996); Dokshitzer, Yu.,

Khoze, V. A., Troyan, S. I.: Phys. Rev. D53, 89 (1996)

7. Shirkov, D. V., Solovtsov, I. L.: Phys. Rev. Lett. 79, 1209 (1997)

8. Shirkov, D. V.: Nucl. Phys. (Proc. Suppl.) B64, 106 (1998)

9. Milton, K. A., Solovtsov, I. L., Solovtsova, O. P.: Phys. Lett. B415, 104 (1997)

10. Solovtsov, I. L., Shirkov, D. V.: Theor. Math. Phys. 120, 1220 (1999)

11. Shirkov, D. V.: Lett. Math. Phys. 48, 135 (1999)

12. Shirkov, D. V.: Theor. Math. Phys. 127, 409 (2001); Shirkov, D. V.: Eur. Phys. J. C22, 331 (2001)

13. Shirkov, D. V.: Theor. Math. Phys. 132, 1309 (2002)

14. Shirkov, D. V.: [hep-ph=0510247]; Shirkov, D. V., Zayakin, A. V.: [hep-ph=0512325]

15. Grunberg, G.: JHEP 11, 006 (1998); Grunberg, G.: JHEP 03, 024 (1999)

16. Gardi, E., Grunberg, G.: JHEP 03, 024 (1999)

17. Gardi, E., Karliner, M.: Nucl. Phys. B529, 383 (1998)

18. Alekseev, A. I., Arbuzov, B. A.: Mod. Phys. Lett. A13, 1747 (1998); Alekseev, A. I.: Phys. Rev.

D61, 114005 (2000); Alekseev, A. I.: J. Phys. G27, L117 (2001); Alekseev, A. I.: [hep-ph=

0503242]

19. Alekseev, A. I.: Few-Body Systems 32, 193 (2003)

20. Alekseev, A. I., Arbuzov, B. A.: Mod. Phys. Lett. A20, 103 (2005)

21. Nesterenko, A. V.: Int. J. Mod. Phys.A18, 5475 (2003); Nesterenko, A. V., Papavassiliou, J.: Phys.

Rev. D71, 016009 (2005)

22. Cveti�cc, G., Valenzuela, C., Schmidt, I.: [hep-ph=0508101]; Cveti�cc, G., Valenzuela, C.: [hep-ph=

0601050]

23. Bakulev, A. P., Mikhailov, S. V., Stefanis, N. G.: Phys. Rev. D72, 074014 (2005); Bakulev, A. P.,

Karanikas, A. I., Stefanis, N. G.: Phys. Rev. D72, 074015 (2005); Bakulev, A. P., Stefanis, N. G.:

Nucl. Phys. B721, 50 (2005); Bakulev, A. P., et al.: Phys. Rev. D70, 033014 (2004)

24. Prosperi, G. M., Raciti, M., Simolo, C.: [hep-ph=0607209]

25. Krasnikov, N. V., Pivovarov, A. A.: Mod. Phys. Lett. A11, 835 (1996)

26. Pivovarov, A. A.: Sov. J. Nucl. Phys. 54, 676 (1991); Pivovarov, A. A.: Z. Phys. C53, 461 (1992)

[hep-ph=0302003]; Pivovarov, A. A.: Nuovo Cim. A105, 813 (1992); Pivovarov, A. A.: Atom.

Nucl. 66, 724 (2003)

27. Groote, S., K€oorner, J. G., Pivovarov, A. A.: Mod. Phys. Lett. A13, 637 (1998)

28. Le Diberger, F., Pich, A.: Phys. Lett. B286, 147 (1992)

29. Kataev, A. L., Starshenko, V. V.: Mod. Phys. Lett. A10, 235 (1995)

30. Raczka, P. A., Szymacha, A.: Z. Phys. C70, 125 (1996); Raczka, P. A.: [hep-ph=0602085]

31. Howe, D. M., Maxwell, C. J.: Phys. Lett. B541, 129 (2002); Howe, D. M., Maxwell, C. J.: Phys.

Rev. D70, 014002 (2003)

32. Kourashev, D. S., Magradze, B. A.: Theor. Math. Phys. 135, 531 (2003)

33. Kourashev, D. S.: [hep-ph=9912410]

34. Maxwell, C. J., Marjalili, A.: Nucl. Phys. B577, 209 (2000)

35. Rodrigo, G., Pich, A., Santamaria, A.: Phys. Lett. B424, 367 (1998)

36. Magradze, B. A.: [hep-ph=0305020]

98 B. A. Magradze



37. Banks, T., Zaks, A.: Nucl. Phys. B196, 189 (1982)

38. Miransky, V. A.: Phys. Rev. D59, 105003 (1999)

39. Oehme, R., Zimmermann, W.: Phys. Rev. D21, 471 (1980); Oehme, R.: Phys. Rev. D42, 4209

(1990); Nishijima, K.: Prog. Theor. Phys. 75, 1221 (1986)

40. Bardeen, W. A., et al.: Phys. Rev. D18, 3998 (1978)

41. Stevenson, P. M.: Phys. Rev. D23, 2916 (1981)

42. Fomin, P. I., et al.: Riv. Nuovo Cim. 6, 1 (1983)

43. Roberts, C. D., Williams, A. G.: Prog. Part. Nucl. Phys. 33, 477 (1994)

44. Bethke, S.: J. Phys. G26, R27 (2000)

45. Ince, E. L.: Ordinary Differential Equations. New York: Dover 1956

46. Fuks, B. A., Levin, V. I.: Functions of Complex Variables and Their Applications: Special Topics.

Moscow: State Publishing House 1951 (in Russian)

47. Corless, R. M.: Essentials Maple 7. New York: Springer 2002

48. Hurwitz, A., Courant, R.: The Theory of Functions. Moscow: Nauka 1968 (in Russian)

49. Chishtie, F. A., et al.: Prog. Theor. Phys. 104, 603 (2000)

50. Magradze, B. A.: Comm. of the Joint Institute for Nuclear Research E222, 2 (2000)

51. Maxwell, C. J.: Phys. Lett. B409, 450 (1997)

52. Cveti�cc, G.: Phys. Rev. D57, 3209 (1998)

53. Rodrigo, G.: Phys. Lett. B313, 441 (1993)

54. Tarasov, O. V., Vladimirov, A. A., Zharkov, A. Yu.: Phys. Lett. B93, 429 (1980)

55. Van Ritberger, T., Vermaseren, J. A. M., Larin, S. A.: Phys. Lett. B400, 379 (1997)

A Novel Series Solution to the Renormalization-Group Equation in QCD 99


