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OPTIMAL ROBUST MEAN-VARIANCE HEDGING
IN INCOMPLETE FINANCIAL MARKETS

N. Lazrieva and T. Toronjadze UDC 519.2

Abstract. An optimal B-robust estimate is constructed for the multidimensional parameter in the
drift coefficient of a diffusion-type process with a small noise. The optimal mean-variance robust
(optimal V -robust) trading strategy is to hedge (in the mean-variance sense) the contingent claim in
an incomplete financial market with an arbitrary information structure and a misspecified volatility
of the asset price, which is modelled by a multidimensional continuous semimartingale. The obtained
results are applied to the stochastic volatility model, where the model of the latent volatility process
contains the unknown multidimensional parameter in the drift coefficient and a small parameter in the
diffusion term.
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1. Introduction, Motivation, and Results

The hedging and pricing of contingent claims in incomplete financial markets and dynamic portfolio
selection problems are important issues in the modern theory of finance. These problems are associated
with the so-called mean-variance approach.

For determining a “good” hedging strategy in an incomplete market with an arbitrary informa-
tion structure F = (F)0≤t≤T , one riskless asset and d, d ≥ 1, risky assets whose price process is a
semimartingale X, the mean-variance approach suggests using the quadratic criterion to measure the
hedging error, i.e. to solve the mean-variance hedging problem introduced by Föllmer and Sonder-
mann [10]:

minimize E

(
H − x−

T∫
0

θtdXt

)2

over all θ ∈ Θ, (1.1)

where the contingent claim H is a FT -measurable square-integrable random variable (r.v.), x is the
initial investment, Θ is the class of admissible trading strategies, and T is the investment horizon.

The mean-variance formulation by Markowitz [26] provides a foundation for a single period portfolio
selection (see also [27]). In [22], the concept of Markowitz’s mean-variance formulation for finding the
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optimal portfolio policy and determining the efficient frontier in analytical form was extended to the
multiperiod portfolio selection.

As was pointed out in [22], the results in the multiperiod mean-variance formulation with one
riskless asset can be derived by using the results of the mean-variance hedging formulation.

Therefore, mean-variance hedging is a powerful approach for both major problems mentioned above.
Problem (1.1) was intensively investigated in the last decade (see, e.g., [8, 9, 11, 18, 28, 31, 33,

36–38]).
The stochastic volatility model proposed by Hull and White [13] and Scott [39], in which the stock

price volatility is a random process, is a popular model of an incomplete market, where the mean-
variance hedging approach can be used (see, e.g., [13, 18, 24, 31]).

Consider the stochastic volatility model described by the following system of SDE:

dXt = Xt dRt, X0 > 0,

dRt = μt(Rt, Yt) dt+ σ.dw
R
t , R0 = 0,

σ2
t = f(Yt),

dYt = a(t, Yt;α) dt+ ε dwσt , Y0 = 0,

(1.2)

where w = (wR, wσ) is the standard two-dimensional Wiener process defined on a complete probability
space (Ω,F , P ), Fw = (Fw

t )0≤t≤T is the P -augmentation of the natural filtration Fw
t = σ(ws, 0 ≤ s ≤

t), 0 ≤ t ≤ T , generated by w, f(·) is a continuous one-to-one positive locally bounded function (e.g.,
f(x) = ex), α = (α1, . . . , αm), m ≥ 1, is the vector of unknown parameters, and ε, 0 < ε � 1, is a
small number. Assume that system (1.2) has a unique strong solution.

This model is analogous to the model proposed by Renault and Touzi [32]. The principal difference
is the presence of a small parameter ε in our model, which is due to the assumption that the volatility
of the randomly fluctuated volatility process is small (see also [40]). Thus, the assumption enables
us to use the prices of trading options with short, nearest to the current time value maturities for
volatility process filtration and parameter estimation purposes (see below). In contrast, the model [32]
needs to assume that there exist trading derivatives with any (up to infinity) maturities.

An important feature of the stochastic volatility models is that the volatility process Y is an
unobservable (latent) process. To obtain an explicit form of the optimal trading strategy, a full
knowledge of the model of the process Y is necessary, and hence one needs to estimate the unknown
parameter α = (α1, . . . , αm), m ≥ 1.

A variety of estimation procedures are used, which involve either a direct statistical analysis of the
historical data or the use of implied volatilities extracted from prices of existing traded derivatives.

For example, one can use the following method based on historical data.
Fix the time variable t. From observations X

t
(n)
0

, . . . , X
t
(n)
n

, 0 = t
(n)
0 < · · · < t

(n)
n = t, max

j
[t(n)
j+1 −

t
(n)
j ] → 0 as n → 0, we calculate the realization of yield process Rt =

t∫
0

dXs
Xs

, and then calculate the

sum

Sn(t) =
n−1∑
j=0

|R
t
(n)
j+1

−R
t
(n)
j

|2.

It is well known (see, e.g., [23]) that

Sn(t)
P→

t∫
0

σ2
s ds as n→ ∞.

263



Since σ2
t (ω) = f(Yt) is a continuous process, we obtain

σ2
t (ω) = lim

Δ↓0
F (t+ Δ, ω) − F (t, ω)

Δ
,

where

F (t, ω) =

t∫
0

σ2
s(ω)ds.

Hence the realization (yt)0≤t≤T of the process Y can be found by the formula yt = f−1(σ2
t ), 0 ≤

t ≤ T .
More sophisticated methods using the same idea can be found, e.g., in [5, 30].
We can use the reconstructed sample path (yt), 0 ≤ t ≤ T , to estimate the unknown parameter α

in the drift coefficient of the diffusion process Y .
The second, market price adjusted procedure for reconstructing the sample path of the volatility

process Y and the parameter estimate was suggested in [32], where the authors used implied volatility
data.

We present a brief review of this method adapted to our model (1.2).
Suppose that the volatility risk premium λσ ≡ 0, which means that the risk from the volatility

process is noncompensated (or can be diversified away). Then the price Ct(σ) of the European call
option can be calculated by the Hull and White formula (see, e.g., [32]), and the Black–Scholes (BS)
implied volatility σi(σ) can be found as a unique solution of the equation

Ct(σ) = CBSt (σi(σ)),

where CBS(σ) denotes the standard BS formula written as a function of the volatility parameter σ.
Here (for further estimational purposes), only in-the-money options are used.
Under some technical assumptions (see [32, Proposition 5.1] and [23] for the general diffusion of the

volatility process)
∂σit(σ, α)
∂σt

> 0 (1.3)

(recall that the drift coefficient of the process Y depends on the unknown parameter α).
Fix the current value of the time parameter t, 0 ≤ t ≤ T , and let 0 < T1 < T2 < · · · < Tk−1 < t < Tk

be the maturity times of some traded in-the-money options.
Let σi

∗
tεj

be the observations of the implied volatility at the time instants 0 = tε0 < tε1 < · · · < t[t/ε] = t,
max
j

[tεj+1 − tεj ] → 0 as ε→ 0.

Then, using (1.3) and solving the equation

σitεj (σtεj , α) = σi
∗
tεj
,

one can obtain the realization {σ̃tεj} of the volatility (σt), and thus, using the formula ytεj = f−1(σ̃2
tεj

),
the realization {ytεj} of the volatility process (Yt), which can be viewed as the realization of the
nonlinear AR(1) process:

Ytεj+1
− Ytεj = a(tεj , Ytεj ;α)(tεj+1 − tεj) + ε(wσtεj+1

− wσtεj ).

Using the data {ytεj}, one can construct the MLE α̂εt of the parameter α (see, e.g., [19, 25, 26].
Recall the scheme for constructing MLE. Using obvious simple notation, rewrite the previous AR(1)

process in the form
Yj+1 − Yj = a(tj , Yj ;α)Δ + εΔwσj .
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Then
∂

∂y
P{Yj+1 ≤ y | Yj} =

1√
2πΔε

exp
(
−(y − Yj − a(tj , Yj ;α)Δ)2

2ε2Δ

)
=: ϕj+1(y, Yj ;α),

and the log-derivative of the likelihood process �t = (�(1)
t , . . . , �

(m)
t ) is given by the relation

�
(i)
t =

∑
j

�
(i)
j+1, i = 1,m,

where

�
(i)
j+1(y;α) =

∂

∂αi
lnϕj+1(y, Yj ;α) =

1
ε2Δ

(y − Yj − a(tj , Yj ;α)Δ)ȧ(i)(tj , Yj ;α)Δ.

Hence the MLE is a solution (under some conditions) of the system of equations
1
ε2Δ

∑
j

(yj+1 − yj − a(tj , yj ;α)Δ)ȧ(i)(tj , yj ;α)Δ = 0, i = 1,m,

where the reconstructed data {yj} = {ytεj} are substituted.
Following [32], let us introduce the functionals

HW−1
ε : α̂εt (p) →

(
y

(p+1)
tεj

, 0 ≤ j ≤
[
t

ε

])
,

MLEε :
(
y

(p+1)
tεj

, 0 ≤ j ≤
[
t

ε

])
→ α̂εt (p+ 1),

φε = MLEε ◦HW−1
ε .

Starting from some constant initial value (or the preliminary estimate obtained, e.g., from the
historical data) one can compute a sequence of estimates

α̂εt (p+ 1) = φε(α̃εt (p)), p ≥ 1.

If the operator φε is a strong contraction in a neighborhood of the true value of the parameter α0 for
a sufficiently small ε, then one can define the estimate α̂εt as the limits of the sequence {α̂εt (p)}p≥1. It
was proved in [32] that α̂εt is a strong consistent estimate of the parameter α.

Let us return to our consideration.
Interpolating in some way the corresponding (to the estimate α̂εt ) realization {ytεj}, we obtain the

reconstructed continuous sample path (ys)0≤s≤t of the latent process Y , which can be used for further
analysis.

Unfortunately, both described statistical procedures are highly sensitive to errors at all steps of the
parameter identification process.

Hence this is a natural place for introducing the robust procedure of parameter estimates.
Suppose that the sample path (ys)0≤s≤t comes from the observation of process (Ỹs)0≤s≤t with

distribution P̃ εα from the shrinking contamination neighborhood of the distribution P εα of the basic
process Y = (Ys)0≤s≤t. That is,

dP̃ εα
dP εα

∣∣∣Fw
t = Et(εN ε), (1.4)

where N ε = (N ε
s )0≤s≤t is a P εα-square integrable martingale and Et(M) is the Dolean exponential of

martingale M .
In the diffusion-type framework, (1.4) represents the Huber gross error model (as is explained

in Remark 2.2). The model of type (1.4) of contamination of measures for statistical models with
filtration was suggested by Lazrieva and Toronjadze [20, 21].

In Sec. 2, we study the problem of constructing the robust estimates for the contamination model
(1.4).
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In Sec. 2.1, we give a description of the basic model and the definition of consistent uniformly linear
asymptotically normal (CULAN) estimates connected with the basic model (Definition 2.1).

In Sec. 2.2, we introduce the notion of shrinking contamination neighborhood described in terms
of the contamination of the nominal distribution, which naturally leads to the class of alternative
measures (see (2.18) and (2.19)).

In Sec. 2.3, we study the asymptotic behavior of CULAN estimates under alternative measures
(Proposition 2.2), which is a basis for the formulation of the optimization problem. The optimization
problem is solved, which leads to the construction of the optimal B-robust estimate (Theorem 2.1).

Based on the limit theorem (Sec. 2.1), one can construct the asymptotic confidence region of level
γ for unknown parameter α:

lim
ε→∞P εα

(
ε−2(α− α∗,ε

t )′V −1(ψ∗;α∗,ε
t )(α− α∗,ε

t ) ≤ χ2
γ

)
= 1 − γ,

where χ2
γ is a quantile of order 1 − γ of the χ2-distribution with m degrees of freedom and V (ψ∗;α)

is given by (2.17).
This region shrinks to the estimate α∗,0

t as ε→ 0.
Now if the coefficient a(t, y;α) in (1.2) is such that the solution Y ε

t (α) of the SDE (1.2) is continuous
with respect to the parameter α (see, e.g., [16]), then the confidence region of parameter α is mapped
into the confidence interval for Y ε

t (α), which shrinks to Y ∗
t = Y 0

t (α∗,0
t ). Furthermore, by the function f ,

the latter interval is mapped into the confidence interval for σt, which shrinks to σ∗t = f1/2(Y 0
t (α∗,0

t )).
Denote by σ0

t the center of this interval. Then the interval can be written in the form

σt = σ0
t + δ(ε)ht,

where δ(ε) → 0 as ε→ 0 and h ∈ H (see (3.19)).
Thus, we arrive at the asset price model (1.2) with misspecified volatility, and it is natural to

consider the problem of constructing the robust trading strategy to hedge a contingent claim H.
We investigate this problem in the mean-variance setting in Sec. 3. We consider the general situation

where the asset price is modelled by a d-dimensional continuous semimartingale and the information
structure is given by some general filtration.

In Sec. 3.1, we give a description of the financial market model.
In Sec. 3.2, we collect the facts concerning the variance-optimal equivalent local martingale measure,

which plays a key role in the mean-variance hedging approach.
In Sec. 3.3, we construct the “optimal robust hedging strategy” (Theorem 3.1) by approximating

the optimization problem (3.26) by problem (3.28). As is mentioned in Remark 3.2, such an approach
and term are common in robust statistical theory. In contact to the optimal B-robustness (see Sec. 2),
here, we develop the approach known in robust statistics as the optimal V -robustness (see [12]).

Note that our approach allows incorporating current information on the underlying model and
hence is adaptive. Precisely, passing from a time value t to t + τ , τ > 0, when more information on
the market prices are available, the asymptotic variance-covariance of the constructed estimate α∗,ε

t

becomes smaller, and hence the estimation procedure becomes more precise.
In [35], the adaptive approach to risk management under a general uncertainty (restricted informa-

tion) was developed. As is mentioned in this paper, there exists a series of investigations dealing with
various type of adaptive approaches (see the list of references in [35]). But in all these papers (except
for [35]), the uncertainty is only in the stock appreciation rate in contrast to our consideration where
the model misspecification is due to the volatility parameter.

The consideration of misspecified asset price models was initiated in [1, 2].
Various authors in different settings attacked the robustness problem. The method used in Sec. 3

was suggested by Toronjadze [41] for an asset price process modelled by a one-dimensional process. As
will be shown in Remark 3.2 below, in the simplest case where the asset price process is a martingale
with respect to the initial measure P , and it is possible to find the solution of the “exact” optimization
problem (3.26), this solution coincides with the solution of an approximating optimization problem
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(3.28). In a more general situation (when the asset price process is no longer the P -martingale), the
investigation of problem (3.26) by, e.g., control theory methods appears to be difficult. Anyway, we
do not know the solution of problem (3.26).

Let us return to the stochastic volatility model (1.2) and describe the successive steps of our ap-
proach:

(1) For each current time value t, 0 < t < T , reconstruct the sample path (ys)0≤s≤t using the
historical data or the tradable derivatives prices.

(2) Using the approach developed in Sec. 2, calculate the value α∗,ε
t of the robust estimate of the

parameter α (i.e., construct the deterministic function t → α∗,ε
t ∈ R

m), and then find the
confidence region for the parameter α.

(3) Based on the volatility process model, find the confidence interval for Yt(α).
(4) Denoting a∗(t, y) = a(t, y;α∗,ε

t ), where a(t, y;α) is the drift coefficient of the volatility process,
consider the stochastic volatility model with misspecified asset price model and fully specified
volatility process model:

dXt = Xt dRt, X0 > 0,

dRt = (σ0
t + δ(ε)ht)dM0

t , R0 = 0,

dYt = a∗(t, Yt) dt+ ε dwσt , Y0 = 0, 0 ≤ t ≤ T,

where
dM0

t = kt dt+ dwRt ,

h ∈ H and σ0
t is the center of the confidence interval of volatility.

Using Theorem 3.1, construct the optimal robust hedging strategy by the formula (3.45):

θ∗t =
1
σ0
t

[
ψ1,H
t + ζt(V ∗

t − (ψHt )′Ut
]
,

where all objects are defined in Theorem 3.1.
It should be noted that if one constructs the hedging strategy θ̃∗t by the above-given formula with

σ∗,εt = f1/2(Y ε
t (α∗,ε

t )) instead of σ0
t , then the strategies θ̃∗t and θ∗t are different, since σ∗,εt �= σ0

t , in
general. Hence the value Δt = |σ∗,εt − σ0

t | defines the correction term between the robust, θ∗t , and
non-robust, θ̃∗, strategies.

In the nontrivial case where kt = k(Yt), the variance-optimal martingale measure P̃ is given by
(3.17), ζt = −ktEt(−k ·M0) (see Sec. 3.2), and the process (Xt, Yt)0≤t≤T is a Markov process. If H =
h(XT , YT ) (h(x, y) is some function), then Ṽ H

t = EP̃ (H|Fw
t ) = EP̃ (h(XT , YT )|Fw

t ) = v(t,XT , YT )
and if, e.g., v(t, x, y) ∈ C1,2,2, then v is a unique solution of the following partial differential equation:

∂v

∂t
+ a∗

∂v

∂y
+

1
2

(
ε2
∂2v

∂y2
+ x2v2 ∂

2v

∂x2

)
= 0,

with the boundary condition v(T, x, t) = h(x, y). A more general situation with a nonsmooth v is
considered in [18, 24].

Further, one can find the Galtchouck–Kunita–Watanabe decomposition of r.v. H (see, e.g., [31])
setting

ξHt =
∂v(t,Xt, Yt)

∂x
, LHT = ε

T∫
0

∂v

∂y
(t,Xt, Yt) dwσt ,

and calculate ψHt , LT , and V ∗
t using formulas (4.13) and (4.14) of [33].

Thus one obtains the explicit solution of the mean-variance hedging problem.
Finally, below is a short summary of the approach:
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(a) Incorporate the robust procedure in the statistical analysis of the volatility process. That
is, construct and use the optimal B-robust estimate of the unknown parameter in the drift
coefficient of the volatility process in the model. The parameter estimation naturally leads to
the asset price model misspecification.

(b) Incorporate the second robust procedure in the financial analysis of the contingent claim hedg-
ing. That is, construct and use the optimal V -robust trading strategy for hedging purposes.

In our opinion, this “double robust” strategy is more attractive to protect the hedger against the
possible errors.

The general asymptotic theory of estimation can be found in [14]; the theory of robust statistics is
developed in [12, 34]; the theory of the trend parameter estimates for a diffusion process with small
noise is developed in [17]; the book of Musiela and Rutkowsky [29] is devoted to the mathematical
theory of finance, and, finally, the general theory of martingales can be found in [15].

2. Optimal B-Robust Estimates

2.1. Basic model. CULAN estimates. The basic model of observations is described by the SDE

dYs = a(s, Y ;α) ds+ ε dws, Y0 = 0, 0 ≤ s ≤ t, (2.1)

where t is a fixed number, w = (ws)0≤s≤t is the standard Wiener process defined on the filtered
probability space (Ω,F , F = (Fs)0≤s≤t, P ) satisfying the usual conditions, α = (α1, . . . , αm), m ≥ 1,
is the unknown parameter to be estimated, α ∈ A ⊂ R

m, A is an open subset of R
m, and ε, 0 < ε� 1,

is a small parameter (index of series). In our further considerations all limits correspond to ε→ 0.
Denote by (Ct,Bt) the measurable space of functions x = (xs)0≤s≤t continuous on [0, t] with σ-

algebra Bt = σ(x : xs, s ≤ t). We set Bs = σ(x : xu, u ≤ s).
Assume that for each α ∈ A, the drift coefficient a(s, x;α), 0 ≤ s ≤ t, x ∈ Ct is a known nonan-

ticipative (i.e., Bs-measurable for each s, 0 ≤ s ≤ t) functional satisfying the functional Lipshitz and
linear growth conditions L:

|a(s, x1;α) − a(s, x2;α)| ≤ L1

s∫
0

|x1
u − x2

u| dku + L2|x1
s − x2

s|,

|a(s, x;α)| ≤ L1

s∫
0

(1 + |xu|) dku + L2(1 + |xs|),

where L1 and L2 are constants independent of α and k = (k(s))0≤s≤t is a nondecreasing right-
continuous function, 0 ≤ k(s) ≤ k0, 0 : k0 <∞, x1, x2 ∈ Ct.

Then, as is well known (see, e.g., [23]), for each α ∈ A, Eq. (2.1) has a unique strong solution
Y ε(α) = (Y ε

s (α))0≤s≤t, and, in addition (see [17]),

sup
0≤s≤t

|Y ε
s (α) − Y 0

s (α)| ≤ Cε sup
0≤s≤t

|ws| P -a.s.,

with some constant C = C(L1, L2, k0, t), where Y 0(α) = (Y 0
s (α))0≤s≤t is a solution of the following

nonperturbated differential equation:

dYs = a(s, Y ;α) ds, Y0 = 0. (2.2)

Change the initial problem of estimation of the parameter α by the equivalent one, in which the
observations are modelled according to the following SDE:

dXs = aε(s,X;α) ds+ dws, X0 = 0, (2.3)

where aε(s, x;α) = 1
ε a(s, εx;α), 0 ≤ s ≤ t, x ∈ Ct, α ∈ A.

It is clear that if Xε(α) = (Xε
s (α))0≤s≤t is a solution of SDE (2.3), then for each s ∈ [0, t], εXε

s (α) =
Y ε
s (α).
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Denote by P εα the distribution of process Xε(α) on the space (Ct,Bt), i.e., P εα is the probability
measure on (Ct,Bt) induced by the process Xε(α). Let Pw be a Wiener measure on (Ct,Bt). Denote
by X = (Xs)0≤s≤t the coordinate process on (Ct,Bt), i.e., Xs(x) = xs, x ∈ Ct.

The conditions L guarantee that for each α ∈ A, the measures P εα and Pw are equivalent (P εα ∼ Pw),
and if we denote by zα,εs = dP ε

α
dPw |Bs the density process (likelihood ratio process), then

zα,εs (X) = Es(aε(α) ·X) := exp

{ s∫
0

aε(u,X;α) dXu − 1
2

s∫
0

a2
ε(u,X;α) du

}
.

Introduce the class Ψ of R
m-valued nonanticipative functionals ψ, ψ : [0, t] × Ct × A → R

m such
that for each α ∈ A and ε > 0,

(1) Eε
α

t∫
0

|ψ(s,X;α)|2ds <∞, (2.4)

(2)

t∫
0

|ψ(s, Y 0(α);α)|2ds <∞, (2.5)

(3) uniformly in α on each compact set K ⊂ A,

P εα − lim
ε→0

t∫
0

|ψ(s, εX;α) − ψ(s, Y 0(α);α)|2ds = 0, (2.6)

where |·| is an Euclidean norm in R
m and P εα− lim

ε→0
ζε = ζ denotes the convergence P εα{|ζε−ζ| > ρ} → 0

as ε→ 0 for all ρ, ρ > 0.
Assume that for each s ∈ [0, t] and x ∈ Ct, the functional a(s, x; a) is differentiable in α and the

gradient ȧ =
(

∂

∂α1
a, . . . ,

∂

∂αm
a

)′
belongs to Ψ (ȧ ∈ Ψ), where the prime denotes the transposition.

Then the Fisher information process

Iεs (X;α) :=

s∫
0

ȧε(u,X;α)[ȧε(u,X;α)]′du, 0 ≤ s ≤ t,

is well defined, and, moreover, uniformly in α on each compact set,

P εα − lim
ε→0

ε2Iεt (α) = I0(α), (2.7)

where

I0(α) :=

t∫
0

ȧ(s, Y 0(α);α)[ȧ(s, Y 0(α);α]′ds.

For each ψ ∈ Ψ, introduce the functional ψε(s, x;α) := 1
ε ψ(s, εx;α) and the matrices Γψε (α) and

γψε α as follows:

Γψε (X;α) :=

t∫
0

ψε(s,X;α)[ψε(s,X;α)]′ds, (2.8)

γψε (X;α) :=

t∫
0

ψε(s,X;α)[ȧε(s,X;α)]′ds. (2.9)
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Then from (2.6), it follows that uniformly in α on each compact set,

P εα − lim
ε→0

ε2Γψε (α) = Γψ0 (α), (2.10)

P εα − lim
ε→0

ε2γψε (α) = γψ0 (α), (2.11)

where the matrices Γψ0 (α) and γψ0 (α) are defined as follows:

Γψ0 (α) :=

t∫
0

ψ(s, Y 0(α);α)[ψ(s, Y 0(α);α)]′ds, (2.12)

γψ0 (α) :=

t∫
0

ψ(s, Y 0(α);α)[ȧ(s, Y 0(α);α)]′ds. (2.13)

Note that by virtue of (2.4), (2.5), and ȧ ∈ Ψ, the matrices given by (2.8), (2.9), (2.12), and (2.13)
are well defined.

Denote by Ψ0 the subset of Ψ such that for each ψ ∈ Ψ0 and α ∈ A, rank Γψ0 (α) = m and
rank γψ0 (α) = m.

Assume that ȧ ∈ Ψ0. For each ψ ∈ Ψ0, define the P εα-square integrable martingale Lψ,ε(α) =
(Lψ,εs (α))0≤s≤t as follows:

Lψ,εs (X;α) =

s∫
0

ψε(u,X;α)(dXu − αε(u,X;α) du). (2.14)

Now we give a definition of CULAN M -estimates.

Definition 2.1. An estimate (αψ,εt )ε>0 = (αψ,ε1,t , . . . , α
ψ,ε
m,t)

′
ε>0, ψ ∈ Ψ0, is said to be consistent uni-

formly lineal asymptotically normal (CULAN) if it admits the expansion

αψ,εt = α+ [γψ0 (α)]−1ε2Lψ,εt (α) + rψ,ε(α), (2.15)

where uniformly in α on each compact set,

P εα − lim
ε→0

ε−1rψ,ε(α) = 0. (2.16)

It is well known (see [19]) that under the above conditions, uniformly in α on each compact set,

L{ε−1(αψ,εt − α) | P εα} w→ N(0, V (ψ;α)),

with
V (ψ;α) := [γψ0 (α)]−1Γψ0 (α)([γψ0 (α)]−1)′, (2.17)

where L(ζ|P ) denotes the distribution of the random vector ζ calculated under the measure P , the
symbol “ w→” denotes the weak convergence of measures, and N(0, V (ψ;α)) is the distribution of
Gaussian vectors with zero mean and covariance matrix V (ψ;α).

Remark 2.1. In context of diffusion type processes, the M -estimate (αψ,εt )ε>0 is defined as a solution
of the stochastic equation

Lψ,εt (X;α) = 0,

where Lψ,εt (X;α) is defined by (2.14) and ψ ∈ Ψ0.

The asymptotic theory of M -estimates for general statistical models with filtration is developed
in [7]. Precisely, the problem of existence and global behavior of solutions is studied. In particular,
the conditions of regularity and ergodicity type are established under which M -estimates have the
CULAN property.
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For our model, in the case where A = R
m, the sufficient conditions for CULAN property take the

form:

(1) for all s, 0 ≤ s ≤ t, and x ∈ Ct, the functionals ψ(s, x;α) and ȧ(s, x;α) are twice continuously
differentiable in α with bounded derivatives satisfying the functional Lipshitz conditions with
constants that do not depend on α;

(2) the equation (with respect to y)

Δ(α, y) :=

t∫
0

ψ(s, Y 0(α); y)(a(s, Y 0(α);α) − a(s, Y 0(α); y)) ds = 0,

has a unique solution y = α.

The MLE is a special case of M -estimates when ψ = ȧ.

Remark 2.2. According to (2.7), the asymptotic covariance matrix of the MLE (α̂εt )ε>0 is [I0(α)]−1.
Using the usual technique, one can show that for each α ∈ A and ψ ∈ Ψ0, I−1

0 (α) ≤ V (ψ, α) (see
(2.17)), where for two symmetric matrices B and C the relation B ≤ C means that the matrix C −B
is positive semidefinite.

Thus, the MLE has the minimal covariance matrix among all M -estimates.

2.2. Shrinking contamination neighborhoods. In this section, we give the notion of contami-
nation of the basic model (2.3) described in terms of shrinking neighborhoods of basic measures {P εα,
α ∈ A, ε > 0}, which is an analog of the Huber gross error model (see, e.g., [12] and also Remark 2.3
below).

Let H be a family of bounded nonanticipative functionals h : [0, t] ×Ct ×A → R
1 such that for all

s ∈ [0, t] and α ∈ A, the functional h(s, x;α) is continuous at the point x0 = Y 0(α).
For each h ∈ H, α ∈ A, and ε > 0, let P ε,hα be a measure on (Ct,Bt) such that

(1) P ε,hα ∼ P εα,

(2)
dP ε,hα
dP εα

= Et(εN ε,h
α ), (2.18)

where

(3) N ε,h
α,s :=

s∫
0

hs(u,X;α)(dXu − aε(u,X;α) du), (2.19)

with hε(s, x;α) := 1
ε h(s, εx;α), 0 ≤ s ≤ t, x ∈ Ct.

Denote by Pε,H
α the class of measures P ε,hα , h ∈ H, i.e.,

Pε,H
α = {P ε,hα ; h ∈ H}.

We call (Pε,H
α )ε>0 shrinking contamination neighborhoods of the basic measures (P εα)ε>0, and the

element (P ε,hα )ε>0 of these neighborhoods is called the alternative measure (or simply alternative).
Obviously, for each h ∈ H and α ∈ A, the process N ε,h

α = (N ε,h
α,s)0≤s≤t defined by (2.19) is a

P εα-square integrable martingale. Since under measure P εα, the process w = (ws)0≤s≤t defined as

ws := Xs −
s∫

0

aε(u,X;α) du, 0 ≤ s ≤ t,
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is a Wiener process, by virtue of the Girsanov theorem, the process w̃ := w + 〈w, εN ε,h
α 〉 is a Wiener

process under changed measure P ε,hα . But, by definition,

w̃s = Xs −
s∫

0

(aε(u,X;α) + εhε(u,X;α)) du,

and hence one can conclude that P ε,hα is a weak solution of the SDE

dXs = (aε(s,X;α) + εhε(s,X;α)) ds+ dws, X0 = 0.

This SDE can be viewed as a “small” perturbation of the basic model (2.3).

Remark 2.3. 1. In the case of i.i.d. observations X1, X2, . . . , Xn, n ≥ 1, the Huber gross error model
in shrinking setting is defined as follows:

fn,h(x;α) := (1 − εn)f(x;α) + εnh(x;α),

where f(x;α) is a basic (core) density of distribution of r.v. Xi (with respect to some dominating mea-
sure μ), h(x;α) is a contaminating density, fn,h(x;α) is a contaminated density, and εn = O(n−1/2).
If we denote by Pnα and Pn,hα the measures on (Rn,B(Rn)) generated by f(x;α) and fn,h(x;α), re-
spectively, then

dPn,hα

dPnα
=

n∏
i=1

fn,h(Xi;α)
f(Xi;α)

=
n∏
i=1

(1 + εnH(Xi;α)) = En(εn ·Nn,h
α ),

where H = h−f
f , Nn,h

α = (Nn,h
α,m)1≤m≤n, N

n,h
α,m =

m∑
i=1

H(Xi;α), Nn,h
α is a Pnα -martingale, and

En(εnNn,h
α ) =

n∏
i=1

(1 + εnΔN
n,h
α,i )

is the Dolean exponential in the discrete time case.
Thus,

dPn,hα

dPnα
= E(εn ·Nn,n

α ), (2.20)

and relation (2.18) is a direct analog of (2.20).
2. The concept of shrinking contamination neighborhoods expressed in the form of (2.18) was

proposed in [20] for a more general situation concerning the contamination areas for semimartingale
statistical models with filtration.

Note here that the degree of the small parameter ε is crucial. We cannot consider the perturbation
of the measure with a different power of ε if we wish to obtain nontrivial results.

In the remainder of this section, we study the asymptotic properties of CULAN estimates under
alternatives.

For this purpose, we first consider the problem of contiguity of the measures (P ε,hα )ε>0 to (P εα)ε>0.
Let (εn)n≥1, εn ↓ 0, and (αn)n≥1, where αn ∈ K, K ⊂ A, is a compact set, be arbitrary sequences.

Proposition 2.1. For each h ∈ H, the sequence of measures (P εn,h
αn ) is contiguous to sequence of

measures (P εn
αn

), i.e.,
(P εn,h

αn
) � (P εn

αn
).

Proof. From the predictable criteria of contiguity (see, e.g., [15]), it follows that we need to verify the
relation

lim
N→∞

lim sup
n→∞

P εn,h
αn

{
hnt

(
1
2

)
> N

}
= 0, (2.21)
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where hn(1
2) = (hns (

1
2))0≤s≤t is the Hellinger process of order 1

2 .
By the definition of Hellinger process (see, e.g., [15]), we have

hnt

(
1
2

)
= hnt

(
1
2
, P εn,h

αn
, P εn

αn

)
=

1
8

t∫
0

[h(s, εnX;αn)]
2 ds,

and since h ∈ H and hence is bounded, hnt (
1
2) is also bounded, which provides (2.21).

Proposition 2.2. For each estimate (αε,ψt )ε>0 with ψ ∈ Ψ0 and each alternative

(P ε,hα )ε>0 ∈ (Pε,H
α )ε>0,

the following relation holds:

L
{
ε−1(αψ,εt − α) | P ε,hα

}
w→ N

(
[γψ0 (α)]−1b(ψ, h;α), V (ψ, α)

)
,

where

b(ψ, h;α) :=

t∫
0

ψ(s, Y 0(α);α)h(s, Y 0(α);α) ds.

Proof. Proposition 2.1, together with (2.16), provides that uniformly in α, on each compact set

P ε,hα − lim
ε→0

ε−1rψ,ε(α) = 0,

and, therefore, we need to establish the limit distribution of the random vector [γψ0 (α)]−1εLψ,εt under
the measures (P ε,hα )ε>0.

By the Girsanov theorem, the process Lψ,ε(α) = (Lψ,εs (α))0≤s≤t is a semimartingale with the canon-
ical decomposition

Lψ,εs (α) = L̃ψ,εs (α) + bε,s(ψ, h;α), 0 ≤ s ≤ t, (2.22)

where L̃ψ,ε(α) = (L̃ψ,εs (α))0≤s≤t is a P ε,hα -square integrable martingales defined as follows:

L̃ψ,εs (X;α) :=

s∫
0

ψε(u,X;α) (dXu − (aε(u,X;α) + εhε(u,X;α)) du,

bε,s(ψ, h;α) := ε

s∫
0

ψε(u,X;α)hε(u,X;α) du.

But 〈L̃ψ,ε(α)〉t = Γψε (α), where Γψε (α) is defined by (2.8). On the other hand, from Proposition 2.1
and (2.10), it follows that

P ε,hα − lim
ε→0

〈εL̃ψ,ε(α)〉t = P ε,hα − lim
ε→0

ε2Γψε (α) = P εα − lim
ε→0

ε2Γψε (α) = Γψ0 (α)

uniformly in α on each compact set, and hence

L
{

[γψ0 (α)]−1εL̃ψ,εt (α) | P ε,hα
}

w→ N(0, V (ψ;α)). (2.23)

Finally, relation (2.23), together with (2.22) and the relation

P ε,hθ − lim
ε→0

εbε,t(ψ, h;α) =

t∫
0

ψ(s, Y 0(α);α)h(s, Y 0(α);α) ds = b(ψ, h;α),

provides the desirable results.
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2.3. Optimization criteria. Construction of optimal B-robust estimates. In this section,
we state and solve the optimization problem, which results in constructing the optimal B-robust
estimate.

Initially, it should be noted that the bias vector b̃(ψ, h;α) := [γψ0 (α)]−1b(ψ, h;α) can be viewed as
the influence functional of the estimate (αψ,εt )ε>0 with respect to the alternative (Pψ,hα )ε>0.

Indeed, expansion (2.15), together with (2.22) and (2.23), allows us to conclude that

L
{
ε−1(αψ,εt − α− ε2[γψ0 (α)]−1bε(ψ, h;α)) | P ε,hα

}
w→ N(0, V (ψ, α)),

and hence the expression

α+ ε2[γψ0 (α)]−1bε(ψ, h;α) − α = ε2[γψ0 (α)]−1bε(ψ, h;α),

plays the role of bias on the “fixed step ε,” and it seems natural to interpret the limit

P ε,hα − lim
ε→0

α+ ε2[γψ0 (α)]−1bε(ψ, h;α) − α

ε
= [γψ0 (α)]−1b(ψ, h;α),

as the influence functional.
For each estimate (αψ,εt )ε>0, ψ ∈ Ψ0, define the risk functional with respect to alternative (P ε,hα )ε>0,

h ∈ H, as follows:
D(ψ, h;α) = lim

a→∞ lim
ε→0

Eε,hα

(
(ε−2|αψεt − α|2) ∧ a

)
,

where x ∧ α = min(x, a), a > 0, and Eε,h
α is an expectation with respect to the measure P ε,hα .

Using Proposition 2.2, it is easy to verify that

D(ψ, h;α) = |̃b(ψ, h;α)|2 + trV (ψ, α),

where trA denotes the trace of the matrix A.
By Proposition 2.2,

ε−1(αψ,εt − α) d→ N
(
b̃(ψ, h;α), V (ψ;α)

)
,

where d→ denotes the convergence in distribution (by distribution P ε,hα in our case) and N (̃b, V ) is a
Gaussian random vector with mean b̃ and covariation matrix V .

But, if ξ = (ξ1, . . . , ξm)′ is a Gaussian vector with parameters (μ, σ2), then

E|ξ|2 =
m∑
i=1

Eξ2i =
m∑
i=1

(Eξi)2 +
m∑
i=1

Dξi = |μ|2 + trσ2,

as was required.
With each ψ ∈ Ψ0, let us associate the function ψ̃ as follows:

ψ̃(s, x;α) = [γψ0 (α)]−1ψ(s, x;α), 0 ≤ s ≤ t, x ∈ Ct, α ∈ A.
Then ψ̃ ∈ Ψ0 and

γψ̃0 (α) = Id,
where Id is the identity matrix,

V (ψ;α) = V (ψ̃;α) = Γψ̃0 (α), b̃(ψ, h;α) = b̃(ψ̃, h;α) = b(ψ̃, h;α).

Therefore,
D(ψ, h;α) = D(ψ̃, h;α) = |b(ψ̃, h;α)|2 + tr Γψ̃0 (α). (2.24)

Denote by Hr the set of functions h ∈ H such that for each α ∈ A,
t∫

0

|h(s, Y 0(α);α)| ds ≤ r,
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where r, r > 0, is a constant.
Since, for each r > 0,

sup
h∈Hr

|b(ψ̃, h;α)| ≤ const(r) sup
0≤s≤t

|ψ̃(s, Y 0(α);α)|,

where the constant depends on r, we call the function ψ̃ the influence function of estimate (αψ,εt )ε>0,
and the quantity

γ∗ψ(α) = sup
0≤s≤t

|ψ̃(s, Y 0(α);α)|

is called the (unstandardized) gross error sensitivity at point α of the estimate (αψ,εt )ε>0.
Define

Ψ0,c =
{
ψ ∈ Ψ0 :

t∫
0

ψ(s, Y 0(α);α)[ȧ(s, Y 0(α);α)]′ds = Id, (2.25)

γ∗ψ(α) ≤ c

}
, (2.26)

where c ∈ [0,∞) is a generic constant.
Taking into account expression (2.24) for the risk functional, we come to the following optimization

problem known in robust estimation theory as the Hampel optimization problem: minimize the trace
of the asymptotic covariance matrix of the estimate (αψ,εt )ε>0 over the class Ψ0,c, i.e.,

minimize

t∫
0

ψ(s, Y 0(α);α)[ψ(s, Y 0(α);α)]′ds (2.27)

under the conditions (2.25) and (2.26).
Define the Huber function hc(z), z ∈ R

m, c > 0, as follows:

hc(z) := zmin
(

1,
c

|z|
)
.

For an arbitrary nondegenerate matrix A, we denote ψAc = hc(Aȧ).

Theorem 2.1. Assume that for given constant c there exists a nonsingular (m ×m)-matrix A∗
c(α),

which solves the equation (with respect to the matrix A)
t∫

0

ψAc (s, Y 0(α);α)[ȧ(s, Y 0(α);α)]′ds = Id . (2.28)

Then the function ψ
A∗

c(α)
c = hc(A∗

c(α)ȧ) solves the optimization problem (2.27).

Proof. We follow Hampel et al. [12]. Let A be an arbitrary (m×m)-matrix. Since for each ψ ∈ Ψ0,c,∫
ψ(ȧ)′ = Id,

∫
ȧ[ȧ]′ = I0(α)

(see (2.7)), we have ∫
(ψ −Aȧ)(ψ −Aȧ)′ =

∫
ψψ′ −A−A′ +AI0(α)A′

(here and below, we use simple and obvious notation for integrals).
Therefore, since the trace is an additive functional, instead of minimizing tr

∫
ψψ′, we can minimize

tr
∫

(ψ −Aȧ)(ψ −Aȧ)′ =
∫

|ψ −Aȧ|2.
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Note that for each z,
arg min

|y|≤c
|z − y|2 = hc(z).

Indeed, it is obvious that minimizer y has the form y = βz, where β, 0 ≤ β ≤ 1, is constant. Then

min
|y|≤c

|z − y|2 = min
β≤ c

|z|
(1 − β)2|z|2.

Thus, we need to find
arg min

β≤ c
|z|

(1 − β)2 = min
(
1,

c

|z|
)
.

But the last relation is trivially satisfied. Hence the minimizer y∗=zmin(1, c
|z|), and

arg min
|ψ|≤c

|ψ −Aȧ|2 = hc(Aȧ).

On the other hand,

|hc(z)|2 = |z|2I{|z|≤c} +
|z|2
|z|2 c

2 I(|z|≥c) ≤ c2.

Hence
|hc(z)| ≤ c for all z

and, therefore, hc(Aȧ) satisfies condition (2.26) for each A.
Now it is obvious that the function hc(Aȧ) minimizes the expression under the sign of the integral,

and hence the integral itself over all functions ψ ∈ Ψ0 satisfying (2.26).
At the same time, condition (2.25), generally speaking, can be violated. But, since the matrix A is

arbitrary, we can choose A = A∗
c(α) from (2.28) which, of course, guarantees the fulfillment of (2.25)

for ψ∗
c = ψ

A∗
c(α)

c .

As was seen, the resulting optimal influence function ψ∗
c is defined along the process Y 0(α) =

(Y 0
s (α))0≤s≤t, which is a solution of Eq. (2.2).
But for constructing optimal estimate, we need a function ψ∗

c (s, x;α) defined on the whole space
[0, t] × Ct ×A.

For this purpose, define ψ∗
c (s, x;α) as follows:

ψ∗
c (s, x;α) = ψA

∗
c(α)

c (s, x;α) = hε(A∗
c(α)ȧ(s, x;α)), (2.29)

and, as usual, ψ∗
c,ε(s, x;α) = 1

εψ
∗
c (s, εx;α), 0 ≤ s ≤ t, x ∈ Ct, α ∈ A.

Definition 2.2. We say that ψ∗
c (s, x;α), 0 ≤ s ≤ t, x ∈ Ct, α ∈ A, is the influence function of

the optimal B-robust estimate (α∗,ε
t )ε>0 = (αψ

∗
c ,ε

t )ε>0 over the class of CULAN estimates (αψ,εt )ε>0,
ψ ∈ Ψ0,c, if the matrix A∗(α) is differentiable in α.

From (2.9), (2.11), (2.28), and (2.29), it directly follows that

γ
ψ∗

c
0 (α) = P εα − lim

εto0
ε2γψ

∗
c

ε (α) =

t∫
0

ψ∗
c (s, Y

0(α);α)(ȧ(s, Y 0(α);α))′ds = Id .

Moreover, for each alternative (P ε,hα )ε>0, h ∈ H, according to Proposition 2.2, we have

L
{
ε−1(α∗,ε

t − α) | P ε,hα
}

w→ N(b(ψ∗
c , h;α), V (ψ∗

c ;α)) as ε→ 0,

where

b(ψ∗
c , h;α) =

t∫
0

ψ∗
c (s, Y

0(α);α)h(s, Y 0(α);α) ds,

and V (ψ∗
c ;α) = Γψ

∗
c

0 (α).
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Hence the risk functional for estimate (α∗,ε
t )ε>0 is

D(ψ∗
c , h;α) = |b(ψ∗

c , h;α)|2 + tr Γψ
∗
c

0 , h ∈ H,
and the (unstandardized) gross error sensitivity of (α∗,ε

t )ε>0 is

γψ∗
c
(α) = sup

0≤s≤t
|ψ∗
c (s, Y

0(α);α)| ≤ c.

From the above arguments, we may conclude that (α∗,ε
t )ε>0 is the optimal B-robust estimate over

the class of estimates (αψ,εt )ε>0, ψ ∈ Ψ0,c in the following sense: the trace of the asymptotic covariance
matrix of (α∗,ε

t )ε>0 is minimal among all estimates (αψ,εt )ε>0 with sensitivity bounded by constant gross
error, i.e.,

Γψ
∗
c

0 (α) ≤ Γψ0 (α) for all ψ ∈ Ψ0,c.

Note that for each estimate (αψ,εt )ε>0 and alternatives (P ε,hα )ε>0, h ∈ H, the influence functional is
bounded by const(r) · c. Indeed, for ψ ∈ Ψ0,c, we have

sup
h∈Hr

|b(ψ, h;α)| ≤ const(r) · c := C(r, c),

and since from (2.24)

inf
ψ∈Ψ0,c

sup
h∈Hr

D(ψ, h;α) ≤ C2(r, c) + tr Γψ
∗
c

0 (α),

we can choose the “optimal level” of truncation minimizing the expression

C2(r, c) + tr Γψ
∗
c

0 (α)

over all constants c for which Eq. (2.28) has a solution A∗
c(α). This can be done by using the numerical

methods.
For the problem of existence and uniqueness of solution of Eq. (2.28), we refer the reader to [34].
In the case of a one-dimensional parameter α (i.e., m = 1), the optimal level c∗ of truncation is

given as a unique solution of the following equation (see [20, 21]):

r2c2 =

t∫
0

[ȧ(s, Y 0(α);α)]c−cȧ(s, Y
0(α);α) ds−

t∫
0

([ȧ(s, Y 0(α);α)]c−c)
2 ds,

where [x]ba = (x ∧ b) ∨ a and the resulting function

ψ∗(s, x;α) = [ȧ(s, x;α)]c
∗
−c∗ , 0 ≤ s ≤ t, x ∈ Ct,

is (Ψ0,Hr) optimal in the following minimax sense:

sup
h∈Hr

D(ψ∗, h;α) = inf
ψ∈Ψ

sup
h∈Hr

D(ψ, h;α).

3. Optimal Mean-Variance Robust Hedging

3.1. A financial market model. Let (Ω,F , F = (Ft)0≤t≤T , P ) be a filtered probability space with
filtration F satisfying the usual conditions, where T ∈ (0,∞] is a fixed time horizon. Assume that F0

is trivial and FT = F .
There exist d + 1, d ≥ 1, primitive assets: one bound whose price process is assumed to be 1 at

all times, and d risky assets (stocks) whose R
d-valued price process X = (Xt)0≤t≤T is a continuous

semimartingale given by the relation

dXt = diag(Xt) dRt, X0 > 0, (3.1)
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where diag(X) denotes the diagonal (d × d)-matrix with diagonal entries X1, . . . , Xd, and the yield
process R = (Rt)0≤t≤T is an R

d-valued continuous semimartingale satisfying the stricture condition
(SC). That is (see [37]),

dRt = d〈M̃〉tλt + dM̃t, R0 = 0, (3.2)

where M̃ = (M̃t)0≤t≤T is an R
d-valued continuous martingale, M̃ ∈ M2

0,loc(P ), λ = (λt)0≤t≤T is an
F -predictable R

d-valued process, and the mean-variance tradeoff (MVT) process K̃ = (K̃t)0≤t≤T of
the process R,

K̃t :=

t∫
0

λ′sd〈M̃〉sλs = 〈λ′ · M̃〉t <∞ P -a.s., t ∈ [0, T ]. (3.3)

Remark 3.1. Recall that all vectors are assumed to be column vectors.

Suppose that the martingale M̃ has the form

M̃ = σ ·M, (3.4)

where M = (Mt)0≤t≤T is an R
d-valued continuous martingale, M ∈ M2

0,loc(P ) with d〈M i,M j〉t =
Id×dij

dCt, Id×d is the identity matrix, and C = (Ct)0≤t≤T is a continuous increasing bounded process
with C0 = 0.

Further, let σ = (σt)0≤t≤T be a (d× d)-matrix valued, F -predictable process with rank(σt) = d for
any t, P -a.s., the process (σ−1

t )0≤t≤T is locally bounded, and
T∫

0

σt d〈M〉tσ′t <∞ P -a.s. (3.5)

Assume that the following condition is satisfied.
There exists a fixed R

d-valued, F -predictable process k = (kt)0≤t≤T such that

λ = λ(σ) = (σ′)−1k. (3.6)

In this case, from (3.2), we obtain

dRt = d〈M̃〉tλt + dM̃t = σtd〈M〉tσ′t(σ′t)−1kt + σtdMt = σt(d〈M〉tkt + dMt) (3.7)

and

K̃t =

t∫
0

λ′sd〈M̃〉sλs =

t∫
0

k′t((σ
′
t)
−1)′σtd〈M̃〉tσ′t(σ′t)−1kt =

t∫
0

k′td〈M〉tkt = 〈k ·M〉t := Kt.

From (3.3), we have
Kt <∞ P -a.s. for all t ∈ [0, T ]. (3.8)

Thus, if we introduce the process M0 = (M0
t )0≤t≤T by the relation

dM0
t = d〈M〉tkt + dMt, M0

0 = 0, (3.9)

then the MVT process K = (Kt)0≤t≤T of R
d-valued semimartingale M0 is finite, and hence M0

satisfies SC.
Finally, the scheme (3.1), (3.2), (3.4), (3.6), and (3.9) can be rewritten in the following form:

dXt = diag(Xt) dRt, X0 > 0,

dRt = σt dM
0
t , R0 = 0,

dM0
t = d〈M〉tkt + dMt, M0 = 0,

(3.10)

where σ and k satisfy (3.5) and (3.8), respectively.
This is our financial market model.
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3.2. Characterization of variance-optimal ELMM (equivalent local martingale measure).
A key role in mean-variance hedging is played by variance-optimal ELMM (see, e.g., [11, 33]). Here,
we collect some facts characterizing this measure.

We start from the remark that the sets ELMMs for processes X, R, and M0 of the form (3.10)
coincide. Hence we can consider the simplest process M0.

Introduce the notation

Me
2 :=

{
Q ∼ P :

dQ

dP
∈ L2(P ), M0 is a Q-local martingale

}

and assume that
(c1) Me

2 �= ∅.

A solution P̃ of the optimization problem

EE2
T (MQ) → inf

Q∈Me
2

is called a variance-optimal ELMM. Here,

dQ

dP

∣∣∣
FT

= ET (MQ),

and (Et(MQ))0≤t≤T is the Dolean exponential of martingale MQ.
It is well known (see, e.g., [37, 38]) that under condition (c1), a variance-optimal ELMM P̃ exists.
Denote

z̃T :=
dP̃

dP

∣∣∣
FT

,

and introduce the RCLL process z̃ = (z̃t)0≤t≤T by the relation

z̃t = EP̃ (z̃T /FT ), 0 ≤ t ≤ T.

Then, by [37, 38],

z̃T = z̃0 +

T∫
0

ζ ′t dM
0
t , (3.11)

where ζ = (ζt)0≤t≤T is the R
d-valued F -predictable process with

T∫
0

ζ ′t d〈M〉tζt <∞

and the process
( t∫

0

ζ ′sdM0
s

)
0≤t≤T

is a P̃ -martingale.

Relation (3.11) easily implies that the process z̃ is actually continuous.
Suppose, in addition to (c1), that the following condition is satisfied:

(c*) all P -local martingales are continuous.
This technical assumption is satisfied in stochastic volatility models, where F = Fw is the natural

filtration generated by the Wiener process.
It was shown in [25, 34] that under conditions (c1) and (c*), the density z̃T of the variance optimal

ELMM is uniquely characterized by the relation

z̃T =
ET ((ϕ− k)′ ·M0)
EET ((ϕ− k)′ ·M0)

, (3.12)
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where ϕ, together with the pair (L, c), is a unique solution of the equation

ET ((ϕ− 2k)′ ·M)
ET (L)

= cE2
T (−k′ ·M), (3.13)

where L ∈M2
0,loc(P ), 〈L,M〉 = 0, and c is a constant.

Moreover, the process ζ = (ζt)0≤t≤T from (3.11) has the form

ζt = (ϕt − kt)Et((ϕ− k)′ ·M0). (3.14)

Here, ϕ = (ϕt)0≤t≤T is an R
d-valued, F -predictable process with

T∫
0

ϕ′
t d〈M〉tϕt <∞.

Let τ be the F -stopping time and 〈k′ ·M〉Tτ = 〈k′ ·M〉T − 〈k′ ·M〉τ .
Proposition 3.1 (see [3, 18]). (1) Equation (3.13) is equivalent to the equation

ET (ϕ′ ·M∗)
ET (L)

= ce〈k
′·M〉T , (3.15)

where the R
d-valued process M∗ = (M∗

t )0≤t≤T is given by the relation

dM∗
t = 2d〈M〉tkt + dMt, M∗

0 = 0.

(2) (a) If there exists a martingale m = (mt)0≤t≤T , m ∈ M2
0,loc(P ), such that

e−〈k′·M〉T = c+mT , 〈m,M〉 = 0, (3.16)

then ϕ ≡ 0 and LT =
T∫
0

1
c+m dms solve Eq. (3.15). In this case,

z̃T =
ET (−k′ ·M0)
EET (−k′ ·M0)

, (3.17)

the process ζ = (ζt)0≤t≤T from (3.11) is equal to

ζt = −ktEt(−k′ ·M0),

and

E

[(
z̃T
z̃τ

)2 /
Fτ

]
=

1
E(e−〈k′·M〉Tτ /Fτ )

.

(b) If there exist an R
d-valued F -predictable process � = (�t)0≤t≤T ,

T∫
0

�′td〈M〉�t <∞, and

e〈k
′·M〉T = c+

T∫
0

�′t dM
∗
t ,

then L ≡ 0 and

ϕt =
�t

c+
t∫
0

�′sdM∗
s

solve Eq. (3.15). In this case,

z̃T = ET (−k′ ·M) (:= ẑT , the density of the minimal martingale measure P̂ ),
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and

E

((
z̃T
z̃τ

)2 /
Fτ

)
= EP

∗
(e〈k

′·M〉Tτ
/Fτ ),

where dP ∗ = ET (−2k′ ·M)dP .

Proof. (1) By the Yor formula,

ET
(
ϕ− 2k)′ ·M)

= ET (ψ′ ·M − 2k′ ·M)

= ET
(
ϕ′ ·

(
M + 2

·∫
0

d〈M〉tkt
)
− 2

·∫
0

ψ′
td〈M〉tkt − 2k′ ·M

)

= ET (ϕ′ ·M∗)ET (−2k′ ·M),

and
E2
T (−k′ ·M) = ET (−2k′ ·M)e〈k

′·M〉T .
The assertion follows.

(2) (a) First, note that 〈L,M〉 = 0. Further, by this formula, we can write

ln(c+mt) − ln c =

t∫
0

1
c+ms

dms − 1
2

t∫
0

1
(c+ms)2

d〈m〉s.

Hence
eln(c+mT )−ln c = ET (L),

and thus,

ET (L) =
c+mT

c
=
e−〈k′·M〉T

c
.

Finally, by the Bayes rule and the Girasnov theorem,

E

((
z̃T
z̃τ

)2 /
Fτ

)
=
E(ET (−2k′ ·M)e−〈k′·M〉T /Fτ )
E2(ET (−k′ ·M)e−〈k′·M〉T /Fτ )

=
E∗(c+mT /Fτ )E2

T (−k′ ·M)

(Ê(c+mτ/Fτ ))2E2
T (−2k′ ·M)

=
c+mτ

(c+mτ )2
· e〈k′·M〉τ =

1
E(e〈k′ ·M〉Tτ/Fτ )

.

The proof of case (2)(b) is similar. The proposition is proved.

3.3. Misspecified asset price model and robust hedging. Denote by BallL(0, r), r ∈ [0,∞),
the closed r-radius ball in the space L = L∞(dt× dP ), centered at the origin, and let

H :=
{
h = {hij}, i, j = 1̂, d : h is an F -predictable (d× d)-matrix-valued process, (3.18)

rank(h) = d, hij ∈ BallL(0, r), r ∈ [0,∞)
}
. (3.19)

The class H is called the class of alternatives.
Fix the value of the small parameter δ > 0, as well as the (d×d)-matrix-valued, F -predictable process

σ0 = (σ0
t )0≤t≤T = ({σ0

ij,t}, 1 ≤ i, j ≤ d)t such that |σ0
ij,t| ≤ const, ∀i, j, t, the matrix (σ0)2 = σ0(σ0)′

is uniformly elliptic, i.e., for each vector vt = (v′t, . . . , vdt ) with probability 1
d∑

i,j=1

(σ0)2ij,tv
i
tv
j
t ≥ c

d∑
i=1

|vit|2, c > 0, 0 ≤ t ≤ T, (3.20)

and denote
Aδ = {σ : σ = σ0 + δh, h ∈ H}. (3.21)
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Proposition 3.2. Every σ from the class Aδ for a sufficiently small δ is an F -predictable (d × d)-
valued process with bounded elements and the matrix σ2 = σσ′ is uniformly elliptic.

Proof. The process σ is F -predictable as a linear combination of F -predictable processes. Further,

|σij,t| = |σ0
ij,t + δhij,t| ≤ const+δr, 0 < δ � 1.

From (3.20) and (3.21), for each vector νt = (ν1
t , . . . , ν

d
t ), we have

d∑
i,j=1

(σ2)ij,tνitν
j
t =

d∑
i,j=1

(σ0 + δh)(σ0 + δh)′ij,tν
i
tν
j
t

=
d∑

i,j=1

(σ0(σ0)′)ij,tνitν
j
t + δ

d∑
i,j=1

(σ0h′)ij,tνitν
j
t + δ

d∑
i,j=1

(h(σ0)′)ij,tνitν
j
t + δ2

d∑
i,j=1

(hh′)ij,tνitν
j
t . (3.22)

Note now that the entries of the matrices σ0 and h are bounded. Hence, choosing δ sufficiently
small, we obtain

max
(
δ|(σ0h′)ij,t|, δ|(h(σ0))ij,t|, δ2|(hh′)ij,t|

) ≤ ε

3
.

Therefore, from (3.20) and (3.22), we obtain

d∑
i,j=1

σ2
ij,tν

i
tν
j
t ≥ (c− const ·ε)

d∑
i,j=1

|νit |2 for each ε > 0.

The proposition is proved.

Consider the set of processes {Rσ(or Xσ), σ ∈ Aδ}, which represents the misspecified asset price
model.

Define the class of admissible trading strategies Θ = Θ(σ0).

Proposition 3.3. For each R
d-valued F -predictable process θ = (θt)0≤t≤T and for each σ ∈ Aδ, δ > 0,

aE

T∫
0

|θt|2dCt ≤ E

T∫
0

θ′tσtd〈M〉tσ′tθt = E

T∫
0

θ′tσtσ
′
tθtdCt ≤ AE

T∫
0

|θt|2dCt,

where the constants a and A are such that 0 < a ≤ A < ∞ and the parameter δ > 0 is sufficiently
small.

Proof. Recall that d〈M〉t = d〈M i,M j〉t = Id×dij dCt. Hence

E

T∫
0

θ′tσtd〈M〉tσ′tθt = E

T∫
0

θ′tσtσ
′
tθt dCt.

Further, since σ = σ0 + δh and entries of the matrices σ0 and h are bounded, the same is true for
the entries of the matrix σ with 0 ≤ δ ≤ const. Thus, using the inequality ab ≤ 2(a2 + b2), we obtain

E

T∫
0

θ′tσtσ
′
tθt dCt ≤ AE

T∫
0

|θt|2dCt.

On the other hand, by Proposition 3.2, the matrix σ2 = σσ′ is uniformly elliptic for a sufficiently small
δ, which yields the first inequality.

282



Definition 3.1. The class Θ = Θ(σ0) is a class of R
d-valued F -predictable processes θ = (θt)0≤t≤T

such that

E

T∫
0

|θt|2dCt <∞. (3.23)

Let θ ∈ Θ be the dollar amount (rather than the number of shares) invested in the stock Xσ,
σ ∈ Aδ. Then for each σ ∈ Aδ, the trading gains induced by the self-financing portfolio strategy
associated with θ have the form

Gt(σ, θ) =

t∫
0

θ′s dR
σ
s , 0 ≤ t ≤ T, (3.24)

where Rd = (Rdt )0≤t≤T is the yield process given by (3.10).
Introduce the following condition:

(c2) There exists ELMM Q such that the density process z = zQ satisfies the reverse Hölder inequal-
ity R2(P ); see the definition in [33].

It is well known that under conditions (c1) and (c2), the density process z̃ = (z̃t)≤t≤T of the
variance-optimal ELMM also satisfies R2(P ) (see [8]).

Now under conditions (c1) and (c2), the r.v. GT (σ, θ) ∈ L2(P ) for all σ ∈ Aδ, and the space
GT (σ,Θ) is closed in L2(P ), ∀σ ∈ Aδ (see, e.g., [33, Theorem 2]).

A contingent claim is an FT -measurable square-integrable r.v. H, which models the payoff from a
financial product at the maturity date T .

The problem we are interested in is to find the robust hedging strategy for a contingent claim H
in the incomplete financial market model described above with misspecified asset price process Xσ,
σ ∈ Aδ, by using the mean-variance approach.

For each σ ∈ Aδ, the total loss of a hedger, who starts from the initial capital x, uses the strategy
θ, believes that the stock price process follows Xσ, and has to pay a random amount H at the date
T , is H-x-GT (σ, θ).

Denote
J (σ, θ) := E(H − x−GT (σ, θ))2. (3.25)

One setting of the robust mean-variance hedging problem consist in solving the optimization problem

minimize sup
σ∈Aδ

J (σ, θ) over all strategies θ ∈ Θ. (3.26)

We “slightly” change this problem using the approach developed in [41], which is based on the
following approximation:

sup
σ∈Aδ

J (σ, θ) = exp
{

sup
h∈H

lnJ (σ0 + δh, θ)
} � exp

{
sup
h∈H

[
lnJ (σ0, θ) + δ

DJ (σ0, h, θ)
J (σ0, θ)

]}

= J (σ0, θ) exp
{
δ sup
h∈H

DJ (σ0, h, θ)
J (σ0, θ)

}
,

where

DJ (σ0, h, θ) :=
d

dδ
J (σ0 + δh, θ)|δ=0 = lim

δ→0

J (σ0 + δh, θ) − J (σ0, θ)
δ

,

is the Gateaux differential of the functional J at the point σ0 in the direction h.
Approximate (in leading order δ) the optimization problem (3.26) by the problem

minimize J (σ0, θ) exp
{
δ sup
h∈H

DJ (σ0, h, θ)
J (σ0, θ)

}
over all strategies θ ∈ Θ. (3.27)
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Note that each solution θ∗ of problem (3.27) minimizes J (σ0, θ) under the constraint

sup
h∈H

DJ (σ0, h, θ)
J (σ0, θ)

≤ c := sup
h∈H

DJ (σ0, h, θ∗)
J (σ0, θ∗)

.

This characterization of an optimal strategy θ∗ of problem (3.27) leads to the following definition.

Definition 3.2. A trading strategy θ∗ ∈ Θ is called the optimal mean-variance robust trading strategy
against the class of alternatives H if it is a solution of the optimization problem

minimize J (σ0, θ) over all strategies θ ∈ Θ, subject to constraint sup
h∈H

DJ (σ0, h, θ)
J (σ0, θ)

≤ c, (3.28)

where c is some generic constant.

Remark 3.2. In contrast to the “mean-variance robust” trading strategy which associates with the
optimization problem (3.26) and control theory, we find the “optimal mean-variance robust” strategy
in the sense of Definition 3.2. Such an approach and term are common in robust statistics theory (see,
e.g., [12, 34]).

Does the suggested approach provide “good” approximation? Consider the following case.

Diffusion model with zero drift. Let the standard Wiener process w = (wt)0≤t≤T be given on the
complete probability space (Ω,F , P ). Denote by Fw = (Fw

t , 0 ≤ t ≤ T ) the P -augmentation of the
natural filtration Fw

t = σ(ws, 0 ≤ s ≤ t), 0 ≤ t ≤ T , generated by w.
Let the stock price process be modeled by the equation

dXσ
t = Xσ

t · σt dwt, Xσ
0 > 0, 0 ≤ t ≤ T,

where σ ∈ Aδ with
T∫

0

(σ0
t )

2 dt <∞

and h ∈ BallL∞(dt×dP )(0, r), 0 < r <∞. All considered processes are real-valued.
Denote by Rσ the yield process, i.e.,

dRσt = σt dwt, Rσ0 = 0, 0 ≤ t ≤ T.

The wealth at maturity T with the initial endowment x is equal to

V x,θ
T (σ) = x+

T∫
0

θt dR
σ
t .

Further, let the contingent claim H be the Fw
T -measurable P -square-integrable r.v.

Consider the optimization problem (3.26). It is easy to see that if σ ∈ Aδ, then

σ0
t − δr ≤ σt ≤ σ0

t + δr, 0 ≤ t ≤ T, P -a.s.

By the martingale representation theorem,

H = EH +

T∫
0

ϕHt dwt, P -a.s.,

where ϕH is the Fw-predictable process with

E

T∫
0

(ϕHt )2 dt <∞. (3.29)
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Hence

E
(
H − V x,θ

T (σ)
)2 = (EH − x)2 + E

T∫
0

(ϕHt − σtθt)2 dt.

From this, it directly follows that the process

σ∗t (θ) = (σ0
t − δr)I

{ϕH
t

θt
≥σ0

t }
I{θt �=0} + (σ0

t + δr)I
{ϕH

t
θt
<σ0

t }
I{θt �=0}, 0 ≤ t ≤ T, (3.30)

is a solution of the optimization problem

maximize E
(
H − V x,θ

T (σ)
)2 over all σ ∈ Aδ with a given θ ∈ Θ.

It remains to minimize (with respect to θ) the expression

E

T∫
0

(
ϕHt − σ∗t (θ)θt

)2
dt.

From (3.30), it easily follows that the equation (with respect to θ)

ϕHt − σ∗t (θ)θt = 0

has no solution, but

θ∗t =
ϕHt
σ0
t

I{σ0
t �=0}, 0 ≤ t ≤ T, (3.31)

solves problem. We assume that 0/0 := 0.
Now we consider the optimization problem (3.28).
For each fixed h,

J(σ, θ) = E
(
H − x−

T∫
0

θt dR
σ
t

)2
= E

(
H − x−

T∫
0

θtσ
0
t dwt − δ

T∫
0

θtht dwt

)2

= J(σ0, θ) − 2δE
[(
EH − x+

T∫
0

(
ϕHt − θtσ

0
t

)
dwt

) T∫
0

θtht dwt

]
+ δ2E

T∫
0

θ2
t h

2
t dt,

and hence

DJ(σ0, h; θ) = 2E

T∫
0

(
θtσ

0
t − ϕHt

)
θtht dt, (3.32)

as follows from (3.29), the definition of the class H, and the estimate

(
E

T∫
0

(
θtσ

0
t − ϕHt

)
θtht dt

)2 ≤ E

T∫
0

(
θtσ

0
t − θHt

)2
dt E

T∫
0

θ2
t h

2
t dt

≤ const · r2
(
E

T∫
0

θ2
t (σ

0
t )

2 dt+ E

T∫
0

(ϕHt )2 dt
)
E

T∫
0

θ2
t dt <∞. (3.33)

Since, further, DJ(σ0, h; θ) = 0 for h ≡ 0, using (3.33), we obtain

0 ≤ sup
h∈H

DJ(σ0, h; θ) <∞.
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Hence we can take 0 ≤ c <∞. Now if we substitute θ∗ from (3.31) into (3.32), then DJ(σ0, h; θ∗) = 0
for each h, and thus,

sup
h∈H

DJ(σ0, h; θ∗)

J(σ0, θ∗)
= 0.

Recall that θ∗ = arg min
θ∈ΘAδ

J(σ0, θ); we obtain that θ∗ defined by (3.31) is a solution of this optimization

problem as well.
Thus, we prove that
(a) the mean-variance robust trading strategy θ∗ = (θ∗t )0≤t≤T for the optimization problem (3.26)

is given by the formula

θ∗t =
ϕHt
σ0
t

I{σ0
t �=0};

(b) at the same time, this strategy is an optimal mean-variance robust trading strategy for the
optimization problem (3.28).

Hence, in this case, the suggested approach leads to the exact solution of the initial problem (3.26).
To solve problem (3.28) in general case, we need to calculate DJ (σ0, h, θ). Assume that k =

(kt)0≤t≤T = (ki,t, 1 ≤ i ≤ d)0≤t≤T from (3.10) is such that |ki,t| ≤ const for all i and t.
Following [11, 33], we introduce the probability measure Q̃ ∼ P on FT by the relation

dQ̃ =
z̃T
z̃0
dP̃

(
and hence dQ̃ =

z̃2
T

z̃0
dP

)
. (3.34)

Using [11, Proposition 5.1], we can write

J (σ, θ) = E
z̃2
T

z̃2
0

z̃2
0

z̃2
T

(
H − x−

T∫
0

θ′t dR
σ
t

)2

= z̃−1
0 EQ̃

z̃2
0

z̃2
T

(
H − x−

T∫
0

θ′tσt dM
0
t

)2

= z̃−1
0 EQ̃

(
Hz̃0
z̃T

− x−
T∫

0

ψ0
t (σ) d

z̃2
0

z̃2
t

−
T∫

0

(
ψ1
t (σ)

)′
d
M0
t

z̃t
z̃0

)2

:= J (σ, ψ0, ψ1) (3.35)

(or J (σ, ψ) with ψ = (ψ0, ψ1)′), where

ψ1
t = ψ1

t (σ) = σ′tθt, ψ0
t = ψ0

t (σ) =

t∫
0

θ′sσsdM
0
s − θ′tσtM

0
t , 0 ≤ t ≤ T. (3.36)

Thus,
ψ1
t (σ) = ψ1

t (σ
0) + δψ1

t (h), ψ0
t (σ) = ψ0

t (σ
0) + δψ0

t (h).
Let (following [33])

H

z̃T
z̃0 = E

(
H

z̃T
z̃0

)
+

T∫
0

(ψHt )′dUt + LT , (3.37)

be the Galtchouk–Kunita–Watanabe decomposition of the r.v. H
z̃T
z̃0 with respect to the R

(d+1)-

valued Q̃-local martingale U =
(
z̃0
z̃ ,

M0

z̃ z̃0
)′, where ψH = (ψ0,H , ψ1,H)′ ∈ L2(U, Q̃), the space of

F -predictable processes ψ such that
∫
ψ′dU ∈ M2(Q̃) of the martingale, and L ∈ M2

0,loc(Q̃), L is
Q̃-strongly orthogonal to U .

Recall that
ψ = (ψ0, ψ1)′. (3.38)
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Then, using (3.35), (3.36), and (3.37), for each h, we can write

J (σ0 + δh, ψ) = J (σ0, ψ) + δ · 2z̃−1
0 EQ̃

{[(
x− EQ̃ H

z̃T
z̃0

)
− LT +

T∫
0

(ψt(σ0) − ψHt )′dUt
]

×
T∫

0

(ψt(h))
′dUt

}
+ δ2z̃−1

0 EQ̃

[ T∫
0

(ψt(h))
′dUt

]2

= J (σ0, ψ) + δ · 2z̃−1
0 EQ̃

[ T∫
0

(ψt(σ0) − ψHt )′dUt

T∫
0

(ψt(h))
′dUt

]
+ δ2z̃−1

0 EQ̃

[ T∫
0

(ψt(h))
′dUt

]2

. (3.39)

Using [33, Proposition 8], for each h, we have

z̃0
z̃T

Gr(h,Θ) =

{ T∫
0

(ψ(h))′dUt : ψ(h) ∈ L2(U, Q̃)

}
,

and hence, by (3.24),

EQ̃

( T∫
0

(ψt(h))′dUt

)2

= EQ̃
z̃2
0

z̃2
T

G2
T (h, θ) = z̃0EG

2
T (h, θ) = z̃0E

( T∫
0

θ′t dR
h
t

)2

= z̃0E

( T∫
0

θ′thtdM
0
t

)2

= z̃0E

( T∫
0

θ′thtd〈M〉tkt +

T∫
0

θ′thtdMt

)2

≤ const

[
E

( T∫
0

|θ′thtd〈M〉tkt|
)2

+ E

( T∫
0

θ′thtdMt

)2]
≤ const r2E

T∫
0

|θt|2dCt <∞. (3.40)

Further,

(
EQ̃

[ T∫
0

(ψt(σ0) − ψHt )′dUt

T∫
0

(ψt(h))′dUt

])2

≤ EQ̃

( T∫
0

(ψt(σ0) − ψHt )′dUt

)2

EQ̃

( T∫
0

(ψt(h))′dUt

)2

<∞. (3.41)

From these estimates, we conclude that

(1)

DJ (σ0, h, ψ) = 2z̃−1
0 EQ̃

T∫
0

(ψt(σ0) − ψHt )′d〈U〉tψt(h) <∞, (3.42)

owing to (3.40).
(2) DJ (σ0, h, ψ)|h≡0 = 0, since ψ(0) = 0 by (3.38) and (3.36). Thus,

sup
h∈H

DJ (σ0, h, ψ) ≥ 0. (3.43)
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(3) From (3.41) and (3.40), we obtain

(DJ (σ0, h, ψ))2 ≤ const z̃−2
0 r2EQ̃

T∫
0

(ψt(σ0) − ψHt )′d〈U〉t(ψt(σ0) − ψHt )E

T∫
0

|θt|2dCt <∞.

Thus, |DJ (σ0, h, ψ)| is estimated by an expression independent of h and is equal to zero if we
substitute ψt(σ0) ≡ ψHt , 0 ≤ t ≤ T .

Hence, by (3.43),

0 ≤ sup
h∈H

DJ (σ0, h, ψ)|ψ≡ψH ≤ sup
h∈H

|DJ (σ0, h, ψ)|∣∣
ψ≡ψH = 0. (3.44)

Further, from (3.43), it follows that we can take c ∈ [0,∞) in (3.28).
Now substituting ψ ≡ ψH in J (σ0, ψ) and DJ (σ0, h, ψ), we obtain

J (σ0, ψH) = min
ψ

J (σ0, ψ) = z̃−1
0 (EP̃H − x)2 + z̃−1

0 EQ̃L2
T

(see [11, Lemma 5.1]) and

sup
h∈H

DJ (σ0, h, ψH)
J (σ0, ψH)

= 0.

Hence the constraint of problem (3.28) is satisfied.

Remark 3.3. If x = EP̃H and LT ≡ 0, then we obtain

DJ (σ0, h, ψH)
J (σ0, ψH)

=
0
0

which is assumed to be zero, since if we consider the shifted risk functional J̃ = J +1, the optimization
problem and the optimal trading strategy are not changed, but DJ̃ (σ0, h, ψH) = DJ (σ0, h, ψH) = 0
and J̃ (σ0, ψH) = 1.

Finally, using [33, Proposition 8] we obtain the following theorem.

Theorem 3.1. In model (3.10) under conditions (c1) and (c2), the optimal mean-variance robust
trading strategy (in the sense of Definition 3.1) is given by the formula

θ∗t = ((σ0
t )

′)−1[ψ1,H
t + ζt(V ∗

t − (ψHt )′Ut)], 0 ≤ t ≤ T, (3.45)

where

ψHt = (ψ0,H
t , ψ1,H

t )′, Ut =
(
z̃0
z̃t
,
M0
t

z̃t
z̃0

)′
, V ∗

t =
z̃0
z̃t

(
x+

t∫
0

(ψHt )′dUt

)
,

ψHt and ζt are given by the relations (3.37) and (3.11), respectively, and z̃t is defined in (3.11).
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10. H. Föllmer and D. Sondermann, “Hedging of nonredundant contingent claims,” in: Contributions
to Mathematical Economics, North-Holland, Amsterdam (1986), pp. 205–223.

11. C. Gourieroux, J. P. Laurent, and H. Pham, “Mean-variance hedging and numéraire,” Math.
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