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EXPLICIT EXPRESSIONS FOR TIMELIKE AND SPACELIKE

OBSERVABLES OF QUANTUM CHROMODYNAMICS IN ANALYTIC

PERTURBATION THEORY

D. S. Kurashev∗ and B. A. Magradze†

We study the possibility of expressing the invariant QCD coupling function (i.e., the effective coupling

constant) in an explicit analytic form in two- and three-loop approximations as well as in the case of the

Padé-transformed β-function. Both the timelike and spacelike domains are investigated. Technical aspects

of the Shirkov–Solovtsov analytic perturbation theory are considered. Explicit expressions for the two-

and three-loop effective coupling functions in the timelike domain are obtained. In the last case, we apply

a new method of expanding functions represented in an arbitrary loop order of perturbation theory in

powers of the two-loop function. The comparison with numerical data in the infrared region shows that

the obtained explicit expressions for the three-loop functions agree fully with the exact numerical results.

Keywords: quantum chromodynamics, perturbation theory, renormalization group equation, running cou-
pling constant, renormalization schemes

1. Introduction

A new “renormalization invariant analytic formulation” of the results of calculations in quantum chro-
modynamics was recently proposed [1]. In this scheme, the effective coupling function1 and the matrix
elements have no unphysical singularities like ghost poles, and a “further advance” into the infrared region
becomes possible. A special version of the analytic approach proposed in [4], called analytic perturbation
theory (APT), was successfully used to describe some physical processes [3]. In [2], the mathematical
properties of APT nonpower asymptotic series were studied; the scheme stability of the APT results was
explained based on this [5].

Let D(Q2) be the Adler function defined on the spacelike domain for some physical process. It is
usually written as the power series2

Dpt(Q2) = D0

(
1 +

∞∑
n=1

dnα
n
s (Q2, f)

)
, (1)

where D0 is a process-dependent constant and f is the number of active quarks for the transferred momen-
tum Q ≡

√
Q2. In APT, D(Q2) is represented by the nonpower asymptotic expansion

Dan(Q2) = D0

(
1 +

∞∑
n=1

dnAn(Q2, f)
)
, (2)
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where An(Q2, f) =
{
αn

s (Q2, f)
}

an
is the “analyticized power” of the coupling function in the Euclidean

domain. Let R(s) be the physical quantity corresponding to D(Q2) in the timelike domain. In APT, it has
the representation [3], [6]

R(s) = R0

(
1 + r(s)

)
, r(s) =

∞∑
n=1

dnAn(s, f), (3)

where the functions An are related to An by the integral transformation [3]

An(s, f) = − 1
2πi

∫ s+iε

s−iε

dz

z
An(−z, f) (4)

introduced in [7], [8] (see also [9]). The inverse transformation has the form

An(Q2, f) = Q2

∫ ∞

0

ds

(s + Q2)2
An(s, f). (5)

In [2], [6], the universal functions An and An were studied at the one-loop level. It turned out that they
reveal an oscillating behavior in the infrared region. To compute these functions in higher orders, either
the iterative solutions of the renormalization group (RG) equation were used [6], [10] or this equation was
solved in the complex domain [11].

In [12], [13], the second-order RG equation was solved analytically. The solution was expressed in
terms of the Lambert W -function. In the case of the Padé-transformed β-function, the third-order solution
can be also expressed through the Lambert function [13]. The form of the obtained solutions is convenient
for analytic continuation into the complex domain, which is especially important if APT is applied [14].

In [15], the higher-order perturbation theory solutions of the RG equation (in the class of massless
renormalization schemes) were expanded in powers of the two-loop (scheme-independent) solution. Based
on this, a new method for relaxing the scheme dependence of the observables in QCD was proposed.
Analogous expansions for the observables (obtained from other considerations) were discussed in [16].

In the present paper, we propose concrete formulas for calculating the sets of the functions
{
An(Q2, f)

}
and

{
An(s, f)

}
. In Sec. 2, we derive the general equations for both sets of functions. In Secs. 3 and 4, we

calculate the APT functions in the respective second and third orders. In Sec. 5, we describe the general
method for calculating these functions in the higher orders of the perturbation theory. In Sec. 6, we consider
the global functions taking the quark thresholds into account (these functions were introduced in [6]). In
Sec. 7, numerical results are given.

2. General results

The QCD coupling function satisfies the RG equation

Q2 ∂αs(Q2, f)
∂Q2

= βf
(
αs(Q2, f)

)
= −

∞∑
n=0

βf
nα

n+2
s (Q2, f) (6)

with the condition αs(µ2, f) = g2/(4π), where µ is the normalization point. In massless schemes, βf
0 and

βf
1 have the universal values

βf
0 =

1
4π

(
11 − 2

3
f

)
, βf

1 =
1

(4π)2

(
102 − 38

3
f

)
, (7)
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and in the MS (MS) scheme, βf
2 is equal [17] to

βf
2 =

1
(4π)3

(
2857

2
− 5033f

18
+

325f2

54

)
. (8)

The “Euclidean functions,” i.e., the functions of the Euclidean argument, are defined by the spectral
representation

An(Q2, f) =
1
π

∫ ∞

0

ρn(σ, f)
σ + Q2

dσ =
1
π

∫ ∞

−∞

et

(et + Q2Λ−2)
ρ̃n(t, f) dt; (9)

the spectral function is defined by the formula ρn(σ, f) = ρn(t, f) = Im
{
αs(−σ−i0)

}n, where t = log(σ/Λ2)
and Λ is the QCD parameter. The “timelike functions” (of the timelike argument)

{
An(s, f)

}
are defined

by the representation

An(s, f) =
1
π

∫ ∞

s

dσ

σ
ρn(σ, f) (10)

obtained in [18]. For numerical analysis, it is convenient to represent (9) in a regularized form. By (9)
and (10), we obtain

An(Q2, f) = An(Q2, f, T ) + An(Λ2eT , f) +

{
O(Q

2
e−TT−(1+n)), Q

2
> 1,

O(Q
−2

e−TT−(1+n)), Q
2
< 1,

(11)

where Q
2

= Q2/Λ2 and An(Q2, f, T ) denotes integral (9) taken over the finite interval −T ≤ t ≤ T . For
T sufficiently large (when (Q2/Λ2)e−T � 1), the contributions of the order e−T can be dropped, and the
second term in the right-hand side of (11) therefore compensates the leading term of the error arising from
the regularization of the integral. Formula (11) allows achieving a good accuracy even for moderate values
of T .

Below, we obtain equations for the functions An(Q2, f), An(s, f), and ρn(σ, f). In the kth order, the
results are given by

∂A(k)
n (Q2, f)
∂ logQ2

= −n

k−1∑
N=0

βf
NA(k)

n+N+1(Q
2, f), n = 1, 2, . . . , (12)

∂A
(k)
n (s, f)
∂ log s

= −n

k−1∑
N=0

βf
NA

(k)
n+N+1(s, f), n = 1, 2, . . . , (13)

∂ρ
(k)
n (σ, f)
∂ log σ

= −n
k−1∑
N=0

βf
Nρ

(k)
n+N+1(σ, f), n = 1, 2, . . . . (14)

In the first order, these equations were obtained in [6]. We write the kth-order RG equation in the form

∂αn
s (Q2, f)

∂ logQ2
= −n

k−1∑
N=0

βf
Nαn+N+1

s (Q2, f), (15)

where n ≥ 1 is an integer. The analyticized version of Eq. (15) is given by

{
∂αn

s (Q2, f)
∂ logQ2

}
an

= −n

k−1∑
N=0

βf
NAn+N+1(Q2, f). (16)
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On the other hand, we have{
∂αn

s (Q2, f)
∂ logQ2

}
an

=
1
π

∫ ∞

0

dσ

σ + Q2
Im

∂αn
s (−σ − i0, f)

∂ log(−σ − i0)
. (17)

From the identity log(−σ − i0) = log σ − iπ, it follows that

Im
∂αn

s (−σ − i0, f)
∂ log(−σ − i0)

=
∂ Imαn

s (−σ − i0, f)
∂ log σ

=
∂ρn(σ, f)
∂ log σ

, (18)

and hence {
∂αn

s (Q2, f)
∂ logQ2

}
an

= +
1
π

∫ ∞

0

dσ

σ + Q2

∂ρn(σ, f)
∂ log σ

. (19)

Integrating (19) by parts and using the consequence of the asymptotic freedom condition for the spectral
density,

ρn(σ → ∞, f) 	 1
(log σ)2

⇒ σ

σ + Q2
ρn(σ, f)

∣∣∞
0

= 0, (20)

we find that {
∂αn

s (Q2, f)
∂ logQ2

}
an

=
1
π

∂

∂ logQ2

∫ ∞

0

dσ

σ + Q2
ρn(σ, f) =

∂An(Q2, f)
∂ logQ2

. (21)

This relation and formula (16) imply system of equations (12). For n = 1, Eqs. (12) and (13) are analogues
of the RG equation: they can be obtained from the RG equation if αn

s is respectively replaced by An and
An.

3. Two-loop approximation

The exact solution of equation (6) in the second order has the form [12], [13]

α(2)
s (Q2, f) = −β0

β1

1
1 + W−1(ζ)

, ζ = − 1
eb1

(
Q2

Λ2

)−1/b1

, (22)

where b1 = β1/β
2
0 , Λ ≡ ΛMS , and W−1(ζ) denotes one of the branches of the Lambert W -function [19].

The Lambert function is the multivalued solution of the equation ζ = W (ζ)eW (ζ); Wk(ζ), k = 0,±1, . . . ,
are the branches of this function. Continuing solution (22) into the complex Q2-plane (see [12]–[14]), we
find the spectral functions ρ

(2)
n (σ, f) ≡ ρ̃

(2)
n (t, f), n = 1, 2 . . . . For 0 ≤ f ≤ 6, we have3

ρ̃ (2)
n (t, f) =

(
β0

β1

)n

Im

(
− 1

1 + W1

(
z(t)

)
)n

, (23)

where z(t) = exp
(
−t/b1 + i(1/b1 − 1)π

)
/eb1. Substituting (23) in formulas (10) and (11), we find the

functions A
(2)
n (s, f) and A(2)

n (Q2, f). Integrals (10) can be taken analytically:4

A
(2)
1 (s, f) = −β0

β1
− 1

πβ1
Im
(

1
α(2)(−s)

)
, (24)

A
(2)
2 (s, f) =

1
πβ1

Im log
(

1 +
β1

β0
α(2)(−s)

)
, (25)

A3(s, f) = −β0

β1

1
πβ1

Im
{

log
(

1 +
β1

β0
α(2)(−s)

)
− β1

β0
α(2)(−s)

}
, (26)

A4(s, f) =
(
−β0

β1

)2 1
πβ1

Im
{

log
(

1 +
β1

β0
α(2)(−s)

)
− β1

β0
α(2)(−s) +

β2
1

2β2
0

α(2)2(−s)
}
, (27)

3For f > 6, formula (23) has a different form [13], [14].
4One-loop formulas for the timelike functions are given in [6].
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and so on. Here, we introduce the notation

α(2)(−s) = α(2)
s (−s− i0, f) = −β0

β1

1
1 + W1(zs)

, (28)

where zs = (s/Λ2)−1/b1eiπ(1/b1−1)−1/b1. This form is convenient because we can use different approximate
two-loop functions expressed, for example, in terms of “double logarithms” instead of the Lambert function.
These relations thus allow obtaining the analogue of the coupling function on the spacelike domain in the
timelike domain without difficult calculations of the spectral integrals.

We note that the function An(s, f) is proportional to the remainder after the (n−2)th term of the
Taylor expansion of the function log

(
1 + (β1/β0)α(2)(−s)

)
in powers of (β1/β0)α(2)(−s).

By the asymptotic properties of the W -function [19], we immediately obtain the result in [18]: we have

A
(2)
1 (s, f) → 1

β0
and A

(2)
n (s, f) → 0 for n > 1 (29)

as s → 0.
Function (24) has the formal expansion

A
(2)
1 (s, f) = α(2)

s (s, f) − 1
3
π2β2

0α
(2)3
s (s, f) − 5

6
π2β1β0α

(2)4
s (s, f) − . . . , (30)

where α
(2)
s (s, f) is the exact solution of two-loop RG equation (22). The higher-order functions An, n =

1, 2, . . . , have analogous expansions. Substituting them in representation (3), we obtain the expansion for
R(s) in powers of the traditional coupling function αs. But the coefficients of this series contain extra π2-
factors. Similar expansions (in the powers of the iterative coupling function) for timelike observables were
previously introduced in [7], [8] (see also [20], [21]). In [21], the contribution of π2-factors was calculated
up to the terms α5

s in Re+e− and Rτ , and it was established that they give the leading contribution to
the expansion coefficients Re+e−(s) = σtot(e+e− → hadrons)/σ(e+e− → µ+µ−). Different quantities in
timelike domain were recently considered for f = 3, 4, 5 [22]. The higher-order π2-effects were taken into
account, and it was shown that the experimental value of αs(M2

z ) depends considerably on these effects.

4. Three-loop approximation

After the Padé transformation, the third-order β-function becomes

βPadé = −β0α
2
s

(
1 +

β1αs

β0 − β0β2β
−1
1 αs

)
.

The solution of RG equation (6) for this case was found in [13]. It is given by

α
(3)
Padé(Q

2, f) = −β0

β1

1
1 − β0β2β

−2
1 + W−1(ξ)

, (31)

where ξ = − exp
[
(β0β2/β

2
1)(Q2/Λ2)−1/b1

]
/eb1. For the spectral functions ρPadé,n(σ, f) ≡ ρ̃Padé,n(t, f) (for

0 ≤ f ≤ 6), we obtain

ρ̃
(3)
Padé,n(t, f) = −

(
β0

β1

)n

Im
(
− 1

1 − β2β0β
−2
1 + W−1(Z(t))

)n

, (32)
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where Z(t) = exp
(
β0β2/β

2
1 − t/b1 − i(1/b1 − 1)π

)
/eb1. In the case of weight function (32), spectral inte-

gral (10) yields

A
(3)
Padé,1(s, f) = − 1

πβ0

(
1
η

Im log
(
W1(Zs)

)
+
(

1 − 1
η

)
Im log

(
η + W1(Zs)

)
− π

)
, (33)

A
(3)
Padé,2(s, f) =

1
πβ1

(
1
η2

Im log
(

W1(Zs)
η + W1(Zs)

)
−
(

1 − 1
η

)
Im
(

1
η + W1(Zs)

))
, (34)

where η = 1 − β0β2/β
2
1 and Zs = (s/Λ2)−1/b1 exp

(
−η + i(1/b1 − 1)π

)
/b1. For n > 2, we find that

A
(3)
Padé,n(s, f) =

pn

ηn−2
Im
{

1
η2

[
log
(

1 − η

η + W1(Zs)

)
+

+
n−2∑
N=1

(
η

η + W1(Zs)

)N 1
N

]
+

ηn−3(1 − η)

(n− 1)
(
η + W1(Zs)

)n−1

}
, (35)

where pn = (−β0/β1)n−2/(πβ1).

5. Multi-loop case

As shown in [15], we can expand the higher-order coupling function in a series in powers of the two-loop
function,

α(k)
s =

∞∑
n=1

c(k)
n α(2)n

s , (36)

where c
(k)
1 = 1. The analyticized (spacelike and timelike) versions of (36) are written in the form

A(k)
1 =

∞∑
n=1

c(k)
n A(2)

n , A
(k)
1 =

∞∑
n=1

c(k)
n A

(2)
n . (37)

We can therefore regard the two-loop coupling function as the minimal basis for expanding the higher-order
solutions. Every observable (except for the quantities with an anomalous dimensionality) is represented
by the series O(k) =

∑∞
n=1 O

(k)
n A(2)

n . We note that the one-loop function cannot be used for this purpose
because the multiloop functions have more complicated singularities.5 But we can use the exact two-loop
coupling function (expressed through the Lambert function) to describe the higher-order contributions (see
analogous results in [16]).

By (29) and the second expansion in (37), we obtain the universal limiting behavior of the timelike
coupling function in any order of the perturbation theory: A

(k)
1 (s, f) → 1/β0 as s → 0. This result was

obtained in [18] by other methods. We can thus express the observables in any order in terms of the Lambert
function. The obtained expressions have the correct analytic properties and a finite infrared limit.

6. Quark mass thresholds

In “massless” schemes, it is important to take the heavy quark mass thresholds into account [23]. In
the APT context, this question was studied in [6], [22], where the special model spectral function

ρn(σ) = ρf=3
n (σ,Λ3) +

∑
f≥4

Θ(σ −M2
f )
(
ρf

n(σ,Λf ) − ρf−1
n (σ,Λf−1)

)
(38)

5For example, the two-loop function contains the double logarithm log log x, which cannot be expanded in a power series
in 1/ log x.
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was proposed. Here Mf corresponds to the quark with flavor f , and the quantities Λf are determined by
the requirement of the continuity of the coupling function,

αs(M2
f , f) = αs(M2

f , f − 1), f = 4, 5, 6. (39)

Strictly speaking, in MS-like schemes (except for the leading order), condition (39) should be modified [23],
but it does not lead to a noticeable error in APT, and we therefore assume it without restrictions. In the
case of exact solutions (22) and (31), relation (39) is solved explicitly for Λf . Substituting the above
expressions for spectral functions (23) and (32) in (38) and using formulas (9) and (10), we construct the
global functions An(Q2) and An(s).

7. Numerical results

The calculations were performed using the system Maple V (release 5), where all branches of the
Lambert function are realized with an arbitrary accuracy. Here and hereafter, we fix the value Λf=3 =
0.4GeV for the scale parameter.

Table 1

Q (GeV) α
(3)
num δα

(3)
ts δα

(3)
Padé δα

(3)
it

0.8 0.76491 1.9 −18.9 −15.5
0.9 0.63323 0.8 −7.4 −9.3
1.0 0.55414 0.46 −4.4 −6.1
1.1 0.50028 0.33 −3.0 −4.3
1.2 0.46075 0.21 −2.3 −3.3
1.4 0.40587 0.15 −1.5 −2.2
1.6 0.36901 0.11 −1.1 −1.6
1.8 0.34220 0.08 −0.9 −1.3
2.0 0.32165 0.06 −0.7 −1.1
2.2 0.30527 0.05 −0.6 −1.0
2.6 0.28059 0.04 −0.5 −0.9

The comparison of different approximating functions with
the exact three-loop solution α(3)

num of the RG equation:
Percentage deviations of the functions from α(3)

num are given.

In Table 1, different approximations of the three-loop coupling function are compared with the exact
numerical solution α

(3)
num of the RG equation. Here, α(3)

it is the third-order iterative solution [7]

α
(3)
it (Q2) =

1
β0L

− β1

β3
0

logL

L2
+

1
β3

0L
3

(
β2

1

β2
0

(log2 L− logL− 1) +
β2

β0

)
, (40)

where L = logQ2/Λ2
MS

. Usually, formula (40) is also used in the timelike domain. Here, αts denotes the

truncated series (36): α
(3)
ts =

∑5
i=1 c

(3)
i α

(2)i
s , where c

(3)
1 = 1, c(3)2 = 0 (this choice corresponds to the ordinary

choice of the parameter Λ [24]), c(3)3 = β2/β0, c
(3)
4 = 0, and c

(3)
5 = (5/3)β2

2/β
2
0 . The best accuracy is achieved

by α
(3)
ts : in the domain Q ≥ 0.9GeV, it practically coincides with the exact solution. The accuracy of the

Padé approximation decreases for Q ≤ 1.6GeV, while the iterative solution allows obtaining the accuracy
of one per cent only for Q ≥ 2.3GeV. Comparison with the numerical solution shows that the accuracy
of the expression α

(3)
ts obtained by the expansion in powers of the two-loop functions (with the first four
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expansion terms) is (approximately by one order) greater than that of the other approximations.

Table 2
√
s (GeV) A

(3)
ts,1 δA

(2)
1 δA

(3)
Padé,1 A

(3)
ts,2 δA

(2)
2 δA

(3)
Padé,2

0.4 0.50161 1.27 0.11 0.13089 −1.99 0.28
0.6 0.42540 1.90 0.03 0.11420 −0.18 0.29
0.8 0.37711 2.14 −0.04 0.09985 1.04 0.21
1.0 0.34373 2.19 −0.08 0.08859 1.75 0.12
1.4 0.30034 2.11 −0.11 0.07291 2.39 −0.01
2.0 0.26272 1.91 −0.12 0.05897 2.60 −0.09
2.6 0.23975 1.74 −0.11 0.05056 2.57 −0.12

Comparison of the timelike approximating functions A
(2)
n , A

(3)
Padé,n, and

A
(3)
ts,n for f = 3, where δA(2)

n =
(
A

(3)
ts,n − A

(2)
n

)
/A

(3)
ts,n × 100 and so on.

In Tables 2 and 3, the second- and third-order results are given for the timelike and spacelike functions
in the domain with three flavors (0.4 GeV <

√
s < 2.6GeV). The functions with the index ts give the

best approximation (see Table 1) and can therefore serve as a comparison standard. In the third order,
different approximating functions are compared. The relative deviation of A

(2)
1 from A

(3)
ts,1 is less than 2.2%,

the deviation of A
(3)
Padé,1 from A

(3)
ts,1 is less than 0.12%. In the Euclidean case, the agreement between the

considered functions is even better (see Table 3). For the second functions (n = 2), the corresponding
deviations are of the same order: |δA(2)

2 | < 2.6% and |δA(3)
Padé,2| < 0.3%.

Table 3

Q (GeV) A(2)
1 A(3)

Padé,1 A(3)
ts,1 A(2)

2 A(3)
Padé,2 A(3)

ts,2

0.4 0.50785 0.51159 0.51193 0.11891 0.11714 0.11727
0.6 0.43844 0.44359 0.44376 0.10718 0.10629 0.10644
0.8 0.39341 0.39907 0.39912 0.09703 0.09678 0.09691
1.0 0.36138 0.36716 0.36713 0.08871 0.08888 0.08899
1.4 0.31822 0.32381 0.32369 0.07621 0.07686 0.07692
2.0 0.27916 0.28420 0.28403 0.06389 0.06479 0.06482
2.6 0.25454 0.25906 0.25888 0.05578 0.05675 0.05675

The Euclidean approximating functions A(k)
n (Q2, f = 3) in the second and

third orders.

We observe the noticeable asymmetry [25] δas =
(
A(3)

tr,1(Q
2, f) − A

(3)
tr,1(Q

2, f)
)
/A(3)

tr,1(Q
2, f) × 100 (cf.

Tables 2 and 3); it increases from 2% for Q =
√
s = 0.4GeV to 7.5% for Q =

√
s = 2.0GeV. In Table 4, we

give the results for the global functions A
(3)
ts,1(s) and A(3)

ts,1(Q
2) in the interval 0.4 GeV < Q,

√
s < 90GeV.

Here, Λf=3 = 0.4GeV, and the values of Λf , f = 4, 5, 6, are determined by (39)). The numerical values of
quark masses are fixed as follows: M1 = M2 = M3 = 0, M4 = 1.3GeV, M5 = 4.3GeV, and M6 = 170GeV.

Table 4
√
s ,Q (GeV) A

(3)
ts,1(s) A(3)

ts,1(Q
2)

√
s ,Q (GeV) A

(3)
ts,1(s) A(3)

ts,1(Q
2)

0.4 0.52016 0.53038 5 0.21155 0.22536
0.6 0.44395 0.46209 10 0.17907 0.18759
0.8 0.39566 0.41730 20 0.15510 0.16057
1.0 0.36229 0.38516 50 0.13174 0.13505
1.4 0.31864 0.34139 70 0.12484 0.12767
2 0.28004 0.30132 90 0.12014 0.12270

Comparison of the global timelike and spacelike functions.
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8. Conclusion

In our opinion, the main result in the present paper is obtaining the exact two-loop expressions for the
QCD invariant coupling function in the timelike domain (see (24)–(27)). In turn, this allowed using the
method (proposed in [15]) of expanding the multiloop functions in powers of the two-loop ones to obtain
the three-loop expressions. The results of this method were compared with the exact numerical three-
loop functions as well as the expressions obtained by the Padé approximation. These numerical estimates
support the method of expanding in powers of the two-loop function (see Table 1).

Using the obtained expressions, we constructed the global functions with quark mass thresholds. The
functions {An} and {An} were previously calculated based on the iterative solution of RG equation (40)
(see [6], [9], [10]). We showed that in the two-loop case, the iterative solution in the infrared region
leads to errors of the order 4–5% for the functions {An} and {An}. On the other hand, the accuracy of
the experimental data (for example, in the measurements of the quantities Re+e−(s) and Rτ ) is steadily
increasing, and more precise theoretical formulas are therefore needed. We note that an alternative approach
was proposed in [11], where the RG equation was solved numerically in the complex plane.

We emphasize that obtaining the explicit two-loop expressions is something more than just increasing
the accuracy of analysis or facilitating numerical calculations because it is possible [12] to express the
three- and four-loop expressions in terms of the known two-loop ones. This leads to an attractive result:
expressions for the invariant coupling function can be obtained with an arbitrary accuracy with respect to
the loop number. Moreover, they have the correct analyticity properties and reveal a regular behavior in
the infrared region.

Acknowledgments. The authors are sincerely grateful to D. V. Shirkov for the numerous valuable
discussions and recommendations and to A. L. Kataev, A. A. Pivovarov, A. V. Sidorov, I. L. Solovtsov,
and O. P. Solovtsova for the critical remarks and helpful discussions.

This work was supported in part by the Russian Foundation for Basic Research (Grant Nos. 99-01-00091
and 00-15-96691).

REFERENCES

1. I. L. Solovtsov and D. V. Shirkov, JINR Rapid Commun., 76, No. 2, 5 (1996); D. V. Shirkov and I. L. Solovtsov,

Phys. Rev. Lett., 79, 1209 (1997); hep-ph/9704333 (1997).

2. D. V. Shirkov, Theor. Math. Phys., 119, 438 (1999); hep-th/9810246 (1998); Lett. Math. Phys., 48, 135 (1999).

3. I. L. Solovtsov and D. V. Shirkov, Theor. Math. Phys., 120, 1220 (1999); hep-ph/9909305 (1999).

4. K. A. Milton, I. L. Solovtsov, and O. P. Solovtsova, Phys. Lett. B, 415, 104 (1997).

5. I. L. Solovtsov and D. V. Shirkov, Phys. Lett. B, 442, 344 (1998); hep-ph/9711251 (1997).

6. D. V. Shirkov, “Toward the correlated analysis of perturbative QCD observables,” JINR preprint E2-2000-46,

Joint Inst. Nucl. Res., Dubna (2000); hep-ph/0003242 (2000); Theor. Math. Phys., 127, 409 (2001); hep-

ph/0012283 (2000).

7. A. V. Radyushkin, JINR Rapid Commun., 78, 96 (1996); hep-ph/9907228 (1999).

8. N. V. Krasnikov and A. A. Pivovarov, Phys. Lett. B, 116, 168 (1982).

9. A. P. Bakulev, A. V. Radyushkin, and N. G. Stefanis, Phys. Rev. D, 62, 113001 (2000).

10. B. V. Geshkenbein and B. L. Ioffe, JETP Letters, 70, 161 (1999).

11. K. A. Milton, I. L. Solovtsov, O. P Solovtsova, and V. I. Yasnov, Eur. Phys. J. C, 14, 495 (2000).

12. B. Magradze, “The gluon propagator in analytic perturbation theory,” in: Proc. 10th Intl. Seminar “QUARKs-

98” (Suzdal, Russia, May 17–24, 1998, Vol. 1, F. L. Bezrukov et al., eds.), INR Publ., Moscow (2000), p. 158;

hep-ph/9808247 (1998).

13. E. Gardi, G. Grunberg, and M. Karliner, JHEP, 07, 007 (1998).

14. B. A. Magradze, Internat. J. Mod. Phys. A, 15, 2715 (2000).

539



15. D. S. Kourashev, “The QCD observables expansion over the scheme-independent two-loop coupling constant

powers, the scheme dependence reduction,” hep-ph/9912410 (1999).

16. C. J. Maxwell and A. Marjalili, Nucl. Phys. B, 577, 209 (2000).

17. O. V. Tarasov, A. A. Vladimirov, and A. Y. Zharkov, Phys. Lett. B, 93, 429 (1980).

18. K. A. Milton and I. L. Solovtsov, Phys. Rev. D, 55, 5295 (1997).

19. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, Adv. Comput. Math., 5, 329 (1996).

20. A. A. Pivovarov, Nuovo Cimento A, 105, 813 (1992).

21. A. L. Kataev and V. V. Starshenko, Modern Phys. Lett. A, 10, 235 (1995).

22. D. V. Shirkov, “The π2 terms in the s-channel QCD observables,” JINR preprint E2-2000-211, Joint Inst. Nucl.

Res., Dubna (2000); hep-ph/0009106 (2000); Theor. Math. Phys., 127, 409 (2001); hep-ph/0012283 (2000);

Eur. Phys. J. C, 22, 331 (2001); hep-ph/0107282 (2001).

23. G. Rodrigo and A. Santamaria, Phys. Lett. B, 313, 441 (1993); K. G. Chetyrkin, B. A. Kniehl, and M. Stein-

hauser, Phys. Rev. Lett, 79, 2184 (1997); hep-ph/9706430 (1997).

24. W. A. Bardeen et al., Phys. Rev. D, 18, 3998 (1978).

25. K. A. Milton and I. L. Solovtsov, Phys. Rev. D, 59, 107701 (1999).

540


