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Abstract

The recursive estimation problem of a one-dimensional parameter for statistical models associated with semimartingales is
considered. The asymptotic properties of recursive estimators are derived, based on the results on the asymptotic behavior of a
Robbins–Monro type SDE. Various special cases are considered.
c⃝ 2016 Published by Elsevier B.V. on behalf of Ivane Javakhishvili Tbilisi State University. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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0. Introduction

Beginning from the paper [1] of A. Albert and L. Gardner a link between Robbins–Monro (RM) stochastic
approximation algorithm (introduced in [2]) and recursive parameter estimation procedures was intensively exploited.
Later on recursive parameter estimation procedures for various special models (e.g., i.i.d. models, non i.i.d. models
in discrete time, etc.) have been studied by a number of authors using methods of stochastic approximation (see,
e.g., [3–12]). It would be mentioned the fundamental book [13] by M.B. Nevelson and R.Z. Khas’minski (1972)
between them.

In 1987 by N. Lazrieva and T. Toronjadze a heuristic algorithm of a construction of the recursive parameter
estimation procedures for statistical models associated with semimartingales (including both discrete and continuous
time semimartingale statistical models) was proposed [14]. These procedures could not be covered by the generalized
stochastic approximation algorithm with martingale noises (see, e.g., [15]), while in discrete time case the classical
RM algorithm contains recursive estimation procedures.

To recover the link between the stochastic approximation and recursive parameter estimation in [16–18] by
Lazrieva, Sharia and Toronjadze the semimartingale stochastic differential equation was introduced, which naturally
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includes both generalized RM stochastic approximation algorithms with martingale noises and recursive parameter
estimation procedures for semimartingale statistical models.

In the present work we are concerning with the construction of recursive estimation procedures for semimartingale
statistical models asymptotically equivalent to the MLE and M-estimators, embedding these procedures in the
Robbins–Monro type equation. For this reason in Section 1 we shortly describe the Robbins–Monro type SDE and
give necessary objects to state results concerning the asymptotic behavior of recursive estimator procedures.

In Section 2 we give a heuristic algorithm of constructing recursive estimation procedures for one-dimensional
parameter of semimartingale statistical models. These procedures provide estimators asymptotically equivalent to
MLE. To study the asymptotic behavior of these procedures we rewrite them in the form of the Robbins–Monro type
SDE. Besides, we give a detailed description of all objects presented in this SDE, allowing us separately study special
cases (e.g. discrete time case, diffusion processes, point processes, etc.).

In Section 4 we formulate main results concerning the asymptotic behavior of recursive procedures, asymptotically
equivalent to the MLE.

In Section 5, we develop recursive procedures, asymptotically equivalent to M-estimators.
Finally, in Section 6, we give various examples demonstrating the usefulness of our approach.

1. The Robbins–Monro type SDE

Let on the stochastic basis (Ω ,F, F = (Ft )t≥0, P) satisfying the usual conditions the following objects be given:

(a) the random field H = {Ht (u), t ≥ 0, u ∈ R1
} = {Ht (ω, u), t ≥ 0, ω ∈ Ω , u ∈ R1

} such that for each u ∈ R1 the
process H(u) = (Ht (u))t≥0 ∈ P (i.e. is predictable);

(b) the random field M = {M(t, u), t ≥ 0, u ∈ R1
} = {M(ω, t, u), ω ∈ Ω , t ≥ 0, u ∈ R1

} such that for each u ∈ R1

the process M(u) = (M(t, u))t≥0 ∈ M2
loc(P);

(c) the predictable increasing process K = (Kt )t≥0 (i.e. K ∈ V +
∩ P ).

In the sequel we restrict ourselves to the consideration of the following particular case: for each u ∈ R1 M(u) =

ϕ(u) · m + W (u) ∗ (µ− ν), where m ∈ Mc
loc(P), µ is an integer-valued random measure on (R × E,B(R+)× E),

ν is its P-compensator, (E, E) is the Blackwell space, W (u) = (W (t, x, u), t ≥ 0, x ∈ E) ∈ P ⊗ E . Here we also
mean that all stochastic integrals are well-defined.1

Later on by the symbol
 t

0 M(ds, us), where u = (ut )t≥0 is some predictable process, we denote the following
stochastic line integrals: t

0
ϕ(s, us) dms +

 t

0


E

W (s, x, us)(µ− ν)(ds, dx)

provided the latters are well-defined.
Consider the following semimartingale stochastic differential equation

zt = z0 +

 t

0
Hs(zs−) d Ks +

 t

0
M(ds, zs−), z0 ∈ F0. (1.1)

We call SDE (1.1) the Robbins–Monro (RM) type SDE if the drift coefficient Ht (u), t ≥ 0, u ∈ R1 satisfies the
following conditions: for all t ∈ [0,∞) P-a.s.

(A)
Ht (0) = 0,
Ht (u)u < 0 for all u ≠ 0.

The question of strong solvability of SDE (1.1) is well-investigated (see, e.g., [20]).
We assume that there exists a unique strong solution z = (zt )t≥0 of Eq. (1.1) on the whole time interval [0,∞) and

such that M ∈ M2
loc(P), where

Mt =

 t

0
M(ds, zs−).

Sufficient conditions for the latter can be found in [20].

1 See [19] for basic concepts and notations.



N. Lazrieva, T. Toronjadze / Transactions of A. Razmadze Mathematical Institute 171 (2017) 57–75 59

The unique solution z = (zt )t≥0 of RM type SDE (1.1) can be viewed as a semimartingale stochastic approximation
procedure.

In [16,17], the asymptotic properties of the process z = (zt )t≥0 as t → ∞ are investigated, namely, convergence
(zt → 0 as t → ∞ P-a.s.), rate of convergence (that means that for all δ < 1

2 , γ δt zt → 0 as t → ∞ P-a.s., with the
specially chosen normalizing sequence (γt )t≥0) and asymptotic expansion

χ2
t z2

t =
L t

⟨L⟩
1/2
t

+ Rt

with the specially chosen normalizing sequence χ2
t and martingale L = (L t )t≥0, where Rt → 0 as t → ∞

(see [16,17] for definition of objects χ2
t , L t and Rt ).

2. Basic model and regularity

Our object of consideration is a parametric filtered statistical model

E = (Ω ,F ,F = (Ft )t≥0, {Pθ ; θ ∈ R})

associated with one-dimensional F-adapted RCLL process X = (X t )t≥0 in the following way: for each θ ∈ R1 Pθ
is assumed to be the unique measure on (Ω ,F) such that under this measure X is a semimartingale with predictable
characteristics (B(θ),C(θ), νθ ) (w.r.t. standard truncation function h(x) = x I{|x |≤1}). For simplicity assume that all
Pθ coincide on F0.

Suppose that for each pair (θ, θ ′) Pθ
loc
∼ Pθ ′ . Fix some θ0 ∈ R and denote P = Pθ0 , B = B(θ0), C = C(θ0),

ν = νθ0 .
Let ρ(θ) = (ρt (θ))t≥0 be a local density process (likelihood ratio process)

ρt (θ) =
d Pθ,t
d Pt

,

where for each θ Pθ,t := Pθ |Ft , Pt := P|Ft are restrictions of measures Pθ and P on Ft , respectively.
As it is well-known (see, e.g., [21, Ch. III, §3d, Th. 3.24]) for each θ there exists a P -measurable positive function

Y (θ) = {Y (ω, t, x; θ), (ω, t, x) ∈ Ω × R+ × R},

and a predicable process β(θ) = (βt (θ))t≥0 with

|h(Y (θ)− 1)| ∗ ν ∈ A+

loc(P), β2(θ) ◦ C ∈ A+

loc(P),

and such that

(1) B(θ) = B + β(θ) ◦ C + h(Y (θ)− 1) ∗ ν,

(2) C(θ) = C, (3) νθ = Y (θ) · ν.
(2.1)

In addition, the function Y (θ) can be chosen in such a way that

at := ν({t}, R) = 1 ⇐⇒ at (θ) := νθ ({t}, R) =


Y (t, x; θ)ν({t})dx = Yt (θ) = 1.

We give a definition of the regularity of the model based on the following representation of the density process as
exponential martingale:

ρ(θ) = E(M(θ)),

where

M(θ) = β(θ) · X c
+


Y (θ)− 1 +

Y (θ)− a

1 − a
I{0<a<1}


∗ (µ− ν) ∈ Mloc(P), (2.2)

Et (M) is the Dolean exponential of the martingale M (see, e.g., [19]). Here X c is a continuous martingale part of X
under measure P .
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We say that the model is regular if for almost all (ω, t, x) the functions β : θ → βt (ω; θ) and Y : θ → Y (ω, t, x; θ)

are differentiable (notation β̇(θ) :=
∂
∂θ
β(θ), Ẏ (θ) :=

∂
∂θ

Y (θ)) and differentiability under integral sign is possible.
Then

∂

∂θ
ln ρ(θ) = L(Ṁ(θ),M(θ)) := L(θ) ∈ Mloc(Pθ ),

where L(m,M) is the Girsanov transformation defined as follows: if m,M ∈ Mloc(P) and Q ≪ P with d Q
d P = E(M),

then

L(m,M) := m − (1 +1M)−1
◦ [m,M] ∈ Mloc(Q).

It is not hard to verify that

L(θ) = β̇(θ) · (X c
− β(θ) ◦ C)+ Φ(θ) ∗ (µ− νθ ), (2.3)

where

Φ(θ) =
Ẏ (θ)

Y (θ)
+

ȧ(θ)

1 − a(θ)

with I{a(θ)=1}ȧ(θ) = 0, and 0/0 = 0 (recall that ∂
∂θ

Y (θ) = ȧ(θ)).
Indeed, due to the regularity of the model, we have

Ṁ(θ) = β̇(θ) · X c
+


Ẏ (θ)−

ȧ(θ)

1 − a
I(0<a<1)


∗ (µ− ν)

and (2.3) simply follows from (1.16)–(1.18) of [22, Part I] with

g(θ) = Y (θ)− 1 +
a(θ)− a

1 − a
I(0<a<1),

ψ(θ) = Ẏ (θ)−
ȧ(θ)

1 − a
I(0<a<1).

The empirical Fisher information process is It (θ) = [L(θ), L(θ)]t and if we assume that for each θ ∈ R1L(θ) ∈

M2
loc(Pθ ), then the Fisher information process is

It (θ) = ⟨L(θ), L(θ)⟩t .

3. Recursive estimation procedure for MLE

In [14], a heuristic algorithm was proposed for the construction of recursive estimators of unknown parameter θ
asymptotically equivalent to the maximum likelihood estimator (MLE).

This algorithm was derived using the following reasons:
Consider the MLE θ = (θt )t≥0, where θt is a solution of estimational equation

L t (θ) = 0.

The question of solvability of this equation is considered in [22, Part II].
Assume that

(1) for each θ ∈ R1, It (θ) → ∞ as t → ∞, Pθ -a.s., the process (It (θ))
1/2(θt − θ) is Pθ -stochastically bounded and,

in addition, the process (θt )t≥0 is a Pθ -semimartingale;
(2) for each pair (θ ′, θ) the process L(θ ′) ∈ M2

loc(Pθ ′) and is a Pθ -special semimartingale;
(3) the family (L(θ), θ ∈ R1) is such that the Itô–Ventzel formula is applicable to the process (L(t,θt ))t≥0 w.r.t. Pθ

for each θ ∈ R1;
(4) for each θ ∈ R1 there exists a positive increasing predictable process (γt (θ))t≥0, γ0 > 0, asymptotically equivalent

to I −1
t (θ), i.e.

γt (θ)It (θ)
Pθ
→ 1 as t → ∞.
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Under these assumptions using the Ito–Ventzel formula for the process (L(t,θt ))t≥0 we get an “implicit” stochastic
equation for θ = (θt )t≥0. Analyzing the orders of infinitesimality of terms of this equation and rejecting the high order
terms we get the following SDE (recursive procedure)

dθt = γt (θt−)L(dt, θt−), (3.1)

where L(dt, ut ) is a stochastic line integral w.r.t. the family {L(t, u), u ∈ R1, t ∈ R+} of Pθ -special semimartingales
along the predictable curve u = (ut )t≥0.

Note that in many cases under consideration one can choose γt (θ) = (I −1
t (θ)+ 1)−1, or in ergodic situations such

as i.i.d. case, ergodic diffusion one can replace It (θ) by another process equivalent to them (see examples).
To give an explicit form to the SDE (3.1) for the statistical model associated with the semimartingale X assume for

a moment that for each (u, θ) (including the case u = θ )

|Φ(u)| ∗ µ ∈ A+

loc(Pθ ). (3.2)

Then for each pair (u, θ) we have

Φ(u) ∗ (µ− νu) = Φ(u) ∗ (µ− νθ )+ Φ(u)


1 −
Y (u)

Y (θ)


∗ νθ .

Based on this equality one can obtain the canonical decomposition of Pθ -special semimartingale L(u) (w.r.t.
measure Pθ ):

L(u) = β̇(u) ◦ (X c
− β(θ) ◦ C)+ Φ(u) ∗ (µ− νθ )+ β̇(u)(β(θ)− β(u)) ◦ C + Φ(u)


1 −

Y (u)

Y (θ)


∗ νθ .

(3.3)

Now, using (3.3) the meaning of L(dt, ut ) is t

0
L(ds, us−) =

 t

0
β̇s(us−)d(X

c
− β(θ) ◦ C)s +

 t

0


Φ(s, x, us−)(µ− νθ )(ds, dx)

+

 t

0
β̇s(us)(βs(θ)− βs(us))dCs +

 t

0


Φ(s, x, us−)


1 −

Y (s, x, us−)

Y (s, x, θ)


νθ (ds, dx).

Finally, the recursive SDE (3.1) takes the form

θt = θ0 +

 t

0
γs(θs−)β̇s(θs−)d(X

c
− β(θ) ◦ C)s +

 t

0


γs(θs−)Φ(s, x, θs−)(µ− νθ )(ds, dx)

+

 t

0
γs(θ)β̇s(θs)(βs(θ)− βs(θs))dCs

+

 t

0


γs(θs−)Φ(s, x, θs−)


1 −

Y (s, x, θs−)

Y (s, x, θ)


νθ (ds, dx). (3.4)

Remark 3.1. One can give more accurate than (3.2) sufficient conditions (see, e.g., [21,19]) to ensure the validity of
decomposition (3.3).

Assume that there exists a unique strong solution (θt )t≥0 of the SDE (3.4).
Fix arbitrary θ ∈ R1. To investigate the asymptotic properties, under measure Pθ , of recursive estimators (θt )t≥0

as t → ∞, namely, a strong consistency, rate of convergence and asymptotic expansion we reduce the SDE (3.4) to
the Robbins–Monro type SDE.

For this aim denote zt = θt − θ . Then (3.4) can be rewritten as

zt = z0 +

 t

0
γs(θ + zs−)β̇(θ + zs−)(βs(θ)− βs(θ + zs−))dCs

+

 t

0


γs(θ + zs−)Φ(s, x, θ + zs−)


1 −

Y (s, x, θ + zs−)

Y (s, x, θ)


νθ (ds, dx)
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+

 t

0
γs(θ + zs)β̇s(θ + zs)d(X

c
− β(θ) ◦ C)s

+

 t

0


γs(θ + zs−)Φ(s, x, θ + zs−)(µ− νθ )(ds, dx). (3.5)

For the definition of the objects K θ , {H θ (u), u ∈ R1
} and {Mθ (u), u ∈ R1

} we consider such a version of
characteristics (C, νθ ) that

Ct = cθ ◦ Aθt ,

νθ (ω, dt, dx) = d Aθt Bθω,t (dx),

where Aθ = (Aθt )t≥0 ∈ A+

loc(Pθ ), cθ = (cθt )t≥0 is a nonnegative predictable process, and Bθω,t (dx) is a transition
kernel from (Ω × R+,P) in (R,B(R)) with Bθω,t ({0}) = 0 and

1Aθt Bθω,t (R) ≤ 1

(see [21, Ch. 2, §2, Prop. 2.9]).
Put K θ

t = Aθt ,

H θ
t (u) = γt (θ + u)


β̇t (θ + u)(βt (θ)− βt (θ + u))cθt +


Φ(t, x, θ + u)


1 −

Y (t, x, θ + u)

Y (t, x, θ)


Bθω,t (dx)


,

(3.6)

Mθ (t, u) =

 t

0
γs(θ + u)β̇s(θ + u)d(X c

− β(θ) ◦ C)s +

 t

0


γs(θ + u)Φ(s, x, θ + u)(µ− νθ )(ds, dx).

(3.7)

Assume that for each u, u ∈ R, Mθ (u) = (Mθ (t, u))t≥0 ∈ M2
loc(Pθ ). Then

⟨Mθ (u)⟩t =

 t

0
(γs(θ + u)β̇s(θ + u))2cθs d Aθs +

 t

0
γ 2

s (θ + u)


Φ2(s, x, θ + u)Bθω,s(dx)


d Aθ,cs

+

 t

0
γ 2

s (θ + u)Bθω,t (R)


Φ2(s, x, θ + u)qθω,s(dx)

− as(θ)


Φ(s, x, θ + u)qθω,s(dx)

2
d Aθ,ds ,

where as(θ) = 1Aθs Bθω,s(R), qθω,s(dx)I{as (θ)>0} =
Bθω,s (dx)
Bθω,s (R)

I{as (θ)>0}.

Now we give a more detailed description of Φ(θ), I (θ), H θ (u) and ⟨Mθ (u)⟩. This allows us to study the special
cases separately (see Remark 3.2 below). Denote

dνc
θ

dνc := F(θ),
qθω,t (dx)

qω,t (dx)
:= fω,t (x, θ) (:= ft (θ)).

Then

Y (θ) = F(θ)I{a=0} +
a(θ)

a
f (θ)I{a>0}

and

Ẏ (θ) = Ḟ(θ)I{a=0} +


ȧ(θ)

a
f (θ)+

a(θ)

a
ḟ (θ)


I{a>0}.

Therefore

Φ(θ) =
Ḟ(θ)

F(θ)
I{a=0} +


ḟ (θ)

f (θ)
+

ȧ(θ)

a(θ)(1 − a(θ))


I{a>0} (3.8)

with I{a(θ)>0}

 ḟ (θ)
f (θ) qθ (dx) = 0.
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Remark 3.2. Denote β̇(θ) = ℓc(θ), Ḟ(θ)
F(θ) := ℓπ (θ), ḟ (θ)

f (θ) := ℓδ(θ), ȧ(θ)
a(θ)(1−a(θ)) := ℓb(θ).

Indices i = c, π, δ, b carry the following loads: “c” corresponds to the continuous part, “π” to the Poisson type
part, “δ” to the predictable moments of jumps (including a main special case—the discrete time case), “b” to the
binomial type part of the likelihood score ℓ(θ) = (ℓc(θ), ℓπ (θ), ℓδ(θ), ℓb(θ)).

In these notations we have for the Fisher information process:

It (θ) =

 t

0
(ℓc

s(θ))
2dCs +

 t

0


(ℓπs (x; θ))2 Bθω,s(dx)d Aθ,cs

+

 t

0
Bθω,s(R)


(ℓδs(x; θ))2qθω,s(dx)


d Aθ,ds +

 t

0
(ℓb

s (θ))
2(1 − as(θ))d Aθ,ds . (3.9)

For the random field H θ (u) we have

H θ
t (u) = γt (θ + u)


ℓc

t (θ + u)(βt (θ)− βt (θ + u))cθt

+


ℓπt (x; θ + u)


1 −

Ft (x; θ + u)

Ft (x; θ)


Bθω,t (dx)I

{1Aθt =0}

+


ℓδt (x; θ + u)qθω,t (dx)ℓb

t (θ + u)
at (θ)− at (θ + u)

at (θ)


Bθω,t (R)I{1Aθt >0}

. (3.10)

Finally, we have for ⟨Mθ (u)⟩:

⟨Mθ (u)⟩t =

γ (θ + u)ℓc(θ + u)

2 cθ ◦ Aθt +

 t

0
γ 2

s (θ + u)

(ℓπs (x; θ + u))2 Bθω,s(dx)d Aθ,cs

+

 t

0
γ 2

s (θ + u)Bθω,s(R)


(ℓδs(x; θ + u)+ ℓb

s (θ + u))2qθω,s(dx)

− as(θ)


(ℓδs(x; θ + u)+ ℓb

s (θ + u))qθω,s(dx)

2
d Aθ,ds . (3.11)

Thus, we reduced SDE (3.5) to the Robbins–Monro type SDE with K θ
t = Aθt , and H θ (u) and Mθ (u) defined by

(3.6) and (3.7), respectively.
As it follows from (3.6), (3.10)

H θ
t (0) = 0 for all t ≥ 0, Pθ -a.s.

As for condition (A) to be satisfied it is enough to require that for all t ≥ 0, u ≠ 0 Pθ -a.s.

β̇t (θ + u)(βt (θ)− βt (θ + u)) < 0,
Ḟ(t, x, θ + u)

F(t, x, θ + u)


1 −

F(t, x; θ + u)

F(t, x; θ)


Bθω,t (dx)


I
{1Aθt =0}

u < 0,
ḟ (t, x; θ + u)

f (t, x; θ + u)
qθt (dx)


I
{1Aθt >0}

u < 0,

ȧt (θ + u)(at (θ)− at (θ + u))u < 0,

and the simplest sufficient conditions for the latter ones are the strong monotonicity (P-a.s.) of functions β(θ), F(θ),
f (θ) and a(θ) w.r.t. θ .

4. Main results

We are ready to formulate main results about asymptotic properties of recursive estimators {θt , t ≥ 0} as t → ∞,
(Pθ -a.s.), which is the same of solution zt , t ≥ 0, of Eq. (3.5).
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For simplicity we restrict ourselves by the case when semimartingale X = (X t )t≥0 is left quasi-continuous, so
ν(ω; {t}, R) = 0 for all t ≥ 0, P-a.s., and Aθ = (Aθt )t≥0 is a continuous process. In this case

H θ
t (u) = γt (θ + u)


β̇t (θ + u)(βt (θ)− βt (θ + u))cθt +


Ḟt (x; θ + u)

Ft (x; θ + u)


1 −

Ḟt (x; θ + u)

Ft (x; θ)


Bθω,t (dx)


,

(4.1)

⟨Mθ (u)⟩t =

 t

0
(γs(θ + u)β̇s(θ + u))2d Aθs +

 t

0
γ 2

s (θ + u)

 
Ḟs(x; θ + u)

Fs(x; θ + u)

2

Bθω,s(dx)


d Aθs , (4.2)

It (θ) =

 t

0
(β̇s(θ))

2cθs d Aθs +

 t

0

 
Ḟs(x; θ)

Fs(x; θ)

2

Bω,s(dx)d Aθs . (4.3)

Theorem 4.1 (Strong Consistency). Let for all t ≥ 0, Pθ -a.s. the following conditions be satisfied:

(A) H θ
t (0) = 0, H θ

t (u)u < 0, u ≠ 0,
(B) hθt (u) ≤ Bθt (1 + u2), where Bθ = (Bθt )t≥0 is a predictable process, Bθt ≥ 0, Bθ ◦ Aθ∞ < ∞,

hθt (u) =
d⟨Mθ (u)⟩t

d Aθt
, (4.4)

(C) for each ε, ε > 0,

inf
ε≤|u|≤

1
ε

|H θ (u)u| ◦ Aθ∞ = ∞.

Then for each θ ∈ R1

θt → 0 (or zt → 0), as t → ∞, Pθ -a.s.

Proof. Immediately follows from conditions of Theorem 3.1 of [16] applied to prespecified by (4.1)–(4.3)
objects. �

In the sequel we assume that for each θ ∈ R1

Pθ


lim

t→∞

It (θ)

It (θ)
= 1


= 1,

from which it follows that γt (θ) = I −1
t (θ). Denote

gθt =
d It (θ)

d Aθt
= (β̇t (θ))

2cθt +

 
Ḟt (x; θ)

Ft (x; θ)

2

Bω,t (dx). (4.5)

We assume also that zt → 0 as t → ∞, Pθ -a.s.

Theorem 4.2 (Rate of Convergence). Suppose that for each δ, 0 < δ < 1, the following conditions are satisfied:

(i)


∞

0


δ

gθt
I θt

− 2βθt (zt )
+

d Aθt < ∞, Pθ -a.s., where βθt (u) =


−

H θ
t (u)

u
, u ≠ 0,

− lim
u→0

H θ
t (u)

u
, u = 0,

(4.6)

(ii)


∞

0
(It (θ))

δhθt (zt )d Aθt < ∞, Pθ -a.s.

Then for each θ ∈ R1, δ, 0 < δ < 1,

I δt (θ)z
2
t → 0 as t → ∞, Pθ -a.s.
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Proof. It is enough to note that conditions (2.3) and (2.4) of Theorem 2.1 from [17] are satisfied with It (θ) instead of
γt , δgθt /It (θ) instead of r δt and βθt (u) instead of βt (u). �

In the sequel we assume that for all δ, 0 < δ < 1
2 ,

I δt (θ)zt → 0 as t → ∞, Pθ -a.s.

It is not hard to verify that the following expansion holds true

I 1/2
t (θ)zt =

Lθt
⟨Lθ ⟩1/2

t

+ Rθt , (4.7)

where Lθt , Rθt will be specified below.
Indeed, according to “Preliminary and Notation” section of [17]

β
θ

t = − lim
u→0

H θ
t (u)

u
= −I −1

t (θ)gθt .

Further,

−β
θ

◦ Aθt =

 t

0
I −1
s (θ)

d Is(θ)

d As(θ)
d Aθs = ln It (θ).

Therefore

Γ θ
t = ε−1

t (−β
θ

◦ Aθt ) = It (θ) (4.8)

and

Lθt =

 t

0
Γ θ

s d Mθ (s, 0)

with

⟨Lθ ⟩t =

 t

0
(Γ θ

s )
2d⟨Mθ (0)⟩s =

 t

0
I 2
s (θ)I

−2
s (θ)d Is(θ) = It (θ). (4.9)

Finally, we obtain

χθt = Γ θ
t ⟨Lθ ⟩−1/2

t = I 1/2
t (θ). (4.10)

As for Rθt , one can use the definition of Rt from the same section by replacing of objects by the corresponding objects

with upperscripts “θ”, e.g. β t by β
θ

t , L t by Lθt , etc.

Theorem 4.3 (Asymptotic Expansion). Let the following conditions be satisfied:

(i) ⟨Lθ ⟩t is a deterministic process, ⟨Lθ ⟩∞ = ∞,
(ii) there exists ε, 0 < ε < 1

2 , such that

1
⟨Lθ ⟩t

 t

0
|βθs − βθs (zs)|I

−ε
s (θ)⟨Lθ ⟩sd Aθs → 0 as t → ∞, Pθ -a.s.,

(iii)

1
⟨Lθ ⟩t

 t

0
I 2
t (θ)(h

θ
s (zs, zs)− 2hθs (zs, 0)+ hs(0, 0))d Aθs

Pθ
→ 0 as t → ∞,

where

hθt (u, v) =
d⟨Mθ (u),Mθ (v)⟩

d Aθt
. (4.11)
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Then in Eq. (4.7) for each θ ∈ R

Rθt
Pθ
→ 0 as t → ∞.

Proof. It is not hard to verify that all conditions of Theorem 3.1 from [17] are satisfied with ⟨Lθ ⟩t instead of ⟨L⟩t ,
βθs (u) instead of βs(u), I −1

θ (θ) instead of γt , Aθt instead of χt , Γ θ
s instead Γs , and I 1/2

t (θ) instead of χt , hθt (u, v)
instead of ht (u, v), and, finally, Pθ instead of P . �

Remark. It follows from Eq. (4.7) and Theorem 4.3 that, using the Central Limit Theorem for martingales

I 1/2
t (θ)(θt − θ)

d
→ N (0, 1).

5. Recursive procedure for M-estimators

As stated in previous section the maximum likelihood equation has the form

L t (θ) = L t (Ṁθ ,Mθ ) = 0.

This equation is the special member of the following family of estimational equations

L t (mθ ,Mθ ) = 0 (5.1)

with certain P-martingales mθ , θ ∈ R1. These equations are of the following sense: their solutions are viewed as
estimators of unknown parameter θ , so-called M-estimators. To preserve the classical terminology we shall say that
the martingale mθ defines the M-estimator, and Pθ -martingale L(mθ ,Mθ ) is the influence martingale.

As it is well known M-estimators play the important role in robust statistics, besides they are sources to obtain
asymptotically normal estimators.

Since for each θ ∈ R1 Pθ is a unique measure such that under this measure X = (X t )t≥0 is a semimartingale
with characteristics (B(θ), c(θ), νθ ) all Pθ -martingales admit an integral representation property w.r.t. continuous
martingale part and martingale measure (µ − νθ ) of X . In particular, the P-martingale Mθ has the form (see Eq.
(2.2))

Mθ = β(θ) ◦ X s
+ ψ ∗ (µ− ν), (5.2)

where

ψ(s, x, θ) = Y (t, x, θ)− 1 +

Y (t, θ)− a

1 − a
I(0<a<1)

and mθ ∈ Mloc(P) can be represented as

m(θ) = g(θ) ◦ X c
+ G(θ) ∗ (µ− ν) (5.3)

with certain functions g(θ) and G(θ).
It can be easily shown that Pθ -martingale L(mθ ,Mθ ) can be represented as

L(mθ ,Mθ ) = ϕm(θ) · (X c
− β(θ) ◦ C)+ Φm(θ) ∗ (µ− νθ ), (5.4)

where the functions ϕm and Φm are expressed in terms of functions β(θ), ψ(θ), g(θ) and G(θ).
On the other hand, it can be easily shown that each Pθ -martingale Mθ can be expressed as L(mθ ,Mθ ) with P-

martingale mθ defined asmθ = L(Mθ , L(−Mθ ,Mθ )) ∈ Mloc(P)

(since d P
d Pθ

= E(L(−Mθ ,Mθ )), according to the generalized Girsanov theorem L(Mθ , L(−Mθ ,Mθ )) ∈ Mloc(P)).
Therefore without loss of generality one can consider the M-estimator associated with the parametric family

(Mθ , θ ∈ R) of Pθ -martingale as the solution of the estimational equationMt (θ) = 0. (5.5)
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In the sequel we assume that for each θ ∈ R1, Mθ ∈ M2
loc(Pθ ). Assume also that there exists a positive decreasing

predictable process γt (θ) with γ0(θ) = 1 such that γt (θ)⟨ Mθ ⟩t
Pθ
→ 1 as t → ∞.

Now using the same arguments as in Section 3 we introduce the following recursive procedure for constructing
estimator (θt , t ≥ 0) asymptotically equivalent to the M-estimator defined by relation (5.5) as the solution of the
following SDE

dθt = γt (θ)M(dt,θt−). (5.6)

To obtain the explicit form of the last SDE, recall that Mθ has an integral representation propertyMt (θ) = ϕ(θ) ◦ (X c
− β(θ) ◦ ⟨X c

⟩)+ Φ(θ) ∗ (µ− νθ ).

We can obtain the canonical decomposition of Pθ -semimartingale Mt (u), u ∈ R1 (w.r.t. measure Pθ )M(u) = ϕ(u) ◦ (X c
− β(θ) ◦ C)+ Φ(u) ∗ (µ− νθ )

+ [ϕ(u)(β(θ)− β(u))] ◦ C + Φ(u)1 −
y(u)

y(θ)


∗ (µ− νθ ).

Based on the last expression we can derive the explicit form of SDE (5.5)

θt = θ0 +

 t

0
γs(θs−)ϕ(s, θs−)d(X

c
− β(θ) ◦ C)+

 t

0

 γs(θs−)Φ(s, x,θs−)(µ− νθ )(ds, dx)

+

 t

0
γs(θs−)ϕ(s,θs−)(βs(θ)− βs(θs−))dCs

+

 t

0


γs(θs−)Φ(s, x,θs−)


1 −

Y (s, x,θs−)

Y (s, x, θ)


νθ (ds, dx). (5.7)

To study the asymptotic properties of the solution of this equation (θt , t ≥ 0) (e.g. consistency, rate of convergence,
asymptotic normality) is more convenient to rewrite this equation as (zt = θt − θ)

zt = z0 +

 t

0
γs(θ + zs−)ϕ(s, θ + zs−)d(X

c
− β(θ) ◦ C)

+

 t

0

 γs(θ + zs−)Φ(s, x, θ + zs−)(µ− νθ )(ds, dx)

+

 t

0
γs(θ + zs−)ϕ(s, θ + zs−)(βs(θ)− βs(θs + zs−))dCs

+

 t

0

 γs(θ + zs−)Φ(s, x, θ + zs−)


1 −

Y (s, x, θ + zs−)

Y (s, x, θ)


νθ (ds, dx). (5.8)

6. Examples

To make the things more clear let us begin with the simplest case of i.i.d. observations.

Example 1. Let {pθ , θ ∈ R1} be the family of probability measures defined on some measurable space (X,B) such
that for each pair θ, θ ′, pθ ∼ pθ ′ .

Put Ω = X∞, Fn = B(Xn), F = B(X∞), Pθ = pθ × pθ × · · · . Then for θ, θ ′, Pθ
loc
∼ Pθ ′ . Fix some θ0 ∈ R1 and

denote p = pθ0 . Let dpθ/dp = f (x, θ). Then the local density process

ρn(θ) =
d Pn,θ

d Pn
=

n
i=1

f (X i , θ) = En(Mθ ), (6.1)
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where

M(θ) =

n
i=1

( f (X i , θ)− 1)

is a P-martingale. Here (Xn)n≥1 is a coordinate process, Xn(ω) = xn .
Assume that for all x , f (x, θ) is continuous differentiable in θ and denote ∂

∂θ
f (X, θ) = ḟ (X, θ). Assume also

that ∂
∂θ


f (x, θ)p(dx) =


ḟ (x, θ)p(dx). Then Ṁn(θ) =

n
i=1 ḟ (X i , θ) is a P-martingale.

In these notation the MLE takes the form

Ln(Ṁ(θ),Mθ ) =

n
i=1

ḟ (X i , θ)

f (X i , θ)
= 0.

The Fischer information process

In(θ) = ⟨L(Ṁθ ,Mθ )⟩ = nI (θ), (6.2)

where I (θ) = Eθ
 ḟ (·,θ)

f (·,θ)

2, assuming that the last integral is finite.
The recursive estimation procedure to obtain the estimator θn , asymptotically equivalent to MLE is well known:

θn = θn−1 +
1

nI (θn−1)

ḟ (Xn, θn−1)

f (Xn, θn−1)
. (6.3)

Let us derive this equation from the general recursive SDE.
For this aim consider the process Sn =

n
i=1 X i , n ≥ 1. This process is a semimartingale with the jump measure

µ(ω, [0, n] × B) =


i≤n

I{X i ∈B}

and its Pθ -compensator is

νθ (ω, [0, n] × B) =


i≤n

Pθ (X i ∈ B) = n


B
f (x, θ)p(dx).

Note that an(θ) = ν(ω, {n}; X) = 1 for all n ≥ 1 and θ ∈ R1.
It is obvious that νθ = Y · ν, where Yθ (ω, n, x) ≡ f (x, θ). Besides,

Φ(θ) =
Ẏ (θ)

Y (θ)
+

ȧ(θ)

1 − a(θ)
=

ḟ (·, θ)

f (·, θ)
.

At the same time the general recursive SDE for this special case can be written as

θn = θn−1 +
1

nI (θn−1)

ḟ (xn, θn−1)

f (xn, θn−1)
−

1
nI (θn−1)


ḟ (x, u)

f (x, u)

f (x, u)

f (x, θ)
f (x, θ) dµ|u=θn−1 .

But


ḟ (x, u) dµ = 0 and thus the last term equals zero and we come to Eq. (6.3).
In terms of zn = θn − θ Eq. (6.3) takes the form

zn = zn−1 +
1

nI (θ + zn−1)
b(θ, zn−1)+

1
nI (θ + zn−1)

1mn,

where

b(θ, u) =


ḟ (x, u)

f (x, u)
f (x, θ) dµ, 1mn = 1mn(u), 1mn =

ḟ (x, u)

f (x, u)
− b(θ, u).

Concerning M-estimators recall that by the definition the estimational equation is

Ln(m(θ),M(θ)) = 0, (6.4)

where m(θ) is some P-martingale, mn(θ) =


i≤n g(X i , θ) with


g(x, θ) dp = 0.
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Eq. (6.4) can be written as
i≤n

g(X i , θ)

f (X i , θ)
= 0.

Thus, without loss of generality, we can define M-estimator as the solution of the equationMn(θ) =


i≤n

ψ(X i , θ) = 0, (6.5)

where
ψ(xi , θ) f (xi , θ) µ(dx) = 0, ⟨ M(θ)⟩n = n


ψ2(x, θ) f (x, θ) µ(dx) = nIψ (θ).

Now using the same arguments as in the case of MLE we obtain the following recursive procedure for constructing
the estimator asymptotically equivalent to the M-estimator defined by (6.5)

θn = θn−1 +
1

nIψ (θn−1)
ψ(Xn, θn−1).

Example 2. Discrete time case.
Let X0, X1, . . . , Xn, . . . be observations taking values in some measurable space (X ,B(X )) such that the regular

conditional densities of distributions (w.r.t. some measure p) fi (xi , θ |xi−1, . . . , x0), i ≤ n, n ≥ 1 exist, f0(x0, θ) ≡

f0(x0), θ ∈ R1 is the parameter to be estimated. Denote Pθ corresponding distribution on (Ω ,F) := (X ∞,B(X ∞)).
Identify the process X = (X i )i≥0 with coordinate process and denote F0 = σ(X0), Fn = σ (X i , i ≤ n). If
ψ = ψ(X i , X i−1, . . . , X0) is a r.v., then under Eθ (ψ |Fi−1) we mean the following version of conditional expectation

Eθ (ψ | Fi−1) :=


ψ(z, X i−1, . . . , X0) fi (z, θ | X i−1, . . . , X0)µ(dz),

if the last integral exists.
Assume that the usual regularity conditions are satisfied and denote

∂

∂θ
fi (xi , θ | xi−1, . . . , x0) := ḟi (xi , θ | xi−1, . . . , x0),

the maximum likelihood scores

li (θ) :=
ḟi

fi
(X i , θ | X i−1, . . . , X0)

and the empirical Fisher information

In(θ) :=

n
i=1

Eθ (l
2
i (θ) | Fi−1).

Denote also

bn(θ, u) := Eθ (ln(θ + u) | Fn−1)

and indicate that for each θ ∈ R1, n ≥ 1

bn(θ, 0) = 0 (Pθ -a.s.). (6.6)

Using the same arguments as in the case of i.i.d. observations we come to the following recursive procedure

θn = θn−1 + I −1
n (θn−1)ln(θn−1), θ0 ∈ F0.

Fix θ , denote zn = θn − θ and rewrite the last equation in the form

zn = zn−1 + I −1
n (θ + zn−1)bn(θ, zn−1)+ I −1

n (θ + zn−1)1mn,

z0 = θ − θ,
(6.7)

where 1mn = 1m(n, zn−1) with 1m(n, u) = ln(θ + u)− Eθ (ln(θ + u)|Fn−1).
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Note that the algorithm (6.7) is embedded in SDE (1.1) with

Hn(u) = I −1
n (θ + u)bn(θ, u) ∈ Fn−1, 1Kn = 1,

1M(n, u) = I −1
n (θ + u)1m(n, u).

This example clearly shows the necessity of consideration of random fields Hn(u) and M(n, u).
The discrete time case was considered by T. Sharia in [10,11].

Example 3. Recursive parameter estimation in the trend coefficient of a diffusion process.
Here we consider the problem of recursive estimation of the one-dimensional parameter in the trend coefficient of

a diffusion process ξ = {ξt , t ≥ 0} with

dξt = a(ξt , θ) dt + σ(ξt ) dwt , ξ0, (6.8)

where w = {wt , t ≥ 0} is a standard Wiener process, a(·, θ) is the known function, θ ∈ Θ ⊆ R is a parameter to be
estimated, Θ is some open subset of R, σ 2(·) is the known diffusion coefficient.

We assume that there exists a unique weak solution of Eq. (6.8).
For each θ ∈ Θ denote by Pθ the distribution of the process ξ on (C[0,∞),B).
Let X = {X t , t ≥ 0} be the coordinate process, that is, for each x = {xt , t ≥ 0} ∈ C[0,∞), X t (x) = xt , t ≥ 0.

Fix some θ ∈ Θ and assume that for each θ ′
∈ Θ , Pθ

(loc)
∼ Pθ

′

. Then the density process ρt (X, θ) can be written
as

ρt (X, θ) :=
d Pθt
d Pθ

′

t

(X) = exp
 t

0

a(Xs, θ)− a(Xs, θ
′)

σ (Xs)

(d Xs − a(Xs, θ
′)ds)

σ (Xs)


−

1
2

 t

0


a(Xs, θ)− a(Xs, θ

′)

σ (Xs)

2

ds.

Recall that if for all t ≥ 0 Pθ -a.s. 1

0
σ 2(Xs) ds < ∞, (6.9)

then the process


X t −
 t

0 a(Xs, θ) ds, t ≥ 0


∈ M2
loc(P

θ ) with the square characteristic
 t

0 σ
2(Xs) ds.

Under suitable regularity conditions if we assume that for all t ≥ 0 Pθ -a.s. t

0


ȧ(Xs, θ)

σ (Xs)

2

ds < ∞, (6.10)

we will have
∂

∂θ
ln ρt (X, θ) =

 t

0


ȧ(Xs, θ)

σ (Xs)


d(Xs − a(Xs, θ)ds), t ≥ 0


∈ M2

loc(P
θ ),

where ȧ(·, θ) denotes the derivative of a(·, θ) w.r.t. θ .
Below we assume that conditions (6.9) and (6.10) are satisfied.
Introduce the Fisher information process

It (θ) =

 t

0


ȧ(Xs, θ)

σ (Xs)

2

ds.

Then, according to Eq. (3.4), the SDE for constructing the recursive estimator (θt , t ≥ 0) has the form

dθt = It (θt )


ȧ(X t , θt )

σ 2(Xs)
d X c

t +
ȧ(X t , θt )

σ 2(X t )
(a(X t , θ)− a(X t , θt )) dt


. (6.11)
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Fix some θ ∈ Θ . To study the asymptotic properties of the recursive estimator {θt , t ≥ 0} as t → ∞ under measure
Pθ let us denote zt = θt − θ and rewrite (6.11) in the following form:

dzt = It (θ + zt )


ȧ(X t , θ + zt )

σ 2(Xs)
d X c

t +
ȧ(X t , θ + zt )

σ 2(X t )
(a(X t , θ)− a(X t , θ + zt )) dt


. (6.12)

In the sequel we assume that there exists a unique strong solution of Eq. (6.12) such that t

0
Is(θ + zs)

ȧ(Xs, θ + zs)

σ 2(Xs)
d X c

s , t ≥ 0


∈ M2
loc(Pθ ),

that is, for each t ≥ 0 Pθ -a.s. t

0
I 2
s (θ + zs)


ȧ(Xs, θ + zs)

σ (Xs)

2

ds < ∞.

To study the asymptotic properties of the process z = {zt , t ≥ 0} as t → ∞ (under the measure Pθ ) one can use
the results of Theorems 4.1–4.3 concerning the asymptotic behavior of solutions of the Robbins–Monro type SDE

zt = z0 +

 t

0
Hs(zs−) d Ks +

 t

0
M(ds, zs−). (6.13)

Note that Eq. (6.13) covers Eq. (6.12) with Kt = t ,

Ht (u) := H θ
t (u) = It (θ + u)

ȧ(X t , θ + u)

σ 2(X t )
(a(X t , θ)− a(X t , θ + u)) , H θ

t (0) = 0, (6.14)

M(u) := Mθ (u) =


Mθ (t, u) =

 t

0
Is(θ + u)

ȧ(X t , θ + u)

σ 2(X t )
d X c

s , t ≥ 0

. (6.15)

Let for each u ∈ R the process Mθ (u) ∈ M2
loc(P

θ ). Then

⟨Mθ (u),Mθ (v)⟩t =

 t

0
hs(u, v) ds,

where

ht (u, v) = hθt (u, v) = It (θ + u)It (θ + v)
ȧ(X t , θ + u)ȧ(X t , θ + v)

σ 2(X t )
. (6.16)

This problem is fully studied by Lazrieva and Toronjadze in [14].

Example 4. Let (Ω ,F = (Ft )t≥0, P, Pθ , θ ∈ R1) be filtered probability space and M = (Mt )t≥0 be a P-martingale
with the deterministic characteristic ⟨M⟩t , ⟨M⟩∞ = ∞. Let for each θ ∈ R1 Pθ be unique measure on (Ω ,F) such
that the process X (t) follows the equation

X t = X0 + a(θ)⟨M⟩t + Mt ,

where a(θ) is known function depending on the unknown parameter θ . Then for each pair (θ, θ ′), Pθ
loc
∼ Pθ ′ . Fix some

θ0 ∈ R1. Then the local density process

ρt (θ) =
d Pθ,t
d Pθ0,t

= Et (M(θ)),

where

Mt (θ) = (a(θ)− a(θ0))(X t − a(θ0)⟨M⟩t ). (6.17)

Assume that a(θ) is strongly monotone function continuously differentiable in θ . Then

L t (θ) =
∂

∂θ
ln ρt (θ) = L t (Ṁ(θ),M(θ)) = ȧ(θ)(X t − a(θ)⟨M⟩t )
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and the Fischer information process is

It (θ) = ⟨L(θ), L(θ)⟩t = [ȧ(θ)]2
⟨M⟩t .

Put γt (θ) = [ȧ(θ)]−2 1
⟨M⟩t +1 = [ȧ(θ)]−2γ−1

t (with the obvious notation γt = ⟨M⟩t + 1). Therefore the recursive
estimation procedure to obtain estimator asymptotically equivalent to the MLE θt is

θt = θ0 +

 t

0

1
⟨M⟩s + 1

a(θ)− a(θs)

ȧ(θs)
d⟨M⟩s +

 t

0

1
1 + ⟨M⟩s

1
ȧ(θs)

d(Xs − a(θ)⟨M⟩s). (6.18)

Denote zt = θt − θ and rewrite the last equation

dzt =
1

⟨M⟩t + 1
a(θ)− a(θ + zt )

ȧ(θ + zt )
d⟨M⟩t +

1
⟨M⟩t + 1

1
ȧ(θ + zt )

d(X t − a(θ)⟨M⟩t ). (6.19)

Further, denote

Ht (θ, u) =
1

⟨M⟩t + 1
a(θ)− a(θ + zt )

ȧ(θ + zt )
,

Mt (θ, u) =

 t

0

1
⟨M⟩s + 1

1
ȧ(θ + u)

d(Xs − a(θ)⟨M⟩t ).

In these notation Eq. (6.19) is the Robbins–Monro type equation

dzt = Ht (θ, zt )d⟨M⟩t + d Mt (θ, zt ). (6.20)

Indeed, condition (A) of Theorem 4.1 is satisfied since

Ht (θ, 0) = 0 and Ht (θ, u)u < 0 for all u ≠ 0.

We study the asymptotic behavior of zt as t → ∞ under measure Pθ .
(1) Convergence: zt → 0 as t → ∞ Pθ -a.s. or θt → θ as t → ∞ Pθ -a.s. (strong consistency).

Proposition 6.1. Let the following condition be satisfied

[ȧ(θ + u)]2(1 + u2) ≥ c, (6.21)

where c is some constant depending on θ . Then

zt → 0 as t → ∞ Pθ -a.s.

Proof. Let us check conditions (A), (B), (C) of Theorem 4.1. (A) is evident. Concerning condition (B) note that

⟨M(θ, u)⟩t =
1

(ȧ(θ + u))2

 t

0

1

(⟨M⟩s + 1)2
d⟨M⟩s

and

ht (θ, u) =
1

(ȧ(θ + u))2
1

(⟨M⟩t + 1)2
.

Then if we denote Bt =
1

(⟨M⟩t +1)2
, taking into account Eq. (6.21) we simply obtain

ht (θ, u) ≤ Bt (1 + u2) with B ◦ ⟨M⟩∞ < ∞.

As for condition (C), we have to verify that for each ε > 0

inf
ε≤u≤

1
ε

a(θ)− a(θ + u)

ȧ(θ + u)

  ∞

0

d⟨M⟩t

⟨M⟩t + 1
= ∞.

The last condition is satisfied if for each ε > 0

inf
ε≤|u|≤

1
ε

a(θ)− a(θ + u)

ȧ(θ + u)

 > 0,

which holds since ȧ(θ) is continuous. �
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(2) Rate of convergence. Here we assume that zt → 0 as t → ∞ Pθ -a.s.

Proposition 6.2. For all δ, 0 < δ < 1
2 , we have

γ δt zt = (⟨M⟩t + 1)δzt → 0 as t → ∞, Pθ -a.s.

Proof. We have to check conditions (i) and (ii) of Theorem 4.2.
Condition (ii) is satisfied. Indeed, for all 0 < δ < 1

∞

0
(⟨M⟩t + 1)δ[ȧ(θ + u)]−2 1

(⟨M⟩t + 1)2
d⟨M⟩t < ∞.

As for condition (i), it is enough to verify that for all δ, 0 < δ < 1
2 ,

∞

0

1
⟨M⟩t + 1


δ − I(zt =0) −

a(θ)− a(θ + zt )

zt ȧ(θ + zt )

+

d⟨M⟩t < ∞.

But

δ − I(zt =0) −

a(θ)−a(θ+zt )
zt ȧ(θ+zt )

I{zt ≠0}

+
= 0 eventually since zt → 0. �

(3) Asymptotic expansion. Here we assume that for all δ, 0 < δ < 1
2 , γ δt zt → 0 as t → ∞ Pθ -a.s.

Proposition 6.3. Let there exist some ε > 0, γ > 0 and c(θ) such that

|ȧ(θ + u)− ȧ(θ + v)| ≤ c|u − v|γ (6.22)

for all (u, v) ∈ Oε(0), then all conditions of Theorem 4.3 are satisfied and the following asymptotic expansion holds
true

(1 + ⟨M⟩t )
1/2ȧ(θ)zt =

L t

⟨L⟩
1/2
t

+ Rt ,

where Rt → 0 as t → ∞ P-a.s., L t = [ȧ(θ)]−1(X t − a(θ)⟨M⟩t ).

Example 5 (Point Process with Continuous Compensator). Let Ω be a space of piecewise constant functions
x = (xt )t≥0 such that x0 = 0, xt = xt− + (0 or 1), F = σ {x : xs , s ≥ 0} and Ft = σ {x : xs , 0 < s ≤ t}.
Let for x ∈ Ω

τn(x) = inf{s : s > 0, xs = n}

setting τn(∞) = ∞ if limt→∞ xt < n. Let τ∞(x) = limn→∞ τn(x).
Note that x = (xt )t≥0 can be written as

xt =


n≥1

I{τn(x)≤t},

and so (xt )t≥0 and the family of σ -algebras (Ft )t≥0 are right-continuous.
Let for each θ ∈ R1 Pθ be a probability measure on (Ω ,F) such that under this measure the coordinate process

X t (ω) = xt if ω = (xt )t≥0 is a point process with compensator At (θ) = A(θ)A(t), where A(t) = A(t, ω) is
an increasing process with continuous trajectories (Pθ -a.s.), A(0) = 0, Pθ {A∞ = ∞} = 1, and for each t > 0
Pθ̇ (At < ∞) = 1, A(θ) is a strongly monotone deterministic function, A(θ) > 0, and A(θ) is continuously
differentiable (denote Ȧ(θ) =

d
dθ A(θ)).

Assume that for each pair (θ, θ ′), Pθ
loc
∼ Pθ ′ . Fix as usual some θ0 ∈ R1. Then the local density process

ρt (θ) =
d Pθ,t
d Pθ0,t

can be represented as

ρt (θ) = Et (M(θ)),

where

Mt (θ) =


A(θ)

A(θ0)
− 1


(X t − A(θ0)At ).
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Therefore L t (θ) =
∂
∂θ

ln ρt (θ) has the form

L t (θ) = L t (Ṁ(θ),M(θ)) =
Ȧ(θ)

A(θ)
(X t − A(θ)A(t)).

The Fisher information process is

It (θ) = ⟨L(Ṁ(θ),M(θ))⟩t =


Ȧ(θ)

A(θ)

2

A(θ)A(t).

Put γt (θ) =
A(θ)

[ Ȧ(θ)]2
1

A(t)+1 . It is evident that

lim
t→∞

γt (θ)It (θ) = 1.

Note that the process (X t )t≥0 is a Pθ -semimartingale with the triplet of characteristics (A(θ)A(t), 0, A(θ)A(t)).
Therefore, according to Section 3,

F(θ) = F(ω, t, x, θ) =
A(θ)

A(θ0)
, Φ(θ) =

Ȧ(θ)

A(θ)
,

ℓc(θ) = ℓδ(θ) = ℓb(θ) = 0, ℓπ (θ) =
Ȧ(θ)

A(θ)
.

Thus from (3.10) we obtain

H θ
t (u) =

1
A(t)+ 1

A(θ)− A(θ + u)

Ȧ(θ + u)
,

Mθ (t, u) =
1

Ȧ(θ + u)

 t

0

1
A(s)+ 1

d(Xs − A(θ)A(s)),

and the equation for zt = θt − θ is

dzt =
1

A(t)+ 1
A(θ)− A(θ + zt )

Ȧ(θ + zt )
d A(t)+

1
A(t)+ 1

1

Ȧ(θ + zt )
d(X t − A(θ)A(t)), (6.23)

where (θt )t≥0 is recursive estimation satisfying the equation

dθt =
1

A(t)+ 1
A(θ)− A(θt )

Ȧ(θt )
d A(t)+

1
A(t)+ 1

1

Ȧ(θt )
d(X t − A(θ)A(t)).

As one can see Eq. (6.23) is quite similar to (6.19) with A(θ) instead of a(θ) and A(t) instead of ⟨M⟩t .
Now if conditions (6.21) and (6.22) with A(θ) instead of a(θ) and A(t) instead of ⟨M⟩t are satisfied, then the

asymptotic expansion holds true

(A(t)+ 1)1/2 Ȧ(θ)zt =
L t

⟨L⟩
1/2
t

+ Rt ,

where Rt → 0 as t → ∞ Pθ -a.s., L t = [ Ȧ(θ)]−1(X t − A(θ)A(t)).
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