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Abstract. Recently, the QCD renormalization-group (RG) equation at higher
orders in MS-like renormalization schemes has been solved for the running
coupling as a series expansion in powers of the exact two-loop-order coupling.
In this work, we prove that the power series converge to all orders in perturbation
theory. Solving the RG equation at higher orders, we determine the running
coupling as an implicit function of the two-loop-order running coupling. Then
we analyze the singularity structure of the higher-order coupling in the complex
two-loop coupling plane. This enables us to calculate the radii of convergence of
the series solutions at the three- and four-loop orders as a function of the number
of quark flavours n;. In parallel, we discuss in some detail the singularity struc-
ture of the MS coupling at the three- and four-loops in the complex-momentum
squared plane for 0 <n; < 16. The correspondence between the singularity struc-
ture of the running coupling in the complex-momentum squared plane and the
convergence radius of the series solution is established. For sufficiently large ny
values, we find that the series converges for all values of the momentum-squared
variable Q% = —q2 > 0. For lower values of ny, in the MS scheme, we determine
the minimal value of the momentum-squared Q2. above which the series con-
verges. We study properties of the non-power series corresponding to the pre-
sented power-series solution in the QCD analytic perturbation-theory approach
of Shirkov and Solovtsov. The Euclidean and Minkowskian versions of the non-
power series are found to be uniformly convergent over the whole ranges of the
corresponding momentum-squared variables.

1 Introduction

It is known that the QCD running coupling at the two-loop order in MS-like (mass-
less) renormalization schemes can be solved explicitly as a function of the scale in
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terms of the Lambert W function [1-3]. The Lambert W function is the multi-
valued solution of

Wi (z) exp{Wi(2)} = z; (1)

the branches of W are denoted W(z), k = 0, £ 1,.... An exhaustive review of the
Lambert W function may be found in ref. [4]. The relevant branch of W(z) which is
used to determine the coupling depends on the number of light-quark flavours ny.
For a real positive momentum-squared Q?' (and above the Landau singularity
if 0 <ny <8) the two-loop coupling takes the form

W02y = { ~Bo/B)(L+Woi(zg)) ™, if 0<ny <8,
c (@) {—(60/61)(1+Wo(zQ))‘1, if 9<n; <16, @)

where zp = —(eby) 1 (Q?/ /12)_1/ 1 By and B are the first two B-function coeffi-
cients, by = 3/ 5(2), and A = Agg is the conventional MS-scheme QCD parameter.
Using formula (2), the analytical structure of the two-loop coupling in the complex
Q2 plane was determined [1, 2, 5]. The motivation for these studies was a need for
the development of dispersive methods [6—25]. The dispersive approach has been
devised to extend properly modified perturbation-theory calculations towards the
low-energy region [6, 7, 15]. The most simple and elaborated variant of the dis-
persive approach, the Shirkov-Solovtsov analytic perturbation theory (APT), was
formulated in refs. [7] and [9] (for a review on APT and many original references
see refs. [10] and [24]). It should be remarked that in the time-like region APT is
equivalent to the “‘contour-improved perturbation theory” proposed previously in
ref. [26] (see also refs. [27-31]). The relation between this framework and APT
was discussed in refs. [12, 32]. More sophisticated nonperturbative modifications
of the (minimal) analytic QCD model of Shirkov and Solovtsov were also pre-
sented [18—23]. A generalization of APT to non-integer (fractional) powers of the
running coupling has also been proposed and successfully used to calculate the
three-point functions in QCD [23].

The two-loop explicit solution (2) was soon found to have a more important
application. In ref. [33], the running coupling in the k-th order (k>3) in an
MS-like renormalization scheme was expanded in powers of the exact two-loop-
order coupling (here and hereof we omit the argument ny)

(@) =) " PP (3)
n=1

On this basis, the author of ref. [33] has proposed a new method for reducing the
scheme ambiguity for QCD observables. A similar expansion (motivated differ-
ently for an observable depending on a single scale) was suggested in ref. [34].
Note that the analogical expansion but in powers of the approximate (asymptotic)
two-loop coupling has previously been introduced in ref. [35]. This expansion was
used to construct the running coupling with consistent matching conditions at the
quark thresholds in the three-loop order. However, if the asymptotic two-loop
coupling is used, the coefficients of the expansion depend on the scale Q®. The
main advantage of Eq. (3) is that it allows us to write QCD observables, in massless

! Here 0?2 = —¢* = —(qo)2 +¢* and Q% > 0 in the Euclidean domain
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renormalization schemes, as series in powers of the renormalization-scheme-
independent quantity, the exact explicit two-loop coupling (2). One could introduce
a similar expansion in powers of the one-loop scheme-independent coupling as
well. However, such a series would not be useful, since it could not describe the
double logarithmic singularities of the higher-order coupling. Recently, the series
(3) has been used to construct exact explicit expressions for Euclidean and
Minkowskian observables within APT [32, 36] (see also ref. [31]). In practice,
the first few terms in series (3) give the excellent approximations to the coupling
even in the infrared region [32, 36].

The main purpose of this paper is to present a detailed mathematical investiga-
tion of the series (3). In Sect. 2 we discuss in some details the singularity structure
of the MS coupling, in higher orders, in the complex Q? plane. In particular, we
determine the locations of the Landau singularities of the coupling (at the three-
and four-loops) as a function of n; for the ny values into the range of validity of the
asymptotic freedom of QCD. A similar investigation (but for large n; values when
the J-function has a positive fixed point) has previously been undertaken by the
authors of refs. [16, 17] using a different technique, whose work does not overlap
the material in Sect. 2 to a marked extent. In Sect. 3 we prove that the series (3) in
the MS-like renormalization schemes has a positive radius of convergence to all
orders in perturbation theory. In the proof we use the methods of the analytical
theory of differential equations. In Sect. 4 we solve a higher-order RG equation for
the running coupling implicitly as a function of the two-loop running coupling. By
means of the obtained transcendental equation, we determine the analytical struc-
ture of the higher-order coupling in the complex two-loop coupling plane. As a
result, we evaluate analytically the radii of convergence of series (3) at three- and
four-loops as a function of ns. In Sect. 5 we determine the convergence region of
the series solution with respect to the momentum-squared variable Q. For suffi-
ciently large ns values (n; > 14 in the MS scheme), we find that the series converges
for all Q> > 0. For the lower n; values, we determine the minimal value Q2. above
which the series converges. We compare this scale, at ny = 3, with the infrared
boundary of perturbative QCD estimated within two different nonperturbative
frameworks. In Sect. 6 we study properties of the dispersive images of the series
solution (3), the non-power series determined in the sense of the QCD analytic
perturbation-theory approach of Shirkov and Solovtsov, both in the space- and
time-like regions. Our conclusions are given in Sect. 7. In the Appendix we collect
some relevant formulas which we need in our computations.

2 The Analytic Structure of the Coupling to Higher Orders

In this section, we will determine the location of the Landau singularities of the
coupling in the complex Q? plane at the three-loop and four-loop orders. As we
shall see, there is a close relation between these singularities and the convergence
properties of the series (3). For large ny values?, we will reproduce a part of the

% Note that QCD as a realistic theory appears only for 6 flavours and below. However, there are
different theoretical motivations to consider the multi-flavour theory for 6 <ny <16 (see, for
example, refs. [37-39])
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results of refs. [16, 17] using another technique. Let us first give some familiar
aspects of the RG equation in the way we prefer to formulate it. It is more con-
venient to introduce the dimensionless variable u = Q?/A? and a modified running
coupling, a(u) = By, (Q?), satisfying the RG equation

da(u - i
G =V atw) = = 3 bt @
where 6% (a) = BoB% (a/B) and b, = B,/ 6”“ (for our notations see the
Appendix). The MS scheme values of the first three coefficients by 3 are listed
in Table A.1. With this normalization of the coupling relevant perturbative formu-
las in higher-order applications of renormalization group become simple [8, 19,
27]. Suppose that the solution to Eq. (4) a(u) has a singularity at some finite point,
u = uy, in the complex u-plane, i.e., a(u) — oo as u — uy. It follows then from the
differential equation (4) that

a(k)(u) ~ (u(Lk)/(u — u(Lk)))l/k as u— u(Lk).

However, to confirm the existence of the singularities and to determine their posi-
tions, a detailed investigation is required in each finite order of perturbation theory.

Let us integrate Eq. (4) for sufficiently large real positive values of u = exp(t)
in the neighborhood of a real point uy = exp(to),

t=Inu=T%Y(a) where T® (a) = J {B(k) (@)Y 'dd +1; ()

this can also be written
t=a"' +bIn(a) + T® (a) + 7, (6)
where T*) (a) is a regular at zero function

a

W@):J GO (@ydd: W) =1/3%a) + 1)@ —bifa.  (7)

aop
Here the integration constant has been redefined: 7y = tp — a; ' — by In(ag). The
conventional definition of the scale A parameter [40] leads us to the condition
o = —T™(0)>. With this choice Eq. (6) reads

=a '+ b In(a) + j GY(d') dd . (8)
0
We could write in place of Eq. (8) another but related formula [41],
t=a'—bInb +a ')+ J g™ (d) dd, 9)
0
where
20 oA t
¢9(a) = (3% (@)™ = (B (@)™ = (1 + bra)” (ana ) b,
n=2
(10)

* The term proportional to 1/ In?(x) in the asymptotic expansion of a(u) at large u should be suppressed
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and 5(2)(61) is the two-loop [-function. The function 7% (a) can be expressed in
terms of the elementary functions. In the three-loop case, we can write

T3 (@) =a ' + by In(a) + T (a) — T(0), (11)
where
2b, — b? by +2b
—0.5b; In(P®)(a)) + 2—31arctan (Lf") L if 0<ns <5,
T1(3)(a)= \/A®) 103)
In(a —ay) In(a; — a) _
— , if 6<n; <16,
(611 —az)(l—i—b]al) (a1 —ag)(l—i-b]az)
(12)

PO (a) = bya® + bia+ 1, 4% =4by — b2, and a;» = (b £ V-4Y)/(2b,). In
the MS scheme 4®) >0 (< 0) if 0<ns <5 (6 <np <16) (see Tables 1 and 2).
Let us specify the locations of the roots of the algebraic equation

PO(a) = g% (a)ja* = = bua" =0, (13)

the non-trivial zeros of the Eunction, for different values of n;. For 0 <ny <7, in
the four-loop order in the MS scheme Eq. (13) has one negative real root a; <0
and a pair of complex conjugate roots a, = a3 (see Table 3). We will assume that

Table 1. The three-loop MS quantities: The complex zeros of the j3-
function a; > and the singularity locations tﬁsg and tl(sg . in the 7-plane
as a function of ny for 0 <ny <5

3) (3)

ny a2 trhp tlhp +

0 —0.393 + 0.882i 0.844 —1.539 +2.648i
1 —0.399 £+ 0.892i 0.839 —1.506 +2.628i
2 —0.415 +0.916i 0.830 —1.433 +2.578i
3 —0.447 £ 0.965i 0.810 —1.293 +2.482i
4 —0.526 £ 1.071i 0.766 —1.026 +2.322i
5 —0.819 & 1.349i 0.650 —0.423 £ 2.067i

Table 2. Same as in Table 1, but for 6 <n; < 16

ny aj a t(:i)
6 —1.49 7.09 0.173F  0.077i
7 —0.877 1.24 —0.159F 1.05¢
8 —0.651 0.660 —0.019F 2.36i
9 —0.509 0.409 0.620 F 4.26i
10 —0.403 0.264 217 F 7210
12 —0.245 0.104 13.6 F 21.3i
14 —0.125 0.028 98.7 F 89.9i

16 —0.023 0.001 6216 T 2852i
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Table 3. The four-loop MS quantities for 0 < n; <7
Q) (4)

ne a a3 thp np+

0 —0.797 0.130 F0.782i 1.164 —1.294 +0.961i
1 —0.794 0.134 F0.784i 1.163 —1.284 + 0.930i
2 —0.793 0.142 7 0.792i 1.158 —1.256 +0.871i
3 —0.796 0.159 7 0.810:¢ 1.145 —1.199 + 0.768i
4 —0.802 0.190 F 0.844i 1.114 —1.099 + 0.593i
5 —0.806 0.259 F 0.906i 1.035 —0.940 £+ 0.295i
6 —0.795 0.444x1.012i 0.821 —0.707 F0.217i
7 —0.741 1.124F0.973i —0.047 —0.423 1 1.074i

Im(a,) < 0. Then Eq. (8) can be written as
t=a"'+bn(a)+ 1) - T(0),
)

where T, (a) is a regular at zero function

T (@) = —b3" {El In(a — ay) + Re(E>) In[(a — a»)(a — a3)]
a — Re(az)
+ 2Im(E,) arctan <Wa2)|2>}7
with

E; = {a}(a; — aj)(a; — ar)} ", i#j#k,

(14)

(15)

and (i,j, k) is a cyclic permutation of (1,2,3). Eq. (15) was derived for real posi-
tive values of a. It may be continued analytically in the complex a-plane choosing
the relevant branches for each elementary function on the right-hand side. For
unphysical values 8 <ny <16, in the four-loop case Eq. (13) has three real roots:
a; <0,0<a; <as (see Table 4). Let a be positive lying in the interval 0 < a < a,.

Formula (8) may now be rewritten

3
t=a'+bIn(a) — b3 > En(a;'(a; — a)).
i=1

(16)

For complex values of a, the analytical continuation of Eq. (16) can be easily
performed assuming that each logarithm on the right-hand side of Eq. (16) has

its principal value.

Table 4. Same as in Table 3, but for 8 <n; <16

ng a) ar as li@

8 —0.623 0.699 6.476 —0.093 2.37i
9 —0.482 0.426 4.810 0.522F 4.28i
10 —0.362 0.281 1.937 1.95 ¥ 7.32i
12 —0.193 0.112 0.548 131 F 219
14 —0.085 0.030 0.196 98.1 F 918

16 —-0.014 0.001 0.031 6219 T 2858i
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We have to determine the analytical continuation of the coupling starting from
the implicit solution (5). This implies a preliminary study of the analytical proper-
ties of the inverse function r = T%)(a) in the complex coupling plane. The one-
valued branch of this function may be defined in the cut complex a-plane choosing
the cuts carefully. The physical branch may be determined from the requirement
that the branch yields a real positive ¢ for real positive and sufficiently small values
of a. It is convenient to determine the analytical continuation of 7" (a) starting
directly from the integral representation (9). The integral there should be regarded
as a line integral in the complex a-plane. The line must be deformed to avoid
singularities of the integrand. It is seen from Eq. (6) that the function 7" (a)
has a simple pole as well as a logarithmic branch point at @ = 0. In addition, there
are logarithmic singularities at the roots of the algebraic equation (13). For
0 <ny <35, in the three-loop case (in the MS scheme) Eq. (13) has a pair of com-
plex conjugate roots, while it has two real (positive and negative) roots for
6 <ny <16 (see Tables 1 and 2). The four-loop case has already been discussed
above. We must make a branch cut along the negative a-axis {a: — oo <a <0}
corresponding to the logarithmic branch point at zero. In the cases where there is a
pair of complex conjugate branch points (say a; 3 in the four-loop case), we must
choose additional branch cuts. One possibility is to choose the cuts parallel to
the imaginary axis (see Fig. la), so that these branch points are connected by
the cut running through infinity. In the four-loop case, we choose the cuts
{a: — 00 <Im(a) < Im(a;),Im(as) <Im(a) < co,Re(a) = Re(az)} (see Fig. la).
The analytical continuation of T(k)§a) in the cut complex a-plane will be deter-
mined uniquely if we require that 7®) (a) is real for a real positive and sufficiently
small values of a. Note that the above considered choice for the cuts is not unique.
We could, for example, choose the cuts running along straight lines connecting the
complex conjugate branch points to the origin. Nevertheless, a former possibility
(which we accept in this paper) seems to be preferable: With this choice ¢ as a
function of the phase of a will be continuous in the neighborhood of a = 0 with the
exception of the cut running along the negative a-axis.

Consider now the theoretical cases with only real roots. Let a; be the nega-
tive root, and a, be the positive one (in the four-loop case a, is the smallest
positive root). Then the branch cuts may be chosen along the real intervals
{a: — 00 <a<0} and {a: a <a< oo} (see Fig. 1b). To determine the physical
branch, we require that 7%)(a) is real in the real interval a € (0, a,). We may now
analyze the singularity structure of the running coupling a = a(¢) = a(u) in the
complex t-plane, and hence in the complex u-plane too. Evidently, the singular
points are determined by the limiting values of the function 7% (a) as a tends

Im(a) Im(a)
ba,
Fig. 1. The singularity struc-
=a1 l Re(a) o a4 Re(a) ture of the function t = T™(q).
[ a Two different situations are
T 2 shown. Branch cuts are repre-
sented by bold lines and branch
@ 0<n <7 (b) 8 <ny <16 points by the blobs
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to infinity®. In general, the limiting values may depend on the way along which
a tends to infinity. Consider, for example, the three-loop case for 6 <ny < 16. We
start from formula (11). Let a be a point in the complex plane a = |a|exp(id),
where 4 is the phase of a. The analytical continuation to this point gives

O.Sb% — by
- In
—A®)

a(a —ay)
—ay(ay — a)

+ i<b16 — 05b1(61 + 62) — (05[)? — bz)(51 — 62)/ V —A(3) ), (17>

T3 (a) = exp(—id)|a| ™" — 0.5b, In(|P® (a)||a] ?)

where PB)(a) = bya®> +bja+ 1 (b, <0) and & (i = 1,2) denote the increments
of the arguments of (@ — a;) and (a; — a) as a goes from 0 to the point a along a
contour I': & = Ararg(a —ay) and 6, = Ararg(a, — a). We can now calculate
limiting values of 74 (a) as a tends to the sides of the branch cuts along the real
axis. We find, at the sides,

6=0, 6 =0, & =Fm, if Re(a)>ap, Im(a) = Le,
b==xm 6 ==xm, 6 =0, if Re(a)<ay, Im(a) = *e,

(18)

where € — 0" is assumed. Using Eq. (17) with Eq. (18), we may easily calculate
the limits of 7C) (a) when a goes to infinity along the upper or lower side of

the right (left) cut. One may confirm that the result will be the same regardless

. 3
of the branch cut chosen. It depends only on the side of the cut: t(i) (nf) =

lim, .o T®(a £ i€) = lim, ., T®)(a % ie). Thus we find, for 6 < ny < 16,

by, — 0.5b> by — 0.5b2
D (ns) = —0.5b; In|by| + —=——"In|ay/ay| £ i 0.5b; + ———1
v —AB3) —A®)

(19)

Consider now the four-loop case for 8 <ny < 16. Using arguments similar to those
employed in the three-loop case, we find the singular points

3
(D) = 03" EeInlay| £i(Ez + E3)m. (20)
k=1

Now it is sufficient to show that the obtained limits do not depend on the special
choice of the directions in the complex a-plane. To see this, let us take the contour
integral in Eq. (9) along a closed contour chosen as follows. Let the contour consist
of two different curves with a common starting point at zero. Let both curves lie in
the upper (lower) complex plane and being connected by the arc of a circle with the
centre at zero and radius R. The integrand has no singularity inside the contour, and
the value of the integral is therefore zero (Cauchy’s theorem). Consider the limit
when the radius of the circle tends to infinity. Then the integral along the arc tends
to 0, so that the integrals along the two different curves tend to the same limit. Thus

the result stated follows.
It is important to determine whether or not the singular points t(i) (ng) are
located inside the strip —7 < Im(#) < 7. The strip is an image of the first (physical)

* We assume that the coupling does not have singular points where it takes finite values
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sheet of the complex Q? plane under ¢ = In(Q?/A?). Depending on the value of ny
there are two cases to consider. The first case is that the points lie inside the strip so
that the unphysical Landau singularities appear in the first sheet. Then the running
coupling is not causal, and thus the perturbation theory is incomplete: The non-
perturbative contributions are required to remove the unphysical singularities [1, 7,
15, 16]. This case corresponds to real-world QCD, where ny <6. In the second
case, the singular points may arise beyond the strip, so that there are not real or
complex singularities on the first sheet of the momentum-squared variable, and
thus the perturbation theory is consistent with causality. The singularities still may
be present only on the time-like axis Q? < 0. The second possibility may be real-
ized for sufficiently large ny values. The value of ny above which the causal ana-
lytical structure of the coupling is restored can be found from the equation

Im{r® (nf)} = £ (21)

With the three-loop formula (19), we find the solution to (21) nf ~ 8.460, and
with the four-loop formula (20) n}k @ ~ 8.455. Thus, the three- and four-loop
MS-scheme results almost coincide. We remark that the three-loop estimation
was obtained previously in ref. [16]. The two-loop condition for a causality of
the coupling can be found in ref. [1]. In our notation it reads b;(n;) <—1; this
gives for the lower boundary of the causal region the value n'? ~9.68.

Note that for ny > n’ the [S-function has a positive infrared stable fixed point
(see Tables 2 and 4). So that the running coupling is trapped in the range between 0
(the ultraviolet fixed point) and the infrared fixed point at all energies. The fact that
QCD in perturbation theory for sufficiently large n; values has an infrared fixed
point has long been discussed [37]. Of particular interest is the case when the fixed
value of the coupling is sufficiently small. Then, presumably, the theory may be
reliably described within the perturbation theory for all energies including the
infrared region. The corresponding interval of n; values is called a conformal
window [3, 16, 17, 38]. It is believed that there is a phase transition in QCD with
respect to 7y inside the range of validity of asymptotic freedom 0 <ny < 16. For
small values of n; below the critical point (n,» < Nf" < 16) the theory is defined via
the confining phase. Above this point, there is a conformal window N;' < ny <16,
where the theory is defined via the non-Abelian Coulomb phase with neither colour
confinement nor dynamical chiral symmetry breaking. One possible way to deter-
mine the critical point is to use the Oehme-Zimmermann criterion for the gluon
confinement, the superconvergence rule for the transverse gluon propagator [39].
This gives the value N]?r = 13N, /4 (=9.75 for N. = 3 colours). Another possibility
is to apply arguments of dynamical chiral symmetry breaking [3, 38, 42, 43]. This
gives a slightly large value Ni* ~ 4N,. Assuming the value for N;* as predicted by
the superconvergence rule, the authors of refs. [16, 17] have given arguments that
the perturbative running coupling inside the conformal window (and beyond the
one-loop approximation) is always causal, i.e., n}" <Nj'. Note that the infrared
fixed value of the coupling inside the window is not large: It coincides with the
root a, (in the three-loop case, for ny = 10, a, ~ 0.26). o

Consider now the cases where Eq. (13) has complex roots. In the MS scheme
this takes place at three-loops if 0 <ny <5 and at four-loops if 0 <n; <7. The cor-
responding cuts in the a-plane are chosen as shown in Fig. 1a. We first calculate the
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limit of 7 (a) as a tends to infinity along a line going to infinity in the right half-
plane Re(a) > Re(a,). Evidently, the result will not depend on the particular choice
of the direction as far as the line belongs to the right half-plane Re(a) > Re(ay).
Choosing the path along the positive semi-axis and using the three- and four-loop
formulas (12) and (15), we calculate the limits, t(h) (ny) = lim, ., T¥(a),

) ) = — 2 — b (7 _ b
tip () = —0.5b1 In(b2) + = \2 arctan 5 )) (22)
4 _ Re(ag)
tr(h[))(nf) = b3 1 (— 2Im(E2) (057'(' -+ arctan [m
—|—E1 ln|a1| —|—2RC(E2) 11’1’612‘). (23)

Here the subscript ““rhp”” shows that the limits are calculated along the way going to
infinity through the right half-plane Re(a) > Re(a,). Let us now calculate the limits
of T (a) when a tends to infinity through the left half-plane Re(a) < Re(as). We
may take without loss of generality the ways along the sides of the cut running on
the negatwe semi-axis. The limiting values of 7" (a) from above and below
the cut, T% )( ) = lim._o+ T™ (a + i€), may be determined by the analytical con-
tinuation of the right-hand sides of Eqgs. (11) and (14). The singularities are then
determined by the limiting values tnlfp L =lim, Ti (a). This gives

thor . (n) = 1o (n) — 7(2by — b3)/V A®) L imby, (24)
tf;fg L (ny) = tffl‘;(nf) +27Im(E,) /by % in(by — Ey /b3). (25)

Equivalently, by the analytical continuation of Eq. (9) for negative values of a we
obtain the useful formula

r&gw=—mmm+mﬁ ¢(d') dd' + im(by + reslg (a), 1)), (26)
0

where agk) denotes the real negative root of Eq. (13) (which is present only in the
4th-order case) and the integral here is considered in the “principal value sense”
(p-v.). It is seen from Tables 1 and 3 that in these cases the Landau singularities are
present in the first sheet of the Q*-plane.

3 The Proof of the Convergence of the Series

Inserting series (3) into the RG equation (A.1), we recursively determine the coef-
ficients {c, }ZC:3 in terms of ¢, (¢; = 1) and the (-function coefficients. However,
the coefficient c¢,’ still remains undetermined. This reflects the arbitrariness
in the definition of the A-parameter. With the conventional definition of the param-
eter, we find that cé ) — 0. This follows from Egs. (2) and (3) if we use the asymp-
totic expansion for the Lambert W function (see pp. 22-23 in ref. [4])

Wi(z) = Ly — Ly + Ly/Ly + Ly(—2 + Lp)/2L3 + Ly (6 — 9L, + 2L3) /6L3
+O((Lo/L1)Y), (27)
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where for the branch W_(z) for real negative z (z — 0~ as Q> — oc) we must put
L; = In(—z) and L, = In(—In(—z)). Several first coefficients calculated in the four-
loop case are:

4 4y B 4 B
¢, =1, cg):O, cg):%, cg)zz—ﬁo,
@ 505 Bibs @ 163 +iﬁ3ﬁ% B3233

_ 568 _ 2
ST IR 6@ T g g @

Inserting these values of the coefficients into series (3) and using Eq. (27), one may
readily reproduce the conventional asymptotic representation for the coupling (see,
for example, ref. [44])

2 1 /61 InL 1 /62 2 62 1n3L
gy (Q7) = _ﬂOL__ﬂo 2 +—58L3 (ﬁg (In"L—1InL—1)+ ﬁo) +0<7)’
(28)

where L=In(Q*/A%)> 1.

Let us change the variable accordlng to Q2 — 0= Boa (Qz) and introduce
the new function w(#) = w () = (QZ) / (Qz) 1. The RG equation (A.1)
may be rewritten as

0% = £ 0,m), (29)
where
Wig ) — WED S, g -
R0, w) 1+blenge(ww) (w4 1), (30)

with b, = 3,/B80". The function of two variables f*)(w,#) has the Taylor
expansion

FOw,0) =" nbwrer, (31)
m,n=>0
with n(()]f()) =0, 77% 1, and 77(()],(1) = 0. In the four-loop case, the expansion is
@ (w,0) = w -+ b10w + by6* +w* + (by — by1b2)6> + - - -. (32)

We may now use the analytical theory of differential equations [45, 46] to inves-
tigate Eq. (29). With the initial condition w(0) =0, this equation has a singularity:
For =0 and w = 0 the ratio f*) (0, w) / 6 is undefined. Nevertheless, in the special
case where 770]7(0 =0, (ko =1, and 770 1 =0, Eq. (29) may still have an ana-
Iytic solution satisfying the initial condition w(0)=0 (see, e. g., refs. [45] and
[46]). For the sake of clarity, the following discussion is quite detailed. The expan-
sion (31) converges in the domain D = {0 < |w| <r;,0 < |0| < r,}, where ry and r,
are some positive numbers chosen in the range {ry,r: rj <oo, rn <1/ |b |}. It
follows then from the classical theory that there exists a positive number M® such
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that | £ (w, 8)] <MW for (w,6) C D, and the coefficients 77,(,]; ) satisfy the inequal-
ities [45, 46]

‘nr(r]tc)n‘ <&l where 5;(:)” = M©pmsn, (33)

m,n?

Under these conditions, we will show that there exists a regular solution to Eq. (29)

w(0) = wh(0) = Z ¢k, (34)

where cn = B,"c, +1’ with cS,) being the coefficients in the original series (3).

We recall that according to our choice cgk) = Byl k) = 0. Inserting expansions
(31) and (34) into Eq. (29) we recursively determlne the coefficients E,,k ,

_(k k _(k k) (k k
& =y, 26y =niges) e (35)
Consider now the auxiliary function w = w(0) satisfying the equation
(k) w0
A M (k)< W )
w= w,0) = - MY 1T+—+—); 36
fi7 v, 0) (I=w/r)(1—=0/r) roon (36)
it has the Taylor expansion
k)~ ~ m an
o= 3" b (37)
m=0,n=0
with the coefficients f,(,f, )n defined in Eq. (33). Eq. (36) has a series solution
w(0) = wh () = We". (38)
n=2
Inserting the expansions (37) and (38) into Eq. (36) we find the recurrence formulas
k k k k) _(k k
=g W =gt rah (39)
Let us compare Egs. (35) with Egs. (39). Making use of Eq. (33), we obtain the
inequalities |c,(1 )’ < %(L ) for n = 2,3,.... It follows then from the comparison test

that the series (34) is absolutely convergent in the disk of convergence of the series
(38). Evidently, the series (38) has a positive radius of convergence. The radius is
equal to the modulus of the nearest-to-the-origin singularity 9n]§ of the function
w = w(0). The value w can be solved explicitly from the quadratic equation (36).
The singularities of the majorant function w(#) are therefore located at the zeros of
the discriminant of the quadratic equation. Hence we find the singular points

95’” =r, ng) = —rir/M®, Qg];); =n <_l(k)/2 — VIR 4 81)’ (40)

where [©) = 1 + r; /M®). To obtain the best possible estimation, we have to max-
imize }GI(H { with respect to r; and r,. The quantity M®) = max,, o| f*) (w, (9)| may be
determined according to the maximum modulus principle. The modulus | f*) (w, )|
takes its rnax1mum on the circles |w| =r; and |0 = r,. We find that the max-
imum of \ f® (w,0)] is attained for real positive values of w and 6. Furthermore,
91(1]? = . We choose the values r; =0.25 and r, =0.42 in the three-loop case,
while rl 0.21 and r,=0.32 in the four-loop case. Using “Maple 7 [47], we
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determine numerically the maximal values of |f*)(w,#)| on these circles. For
ny =3, we have found that M ~0.695 and M ~ 0.596. Computing the modulus
of the numbers (40) and comparing them we determlne the rad11 of convergence

of the majorant series (38): pfna |0 | ~ 0.045 and ,oma |9 | ~ 0.033. Thus
we have found that the radii of convergence of the orlgmal series (3) in the MS
scheme m the three- and four- loop orders, at ny =3, are bounded below as
P >p p / Bo ~ 0.06 and p*) > pma /Bo =~ 0.05. As we shall see, the actual values
of p ® are significantly larger than the obtained lower bounds.

We remark that the above proof of the convergence of the series holds in all
MS-like (massless) renormalization schemes, since in the proof we have not used
specific values of the (-function coefficients and the condition ¢, =0 is common

for all these schemes.

4 Determination of the Radius of Convergence of the Series

By a change of variable Q° — 0 = a® (u) (u = 0*/A?) Eq. (4) can be rewritten
da M) bya't?
do P2 +bB

where a = F®(0) = a® (u) = 60045 (Qz). In the following we will sometimes, but
not always, omit the superscript “(k)” referring to the order of perturbation theory.
In the preceding section, we have shown that the series (34) or equivalently the series

=> &b, (@ =p5""cn (42)
n=1

(41)

has a positive convergence radius. It is possible then to define the inverse function
6 = F~'(a), which can be expanded in powers of a,

=Y dd (43)
n=1

By using arguments similar to those employed in Sect. 3, one can verify that the
series (43) also has a finite radius of convergence. Under this condition, we may
apply the classical method for estimating the convergence radius of series (see
ref. [48] pp. 146—148). The main argument is that the function a = F(f) must
have at least one singular point on the circle of convergence of the series (42).
There are two possible cases. First, suppose that 6, be a finite singularity of F(6),
where the function takes a finite value, ag = F(6p) < oo, while its derivative does
not exist. In terms of the inverse function §# = F~!(a) these conditions read

dF~1(a)

- = 0. (44)

a=ay
Using Eq. (41) at 6 =60,, we may rewrite Eq. (44) in the form
do B 9%(1 + b16p)

=20 TP g, (45)
k— n ’
da a=ap Zn:(l) b" OJr2
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for a finite ao (which is not a root of 3¢ ' b,al, = 0) Eq. (45) has only two
solutions: 6y = 0 and

p=—1/b;  (=—81/64 for ns=3). (46)

The solution 6y = 0 must be rejected, since at § = 0 Eq. (45) does not hold because
of the initial condition F(6)/0 — 1 as § — 0 (see Eq. (42)). Secondly, suppose that
there exists a curve C going to infinity in the domain of analyticity of § = F~!(a)
such that F~!(a) — 6; < oo as a tends to infinity along this curve. Then, F(0) has a
singularity at 6 = 6.

First, we shall consider Eq. (41) in the three- and four-loop orders for
0<ny <5 and 0 <ny <7, respectively. Let us integrate Eq. (41) in the real range
{0,a:0>0,a>0}. We write the result in the symmetrical form

1/6 — by In(by + 1/0) = 1/a — by In(by + 1/a) + J g¥dydd,  (47)
0
where the function g(k)(a) is defined by Eq. (10), and we have determined the
integration constant according to the previous choice (see Sect. 2). Eq. (47) may
be continued for complex values of @ and 6. Then the integral with respect to a
should be regarded as a line integral in the complex a-plane. The contour connect-
ing the origin to a must avoid singular points of the integrand.

Note that all the coefficients in series (42) are real, so are the coefficients in the
inverse series (43). Therefore, 8 as a function of @ must be real for real values of a
provided that a is any point inside the circle of convergence of the inverse series. It
is seen from Eq. (41) that there exists a real neighborhood of the origin #=0,
where the function F(6) is real and strictly increasing. Thus, in the three-loop case,
the derivative F'(¢) >0 if 6 > — 1/b;, provided that 0 <n; <5 (b; >0). In the
four-loop case, the same is true if 8 > max(—1/b;, a§4)), where a§4) is the real neg-
ative root of Eq. (13), (a§4) (np = 3) ~ —0.796). From this with the initial condi-
tion F~1(0) =0, it follows that there exists a sufficiently small real interval
including the origin, where the function § = F~!(a) is real and strictly increasing.
Inside this interval F~!(a) >0 (F~!(a) <0) if a>0 (a <0). Fortunately, we may
solve the transcendental equation (47) for 6 explicitly as a function of a in terms of
the Lambert W function

0=F'(a) = =b;' (1+ Wu(2)", (48)
where z = ((a) = —(eb;) " exp(=T(a)/b;), and

T(a)=a'—bIn(b; +a ') + J g(d')dd'. (49)
0

It follows from the above discussion that in the region a > 0 inside the conver-
gence disc of the series (43) (where 6 > 0) the required branch in Eq. (48) is
W_1(z), so that

0=F"'®(a)=—b7" (14 W (¢W(a))™ (50)
Formula (50) may be continued beyond the convergence circle on the positive
a-semi-axis. It follows from Eq. (49) that the function z = ((a) is negative and
monotonically decreasing in the infinite interval a € (0, 00). For the considered
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N2 Fig. 2. The two real branches of W(z). The
\‘ solid line corresponds to Wy(z) and the
\\.‘ dotted line in the range W < —1 refers to
} W_i(z)

values of ny (with the exception of the n, =7 case at four-loops) ((a) takes values
in the range (—e~!,07) for a€(0,00). The branch W_(z) is real and negative
with W_;(z) € (—oo, —1) for z€ (—e~!,07) (see Fig. 2). Therefore, the function
§ = F~'(a) determined by Eq. (50) is real and positive in the entire positive
a-semi-axis. However, in the four-loop case at ny =7, we find that z € (—6_1,0_)
only inside the interval a € (0,a;), where a, ~ 1.003, and z< — e~ ! if a > a,.
Since W_;(z) has a branch point at z = —e~!, the function F~'¥(a) at n, =7 will
have a branch point at a = a,. The corresponding branch cut may be chosen along
the positive interval {a:a, < a < oo}. Formula (50) still holds on the upper side
of the cut: On the sides of the cut the function F~'(*)(a) at n, =7 takes complex
conjugate values. Using Eq. (50), we calculate the limit of F~"(a) as a — oo along
the positive a-semi-axis. So we find a singularity of the function a = F(6),

08 = —by ' (1 + W_i(¢W(00) ™" = a® (ulf)). (51)

Here we have used the formula

(W(o0) = lim (W(a) = —(bre) " exp(~T"(00)/b1) = ~(bre) ! Wy,

(52)
(0) (0)

where Ughp = exp(trhp) being the Landau singularity located on the positive u-semi-
axis (see the three- and four-loop formulas (22) and (23)). The last equality in
Eq. (52) follows from Eq. (9). In the four-loop order, at ny =7, we find a pair
of complex conjugate singular points, 65+ =lim, . F —1(4) (a£1i0), where
0.1, is determined by Eq. (51).

Formally we may continue Eq. (47) for negative real values of the variables in
the region {a,6: —1/by <a<0,—1/b; <6< 0}. Assuming that each logarithm in
Eq. (47) has its principal value, we obtain in this region the equation

1/0 — by In(1/]0] — by) = 1/a — by In(1/a| — by) + J:g(a') dd.  (53)

Note that the right-hand side of Eq. (53) is in fact regular at a = —1/b;: The
logarithmic singularities of the last two terms are cancelled in the sum. For nega-
tive values of a, the path of integration of the integral on the right of Eq. (53) goes
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along the negative a-axis, but avoids the poles of g(a) by small semi-circles above
or below the axis. Eq. (53) has exactly one real negative solution for ¢ inside the
interval a € (a,0), where a = —oo in the three-loop order and it is the finite nega-
tive root of Eq. (13) in the four-loop order. This solution is determined in terms of
the branch Wy(z),

9= F19(a) = b (1 + W) (54
where () (a) = (eby) " exp(—T™® (a)/b;) and

T®(a)=a' —byIn(—a~" — b)) +J ¢ (d)dd. (55)
0

It is instructive to check that our choice for the branches on the real a-axis in fact
follows from the analytical continuation. To see this, let us expand expressions (50)
and (54) as a — 0" and a — 0, respectively. We must use expansion (27) for
W_1(z) as z — 0~. The same formula, but with L; =Inz and L, = Inlnz holds
for Wy(z) as z — oo (see formula (4.19) in ref. [4]). One may verify that both
expansions reproduce the same convergent power series (43), so that Egs. (50) and
(54) represent the same analytical function in two different regions. Let us now
discuss the analytical structure of the function # = F~!(a) starting from Eq. (48).
In general, F~!(a) may have singularities at the same points where T'(a) is singular.
Nevertheless, as we have shown, F~!(a) is regular at a = 0, while T(a) is singular
there. Furthermore, F~! (a) may have additional singularities a4 arising due to the

common branch point of Wy (z) and W+ (z) at z = —e~'. To determine locations of
these singularities we numerically solve the equation
z=(W(a) =~ (56)

at the three- and four-loop orders. The approximate locations of these singularities
for different n, values are given in Table 5. Note that not all roots of Eq. (56) give
rise to the singularities of F~!'(a) on the first sheet of the Riemannian surface.
Thus in the four-loop case, for ny = 7, Eq. (56) has the roots aj,+ ~ 0.16 &= 0.40i.
But one may verify that these points are not singular on the first sheet. To make
the function # = F~!(a) single-valued, we must draw cuts in the complex a-plane
taking into account the branch points of 7(a) and those of the W-function. We

Table 5. Locations of the extra singularities in the a-plane at the three- and
four-loop orders

no o ay) a3 ay a5
0 0.038 +0.732i 0.733 0.156 £ 0.600i 0.616
1 0.038 £ 0.741i 0.742 0.159 £ 0.600i 0.620
2 0.039 £+ 0.762i 0.763 0.166 £ 0.609i 0.632
3 0.042 £ 0.806i 0.807 0.179 £ 0.629i 0.654
4 0.046 £ 0.902i 0.904 0.207 + 0.668i 0.700
5 0.060 £ 1.186i 1.187 0.275 £ 0.744i 0.793
6 0.498 £ 0.888i 1.018
7 1.003 1.003
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draw cuts in the complex a-plane attached to the complex conjugate branch points
(say a,3 in the four-loop case, the roots of Eq. (13)) and running to infinity
parallel to the imaginary a axis: {a:Re(a) = Re(az3), —oo <Im(a) <Im(ay),
Im(a3) <Im(a) < oo}. In the four-loop case, we must draw an extra cut attached
to the real branch point at a; <0 and running along the negative semi-axis
{a: —o0o <a<a;}. We also make the branch cuts running parallel to the imagi-
nary axis {a:Re(a) =Re(aps), —0o0 <Im(a) <Im(ap_),Im(ap;) <Im(a) < oo}
attached to the branch points at a,-, the roots of Eq. (56). However, in the four-
loop case, for n; = 7, the branch cut must be chosen along the positive real axis
{a: 1.003 < a < o0o}. With this choice of the cuts, the function § = F~!(a) will be
analytic in the disc with the centre of origin and radius r., = min{|a,+|, |a:|}
(a;,i=1,2,... denote the roots of Eq. (13)). For 0 <n; <5, the points a4+ are
closest to the origin singularities both in the three- and four-loop orders. Let us
define a = rexp(id) and z = ((a) = |z| exp(i®), where

lz] = (ebl)fl exp(—ReT(a)/by) and & =n—ImT(a)/b. (57)

Let a describe the semi-circle of radius r <r. lying in the upper half-plane
(0 <6 <) starting from the positive semi-axis. Then the image under z = ((a)
describes a curve in the z-plane. This curve intersects the real negative z-semi-axis
for two or more times at different points. The number of the intersections depends
on the value of r: It increases when r decreases. At the intersections the boundary
of the branch of Wis reached, so that the branch of the W-function must be changed
when z passes these points. To define the analytical continuation along the semi-
circle, we demand that the function § = F~!(a) = F~!({(a)) will be continuous as a
function of the phase of a. This will be achieved, if we use the rules of counter-
clockwise continuity [4] for selecting the branches of W when the curve crosses the
branch cut. These rules are given by

W_i(x 4 i0) = W, (x — i0) if —e'<x<0,
Wi(x — i0) = Wy(x + i0) if —oco<x< —e !,
W, (x +i0) = W, (x — i0) if —oo<x<0 and n>1. (58)

We start at a = r < r. on the positive semi-axis with the branch W_;(z) and pass
the semi-circle {6: 0 <6 <} selecting the relevant branches according to the
rules (58). Using “Maple 7" [47], we have plotted the function z = ((a) along
the semi-circles for various values of r in the interval 0 <r <r.. In this way, we
have determined the variations of the phase @ = arg(z) along the semi-circles.
Then we have confirmed that the analytical continuation on the negative interval
—r. < a <0, with the rules (58), really leads to the branch Wy(z).

Having the analytical structure of F~!(a) established, we can construct explicit
expressions for F~1(a) in the entire cut complex a-plane. This enables us to cal-
culate the limits of F~!(a) as a tends to infinity along different directions in the
complex plane and determine thereby the singularities of the function a = F(6)
in the complex f#-plane. Using the arguments based on Cauchy’s theorem (see
Sect. 2), one may justify that it is sufficient to calculate the limits choosing the
directions only along the real a-axis.
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Let us now define the analytical continuation along the entire negative a-semi-
axis. In the three-loop case, we may represent Eq. (55) in the form

T (a) =a™" — b In(||la|™" = by|) + p.v.J ¢ (d) dd (59)
0

for all a < 0. Thus T7C)(a) is real, and therefore ¢®)(a) >0 for all a < 0. Hence

Wo({®)(a)) > 0 (see Fig. 2), so that F~')(a) < 0 for all a < 0. It is evident that the
required branch, in this case, will be Wy(z) on the entire negative a-semi-axis.
Making a — —oo in Eq. (54) and using Eq. (59), we find the real singular point

ei?zagrwa—W(a):—(bl( + Wo((®)(—00)))) ™! (60)

where () (—o0) = (eb;) " exp(—=T®) (—00) /b1 ), and

0
TO(—c0) = lim T®(a) = —b; Inb; —p.V.J g¥(a)da =Re(1y) . ); (61)
—00

a——0o0

the last equality in Eq. (61) follows from Eq. (26).

In the four-loop order, the function 7' (a) is real only inside the finite interval
(a1, 0) of the negative semi-axis, where a; is the root of Eq. (13) (a; =~ —0.796 for
ny = 3). The function has a logarithmic branch point at @ = a;. The corresponding

branch cut may be chosen along the infinite interval (—co, a; ). To continue 7™ (a)
in the complex a-plane, we use formula (55). The limiting values of this analytic
function from above and below the left-hand cut are given by

1) = 1/a=bin(by = 1/jal) +p. | ¥ dszinm,  (62)

where x stands for the residue
k= lim (a — al)g(4)(a) = (by + bzay){b3(1 + byay) (a1 — az)(a; — a3)}_1,
a—ay

and a;, i = 1,...,3, denotes the roots of Eq. (13). Formula (54) enables us to define
the analytical continuation of the function § = F~'®(a) in the cut complex
a-plane. In particular, we need to calculate the boundary values of F~'(*) (a) as
Im(a) — 0 along the left-hand cut {a: —0o <a <a}. It is easy to convince that
the required branch of W along the sides of the left-hand cut will be Wy(z), pro-
vided that |k/b;| < 1. This condition holds only for 0 <n; <5 (for example,
k/b; =~ 0.690 at ny = 3). Therefore, for 0 <ny <5, formula (54) is valid also along
the sides of the cut. But, for 6 <ny <7, we have |x/b;| > 1. Then one may check
that the relevant branches on the opposite sides of the cut should be W ;. We may
now calculate the limit of F~'*) (a) as a approaches infinity going along the upper
or lower side of the cut. So we determine the singularities of F(*)(#). We use
Eq. (54) with Eq. (62) if 0 <n; <5. However, for 6 <ny <7, the branch W in
Eq. (54) should be replaced by W . Then we find the singular points

—b (14 Wo(¢ (—00))) ™!, if 0<ny <5,

—by (14 War (¢ (—00)) ™", if 6<np <7,
(63)

o, = Jim P90 0) = {
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Table 6. Positions of the singularities in the #-plane at the three-loop order

ny 0 1 2 3 4 5
b ~1.186 ~1.195 ~1.219 —1.266 ~1.353 ~1.520
o) 0.627 0.635 0.653 0.691 0.776 1.029
0% —0.594 —0.601 —0.618 —0.653 —0.731 —0.956
p 0.594 0.601 0.618 0.653 0.731 0.956

Table 7. Positions of the singularities in the #-plane at four-loops. n; and n, denote the labels of the
branches of the W-function used to calculate the singularities 6 ; and 6, + , respectively. p is the radius
of convergence of the series (42)

ng O 0s.1 6.1 ny Os2+ 652 +| n, p

0 —1.186 0.485 - —1 —0.545F0.334i 0.639 0 0.485
1 —1.195 0.488 - —1 —0.544F0.341i 0.642 0 0.488
2 —1.219 0.497 - —1 —0.546 F0.354i 0.650 0 0.497
3 —1.266 0.516 - —1 —0.550F0.380i 0.668 0 0.516
4 —1.353 0.554 - —1 —0.552F0.429i 0.699 0 0.554
5 —1.520 0.641 - —1 —0.533F0.526i 0.748 0 0.641
6 —1.885 0.934 - —1 —0.394 + 0.672i 0.779 +1 0.779
7 —3.008 —0.887 F1.531i 1.769 F1 —0.105 £ 0.614 0.623 +1 0.623

where f(i)(—oo) = (eby)”! exp|— Tf)(—oo)/bl], and by Eqgs. (62) and (26)
TW(—00) = lim T®(a+i0) = Re(tppy) + imk. (64)
Here the subscript “+” shows that the limits were evaluated keeping the upper
(lower) side of the cut. Evidently, 9?2)_ = 0_5‘2) i
In Tables 6 and 7, we tabulate the singularities 6y(n;) = —by !, G(k) (ng), and
G(k) 5(ny) at the three- and four-loop orders, respectively. In the thlrd order we see
that the singular points 9(2) are closer to the origin than the pomts 6y or Qg 1),
so that the radius of convergence of the serles (42) is equal to }9( 2)‘ On the con—
trary, in the fourth order, we find that p*) ‘9 | if 0<n; <5, and p P ‘9 } if
6<n,<7. We recall that the radlus of convergence of the original series (3) is

determined by p¥) = p /ﬁo (p® = 0.965 and p*) = 0.720 for ny = 3).

Table 8. Numerical examination of the series (42) to third and fourth orders at n; = 3

" B B " ) Y

10 1.04 0.737 80 0.692 0.550
20 0.807 0.632 90 0.688 0.547
30 0.752 0.597 100 0.685 0.544
40 0.727 0.579 110 0.682 0.542
50 0.713 0.568 120 0.680 0.540
60 0.703 0.560 130 0.678 0.538

70 0.697 0.554 140 0.677 0.537
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Table 9. The location of the branch points a; 2, a5, and a,+ of § = F~'®)(a) for
ny = {6-16}

ny aj a ap ap+
6 —1.489 7.089 2.418 —2.258 4+0.296i
7 —0.877 1.238 0.813 —0.846 +0.101:
8 —0.651 0.660 0.541 —0.552 4+ 0.006i
9 —0.509 0.409 —0.360 0.439 +0.036i
10 —0.403 0.264 —0.253 0.266 =+ 0.034;
11 —0.318 0.169 —0.177 0.159 +0.027;
12 —0.245 0.104 —0.121 0.089 =+0.018i
13 —0.182 0.059 —0.078 0.043 +0.011:
14 —0.125 0.028 —0.044 0.015 =+ 0.006¢
15 —-0.072 0.010 —0.020 0.002 =+ 0.002;
16 —0.023 0.001 —0.004 —0.0013 £ 0.0002i

Looking at the numbers in Tables 6 and 7 one sees that the convergence radii in
the range 0 < ny < 6 increase as n; increases. But, for fixed values of n;, they decrease
as the order of perturbation theory increases. In order to examine the obtained for-
mulas, we calculate numerically the coefficients of the series (42) ¢, for large values
of n. In Table 8, we study the behaviour of the quantity ¥ = (|¢| ,(1]‘) )~"/" in the three-
and four-loop orders at n; = 3. It is seen from the table that our predictions are in
good agreement with the expected limiting relation [)E[‘) — ,b(k) as n — 00. The the-
oretical predictions are ,5(3> = 0.653 and p 4 = 0.516 for ny = 3 (see Tables 6 and 7).

Next consider the theoretical cases with large n; values where the S-function
has non-trivial real zeros. This takes place in the three-loop case for ny = {6—16}.
From now on we shall confine ourselves to the three-loop case. There are now two
different cases which should be considered separately. For n; = {6—8} (b; >0 and
b, < 0) the equation () (a) = —e~! has one real positive root a, (0 <ay, <a,) and
a pair of complex conjugate roots a,+ with Re(a,+) <0 (see Table 9). On the real
interval a; < a < ap, the real analytic solution to Eq. (47) is

— {_bll(l +Woi(2) if 0<a<a,
—b7! (1 + Wo(2) ™, if a<a<o,

where z = ¢ (3)(61) (see Eq. (49)). To determine uniquely the analytical continuation
of the right-hand side of Eq. (65), we make branch cuts on the a-plane. There are
the branch points at a; », the roots of Eq. (13), and at a, and a;+, the roots of
¢®)(a) = —e~!. They are listed in Table 9 as a function of n;. We make branch cuts
along the infinite intervals of the real axis {a: —oo <a <a;} and {a: @) <a < o00}.
There is a double branch cut along the interval {a: a; <a < oo}. We also make
branch cuts along the straight lines joining the points a,. with the point a;. Now
we may continue analytically the function (65) and determine its boundary values
along the sides of the right-hand cut using the rules of counter-clockwise continuity
(58). Choosing the ways along the sides of this cut, we take the limit a — oco. Thus
we find a pair of complex conjugate singular points

b1 = lim F'(a£i0) = —by ' (1 + Wen(ze)) (66)

(65)
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Table 10. The locations of the singularities of a = F(¢) and the convergence radii of
the series (42) at three-loops in the theoretical cases when ny = {616}

ny Wa o |6s.1 < p
6 Wiy 1.885 2.114 1.885
7 Wi 3.008 0.664 0.664
8 Wiio 48.17 0.417 0.417
9 W1 2.08 0.291 0.291
10 Wi 0.761 0.208 0.208
11 Wy 0.360 0.148 0.148
12 Wy 0.180 0.102 0.102
13 Wi 0.087 0.067 0.067
14 Wi 0.037 0.039 0.037
15 Wi 0.011 0.018 0.011
16 Wei 0.001 0.003 0.001

where 7. = lim,_.« C(3)(a +i0),
2+ = (eby) " exp[M; In(|a1]) /b1 — M>1n(ay)/by] exp[F inM, /by,

with M, = (a) — az)fl(l + blal’z)fl. It is obvious from Cauchy’s theorem that
if we calculate the limits choosing the directions along the left-hand cut, we
shall reproduce the same values, i.e., 65,1+ = 651+ . Comparing the modulus of
the numbers 6, = _b1_1 and 6,1+ (see Table 10), we determine the radii of con-
vergence of the series (42) for n; = {6—8}. In this table, we also indicate the
required branch of the W-function which is used in formula (66).

Next consider the cases with ny = {9-16} (b; <0, b, <0). Then the equation
¢B®)(a) = —e7! has a real negative root a, (a; <a, <0) and a pair of complex
conjugate roots a,+ (see Table 9). The solution to Eq. (47), which takes real values
inside the real interval a, < a < ay, is then given by

9:{—b11(1+Wo(Z))1, if 0<a<as,
—br' (1 +W_i(2) 7, if a,<a<O,

where z = (®)(a) = (e|by]) " exp[T(a)/|b1|]. Now we choose the cuts along the
real axis {a: —co<a<a}, {aa —co<a<ap}, and {a: ay <a<oo}. We also
make cuts along the straight lines joining the branch points a,+ with a,. By means
of the same procedure that was used in the previous case we calculate the locations
of the singularities 651+ = s>+ . They are determined by the same formula (66).
The relevant branches of the W-function are listed in Table 10. In this table we
tabulated the magnitudes of 6y, |0 1+| = |6s2+|, and p, the convergence radius of
the series (42), for ny = {6-16}.

(67)

5 The Momentum Scale Associated with the Convergence Radius
of the Series

The convergence region of the series (42) in the real-momentum squared space
may be easily determined, since the mapping Q> — 0 = a(Z)(Qz) for real positive
Q? > 07 >0 is monotonic (Q7 being the real Landau singularity of the two-loop
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Table 11. The ratios 4/ u mm er]fm /A and rhp rhp / A in the MS scheme to
the three- and four-loop orders for ny = {

n U iy Ui U
0 1.571 1.525 1.790 1.790
1 1.566 1.521 1.788 1.788
2 1.558 1.514 1.784 1.784
3 1.541 1.500 1.773 1.773
4 1.505 1.467 1.745 1.745
5 1.416 1.384 1.678 1.678
6 1.283 - 1.623 1.507

coupling which is present if 0 <ny <8.05). First, we consider the series for large
(mainly unphysical) n, values. Note that the quantity 6y = —b° !in the Banks Zaks
domain (ny > 8.05) i is the infrared fixed point of the two-loop couphng 6 = al (u)
so that 0 < 6 < |b;|~" for all 9 € (0, 00). From Table 10 we see that 5 = 6, inside
the interval n; = {14-16}. This means that the series (42) at three-loops for
ng = {14—16} converges in the whole interval Q2 ( ,00). Let nf* be the lowest
value of nf for which this equality holds ( =14 in the MS scheme)
For ny <nf the series (42) converges in the more restricted domain Q2
0% <oo (02, >0). The value of Q%

0 =) = b7 (1 + Walz0) " = b, (68)

where zp = —(eb])flzfl/b1 and u = Q>/A? (see Eq. (2)). Solving Eq. (68), we
obtain

min

in may be determined from the equation

ttmin = Opin/ A* = (b1 + ') " exp(p™").

The results for the dimensionless quantity ./umin = Omin/A4 (Qmin = \/Qrznin) to
the three- and four-loop orders, for ny = {06}, are tabulated in Table 11. We
compare /Uni, with the ratio Vtp = Orhp /A, where Qmp = 4 /thp, and thp is
the real space-like Landau singularity of the coupling. It is seen from the table that
in general the quantlty Qmm cannot be identified with the real Landau singularity

rhp The equality Q2. = Q occurs only in the cases where the convergence ra-
dius p is determined via the real (space-like) Landau singularity. This happens,
for example, in the MS scheme in the four-loop case for n; = {0—5}. However, in
the case where p is determined via the complex Landau singularities, th ., the
relation between Qmln and th 4 1s more complicated. Then we observe the in-
equality Q2. > Q Such a situation occurs, for instance, in the MS scheme in the
three-loop case for ng = {0-5}.

It is reasonable to compare Qi with the infrared boundary of QCD, the momen-
tum scale p. that separates the perturbative and nonperturbative regimes of the
theory in the confining phase. Several estimates for this quantity were suggested
using different nonperturbative methods. In the recent work [20] a useful nonper-
turbative approximation for the QCD [-function has been constructed. The model
gives a number of consistent results for various nonperturbative quantities. In partic-
ular, it was obtained that (tc/AQcD)3-j00p ~ 3-204 and (pie/AQeD)g-1o0p ~ 3-526
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with the perturbative MS-scheme component of the total 3-function in the third and
fourth order. Another approach to determine the infrared boundary is to use argu-
ments based on dynamical chiral symmetry breaking in QCD. There are the results
obtained within the nonperturbative framework of Schwinger-Dyson equations
[42, 43]. It was found in ref. [42] that the critical value of the coupling, needed to
generate the chiral condensate, is o, = 7/4 (for N, = 3 QCD). It is reasonable to
identify the corresponding scale with the infrared boundary [49]. To obtain approx-
imations to ji., we may use the perturbative expressions for the coupling in the MS
scheme. With this simplifying assumption, the equation ol (1) = /4 in the three-
and four-loop orders, for n; = 3, yields the estimates

(/UJC/AW)&]oop =1.972 and (ﬂC/Am)4—loop =2.115.

The two different estimates considered above are consistent with the inequality
02 < ,uc Thus it seems reasonable to believe that the series expans1on (42) in
the MS scheme may be safely used in the whole perturbative region ,uL < Q*< 0.

6 Application to Analytic Perturbation Theory

In the analytic perturbation-theory (APT) approach of Shirkov and Solovtsov,
Euclidean and Minkowskian QCD observables (which depend on the single scale)
are represented by asymptotlc expansions over non-power sets of specific functions
{AD (1)}, and { AW (5)}>, respectively (see refs. [11, 12]); here u = Q?/A>
and 5 = s/ A?. These sets are constructed via the integral representations in the

following way,

oo (k) oo (k)
A0 =+ | g (s woe) = | Q"kc(g)d@ (69)

)y sHu ’ " 7 Js

where the spectral densities to the k-th order are determined from powers of the
running coupling: o\ )( ) = —Im(a®"(—¢ 4 i0)). In APT the power series (42)
give rise to the following series of functions,

AV ) =>"cO AP W), m=12,..., (70)
AW (5) = Zc,g';;mg”(s), m=12,..., (71)

where C,(q’; = 1. The sets of coefficients {Cmn} m=1,2,..., are constructed

n=m?’

from the set of coefficients of the original series, {cﬁlk)}f:l, according to the rules
for products of power series: C 6£,k) Cgkr)l = 27 llcflk) i 1( ), etc. The spectral den-

sities at the two-loop order can be expressed analytically in closed form [32, 50],

o (§) = by Im(1+ Woy(z) " with z = (ebr) '™/ exp[—im(1/by — 1)].
(73)
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Now we are going to prove that the series of functions (70), (71), and (72)
are uniformly convergent over the whole ranges of the corresponding variables:
0<u<o00,0<s<o0, and 0 <¢<oo. Suppose that the series (72) is uniformly
convergent. Then the series (70) and (71) will also be uniformly convergent. To see
this, let us insert the series (72) into integral representations given in Eq. (69) and
integrate term by term. This yields the series (70) and (71), which must be uni-
formly convergent, as the results of term-by-term integration of the uniformly
convergent series. Evidently, the factors 1/(s + u) and 1/¢ inside the integrals will
not destroy this statement.

Let us now write W_i(z.) =W =X ~+iY,(1+W) ' = Rexp(i¥), where
R=((X+1)*+)*) "% and ¥ = arcsin(~YR) (for the branch W_, we have
—31 <) <0). According to this, we may rewrite the two-loop spectral densities
(73) as

o () = (R/by)" sin(n'¥P), n=12,.... (74)
It is seen from Eq. (74) that the moduli of the spectral densities are bounded above
‘9;(12) (] < (Omax)", (75)

where Opax = Rmax/b1 and Rpax is the maximal value of R in the range
0 < ¢ < oo. We find it useful to use “Maple 7 [47] for determining Ry.x numeri-
cally. In Table 12 we listed numerical values of Op,x in the phenomenologl—

cally interesting case ny = {0—6}. Note that all the power series » - m)nG”
m=1,2,..., have the same radius of convergence, p*), as the original series

(42). This follows from the definition

ic,g’;;e" - (iz%l)m. (76)

=1

Consider now the set of numerical series of positive terms

Z|cmn|emax, m=12,.... (77)

Looking at the numbers in Table 12, we see that 6, is inside the convergence disk
of the series (76), 0 < Omax < [)( ). Hence all the numerical series (77) are conver-
gent. Combining this fact with the bounding conditions (75), we find that the series
of functions ) |Cann )( )|,m=1,2,..., are uniformly convergent by the
comparison test due to Weierstrass. Then all the series (72) are uniformly con-
vergent. Hence by the arguments given above, the series of functions (70) and (71)
are also uniformly convergent.

Table 12. The quantity 6,,,x versus the convergence radii f)(k>

ny 0 1 2 3 4 5 6

Brmax 0237 0237 0.238 0.240  0.243 0249  0.259
) 0.594 0.601 0.618 0.653 0.731 0.956 1.885
Y 0.485 0.488 0.497 0516  0.554 0.641 0.779
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The series (70) and (71) enable us to calculate the infrared limits of the APT
expansion functions. Thus we may reproduce the remarkable results of Shirkov
and Solovtsov [7, 10] in a mathematlcally rlgorous Way It is seen from the
definition (69) that hmu_,0+A ( ) = limz_,o+ 91 ( ). Therefore, we shall con-
sider only the Minkowskian set of functions. In the two-loop order, one may
calculate the infrared limits of the expansion functions using the explicit formulas
obtained in ref. [50]. The first two Minkowskian functions are given by

91@(5) =1 —7 ' ImIn W(z),
AV (s) = 7 b Im In{ W (2,) /(1 + Wi(z5))}, (78)

where z, = (eb;)'57'/? exp[im(1/b; — 1)]. The functions with higher values of
the index are determined by the recurrence relation (see ref. [50])

(2) <y —1 (2) 1 d 2)
A, (5) = —b, (91 (5 )+ﬁdlnsm( )(s)>_ (79)
The asymptotics of Wi(z,) as |z — oo may be determined using Eq. (27) with
Ly = Inzs + 27 [4]. Combining Egs. (78) and (79) and taking the limit 5 — 0, we
find

U (5) ~ b5 + (1 +b1) In "5+ O(In"""'5) = 6,1, (80)

2

hence hm,ﬁowél,(1 )( ) = hmHmm( )( ) = 6n.1. These relations may be extended

to higher orders by means of the expansions (70) and (71). Thus we can write

lim A% (u ZC(k) lim A% (1) = C,S?l = b (81)

u—0* M0t

The calculation of the limit of the sum of the series term-by-term, as u — 0, is
justified by the uniform convergence of the series. It should be stressed that these
results (in particular, the finiteness of .A1 )( 0) originally obtained in ref. [7]) are
direct consequences of the asymptotic freedom (AF) of the theory. This interesting
relationship has been recently elucidated by Alekseev [19] using a different tech-
nique. In this connection we remark that the recurrence formula (79) follows
directly from the AF, as it was shown in refs. [50, 32]. The universality of
Alk( 0) and QI ( ) (the scheme independence and invariance with respect to
higher-loop correctlons) is evident.

7 Conclusion

The main objective of this investigation was to study convergence properties of the
new expansion (3). In Sect. 2 we have systematically discussed the analyticity
structure of the modified coupling a(Q?/A?) at three- and four-loops in the complex
u=Q?* A? plane for all ny values in the range 0 < ny < 16. For higher values of n,
when the (-function has only real zeros, we have reproduced the part of results of
refs. [16, 17] using a different technique. For low values of ny, when the 3-function

> An alternative derivation of these results in the context of the asymptotic solutions to the RG
equation was recently given in ref. [19]
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has complex zeros, we have determined the analytical continuation of the function
t = T(a) choosing the cuts properly in the complex coupling plane. With this choice,
we have found that the running coupling has a pair of complex conjugate singular
points in the first Riemann sheet of the Q* plane besides the real singularity on the
positive semi-axis. In many cases, just these complex singularities determine the
radius of convergence of the series (3) (e.g., 0 <ny <5 at 3 loops).

In Sect. 3 we have proved that in the MS-like schemes the power series (3) has
a finite radius of convergence to all orders in perturbation theory for all n;, = 0-16.
Therefore, the series inside its circle of convergence represents the exact solution
to the RG equation (A.1). In the proof we have used methods of analytical theory
of differential equations.

In Sect. 4 we have determined the analytical structure of the modified coupling
in higher orders as a function of the two-loop order coupling 8 (8 = a'? (Q?/A?)).
We have considered the three- and four-loop cases for 0 <ny <16 and 0 <ny <7,
respectively. We have found the helpful Eq. (48), the implicit solution for the
higher-order coupling determined via the Lambert W function. By means of this
formula, we have determined the analytical continuation of the inverse function
6 = F~'(a) in the complex a-plane. This enabled us to find the locations of the
singularities of the coupling a = F(6) in the O-plane (see Tables 6 and 7). The
correspondence between the singularities of the coupling in the Q* and 6 planes has
been established. Comparing various singularities of the coupling in the 6-plane,
we have determined the radii of convergence of the series (42) p*). From a practical
viewpoint, the radii of convergence of the original series (3), p*) = p¥) /Bo,
are found to be sufficiently large. For example, p® = 0.965 and p® = 0.720 at
ny = 3. The obtained predictions for the convergence radius have been examined
by the independent numerical calculation. One further important property of the
series is the high convergence rate. In previous papers [32, 36], we observed that in
the three- and four-loop orders partial sums of these series with the first few terms
give very good approximations to the coupling even in the infrared region. This
was confirmed in conventional perturbation theory as well as in APT.

In Sect. 5 we have determined the convergence region of the series (42) in the
momentum-squared space. For sufficiently large ny values (n; > 14 in the MS
scheme), we have found that the series converges in the whole physical range
0 < Q% < co. For lower n; values, we have evaluated the lower boundary of the
convergence region Q2. . We have compared this scale with the estimations of the
infrared boundary of QCD, pu,., obtained within two different non-perturbative
approaches and found that Q2. < ,uz. This is in agreement with the possibility that
the series (3) in the MS scheme may be used safely in the whole perturbative region
P < Q*<O0.

In Sect. 6 we have studied the convergence properties of the non-power series
constructed from the series (42) according to the rules of the QCD analytic per-
turbation theory of Shirkov and Solovtsov both in the space- and time-like regions.
We have shown that the Euclidean and Minkowskian variants of these non-power
series are uniformly convergent over the whole domains of the corresponding
momentum-squared variables. A mathematically rigorous proof of an interesting
result of ref. [7], the finiteness and universality of the analytic coupling at zero
momentum, has been presented.
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The series solution (3) may be useful in high-precision calculations of QCD
observables beyond the two-loop order in the low-momentum regime. It clearly
provides more accurate results than the standard asymptotic expansion (28) for the
coupling (see ref. [36]). This series may be used in different variants of the analytic
approach to perturbative QCD suggested in refs. [9, 18, 22, 23]. It may also be ap-
plied in the contexts of the *“‘contour-improved” perturbation theory of refs. [26—31]
and resummation methods proposed in refs. [51] and [52]. Another possible appli-
cation of the series is to construct the running coupling with consistent matching
conditions at quark thresholds in MS-like renormalization schemes [12, 19, 50, 53].
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Appendix
The RG equation to the k-th order reads

dag(Q?)
dln Q?

k=1
= ﬁ<k)(as(Q2)) = - Zﬂn{as(Qz)}rH—z' (A'l)

n=0

The running coupling satisfies the normalization condition c(1?) = g2/(4), where p is the renor-
malization point and g is the gauge coupling of QCD. In the class of schemes, where the (3-function is
mass-independent, 3y and [3; are universal,

Bo = (4m) "' (11 — 2ns/3), B = (4m)2(102 — 38n;/3). (A.2)

The results for the coefficients 3, and 35 in the MS scheme can be found in refs. [54] and [55],

By = (4m) (2857/2 — 5033n,/18 + 325n2/54), (A.3)
149753 1078361 6508
= (4m)~* 3564(3 — [ ——— + ——
B3 = (4) ( ¢ T G ( TSRS, C3>n_f
50065 6472\ , 1093 4
= 2R, A4
( 162 81 3>"f 729 "f) (Aa4)

Here ( is the Riemann zeta-function ({3 = 1.202056903. ..). The values of the first three coefficients
bi23 (by = Bu/ ﬁg“) in the MS scheme are tabulated in Table A.1.

Table A.1. The MS-scheme (-function coefficients b, , 5 for ny =0-16

ny bl b2 b3 ny bl b2 b3

0 102/121 2857/2662 1.9973 9 —12/25 —1201/250 1.0105
1 804 /961 62365/59582  1.9913 10 —222/169  —41351/4394 5.0716
2 690/841 48241/48778 19449 11  —336/121 —49625/2662 21.273
3 64/81 3863/4374 1.8428 12 —=50/9 —6361/162 84.088
4 462/625 21943/31250  1.6662 13  —564/49 —64223/686 360.81

5 348/529 9769/24334 1.3969 14  —678/25 —70547/250 2009.6

6 26/49  —65/686 10297 15 —88 —2823/2 21254

7 120/361  —12629/13718 0.6107 16  —906 —81245/2 2263651

8  6/289 —22853/9826 0.3549
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