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SEMIMARTINGALE STOCHASTIC APPROXIMATION PROCEDURE
AND RECURSIVE ESTIMATION

N. Lazrieva, T. Sharia, and T. Toronjadze UDC 519.2

Abstract. The semimartingale stochastic approximation procedure, precisely, the Robbins–Monro
type SDE, is introduced, which naturally includes both generalized stochastic approximation algorithms
with martingale noises and recursive parameter estimation procedures for statistical models associated
with semimartingales. General results concerning the asymptotic behavior of the solution are presented.
In particular, the conditions ensuring the convergence, the rate of convergence, and the asymptotic
expansion are established. The results concerning the Polyak weighted averaging procedure are also
presented.
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0. Introduction

In 1951, in the famous paper of Robbins and Monro “A stochastic approximation method” [36], was
created a method for dealing with the problem of location of roots of functions, which can be observed
only with random errors. In fact, they carried a “stochastic” component in the classical Newton’s
method.

This method is known in probability theory as the Robbins–Monro (RM) stochastic approximation
algorithm (procedure).

Since then, a considerable amount of works has been performed to relax the assumptions on the
regression functions, as well as those on the structure of the measurement errors (see, e.g., [17, 23,
26–30, 41, 42]). In particular, in [28], the generalized stochastic approximation algorithms with
deterministic regression functions and martingale noises (independent of the phase variable) as strong
solutions of semimartingale SDEs were introduced.

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applica-
tions), Vol. 45, Martingale Theory and Its Application, 2007.
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Starting from [1], a link between the RM stochastic approximation algorithm and the recursive
parameter estimation procedures was intensively exploited. Later on recursive parameter estimation
procedures for various special models (e.g., i.i.d. models, non-i.i.d. models in discrete time, diffusion
models, etc.) was studied by a number of authors by using methods of stochastic approximation
(see, e.g., [7, 17, 23, 26, 27, 38–40]). One should mention the fundamental book [32] of Nevelson and
Khas’minski [32] among them.

In 1987, Lazrieva and Toronjadze proposed an heuristic algorithm for constructing the recursive
parameter estimation procedures for statistical models associated with semimartingales (including
both discrete and continuous time semimartingale statistical models) [18]. These procedures cannot
be covered by the generalized stochastic approximation algorithm proposed by Melnikov, whereas in
the i.i.d. case, the classical RM algorithm contains recursive estimation procedures.

To recover the link between the stochastic approximation and the recursive parameter estimation,
in [19–21], Lazrieva, Sharia, and Toronjadze introduced the semimartingale stochastic differential
equation, which naturally includes both generalized RM stochastic approximation algorithms with
martingale noises and recursive parameter estimation procedures for semimartingale statistical models.

On the stochastic basis (Ω,F , F = (Ft)t≥0, P ) satisfying the usual conditions, let the following
objects be given:

(a) a random field H = {Ht(u), t ≥ 0, u ∈ R
1} = {Ht(ω, u), t ≥ 0, ω ∈ Ω, u ∈ R

1} such that for
each u ∈ R

1, H(u) = (Ht(u))t≥0 ∈ P (i.e., the process is predictable);
(b) a random field M = {M(t, u), t ≥ 0, u ∈ R

1} = {M(ω, t, u), ω ∈ Ω, t ≥ 0, u ∈ R
1} such that

for each u ∈ R
1, M(u) = (M(t, u))t≥0 ∈ M2

loc(P );
(c) a predictable increasing process K = (Kt)t≥0 (i.e., K ∈ V+ ∩ P).

In what follows, we restrict ourselves to consideration of the following particular cases:

1◦. M(u) ≡ m ∈ M2
loc(P );

2◦. for each u ∈ R
1, M(u) = f(u) · m + g(u) · n, where m ∈ Mc

loc(P ), n ∈ Md,2
loc(P ), the pro-

cesses f(u) = (f(t, u))t≥0 and g(u) = (g(t, u))t≥0 are predictable, the corresponding stochastic
integrals are well-defined, and M(u) ∈ M2

loc(P );
3◦. for each u ∈ R

1, M(u) = ϕ(u) ·m+W (u) ∗ (μ− ν), where m ∈ Mc
loc(P ), μ is an integer-valued

random measure on (R× E,B(R+) × ε), ν is its P -compensator, (E, ε) is the Blackwell space,
and W (u) = (W (t, x, u), t ≥ 0, x ∈ E) ∈ P ⊗ ε. Here, we also assume that all stochastic
integrals are well defined.

In what follows, we denote by
t∫

0

M(ds, us),

where u = (ut)t≥0 is some predictable process, the following stochastic line integrals:

t∫

0

f(s, us) dms +

t∫

0

g(s, us) dns

in case 2◦;
t∫

0

ϕ(s, us) dms +

t∫

0

∫

E

W (s, x, us)(μ− ν)(ds, dx)

in case 3◦ provided they are well defined.
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Consider the following semimartingale stochastic differential equation:

zt = z0 +

t∫

0

Hs(zs−) dKs +

t∫

0

M(ds, zs−), z0 ∈ F0. (1)

The SDE (1) is called a Robbins–Monro (RM) type SDE if the drift coefficient Ht(u), t ≥ 0, u ∈ R
1,

satisfies the following conditions: for all t ∈ [0,∞) P -a.s.,
(A) Ht(0) = 0, Ht(u)u < 0 for all u 
= 0.
The problem of the strong solvability of the SDE (1) is well studied (see, e.g., [8, 9, 13]).
We assume that there exists a unique strong solution z = (zt)t≥0 of Eq. (1) defined on the whole

interval of time [0,∞) such that M̃ ∈ M2
loc(P ), where

M̃t =

t∫

0

M(ds, zs−).

Some sufficient conditions for the latter can be found in [8, 9, 13].
The unique solution z = (zt)t≥0 of the RM type SDE (1) can be considered as a semimartingale

stochastic approximation procedure.
In the present work, we consider the asymptotic behavior as t→ ∞ of the process (zt)t≥0 and also

that of the averaged procedure z = ε−1(z ◦ ε) (see Sec. 3 for the definition of z).
The work is organized as follows. In Sec. 1, we study the problem of convergence:

zt → 0 as t→ ∞ P -a.s. (2)

Our approach to this problem is based, first, on the description of the nonnegative semimartin-
gale convergence sets given in Sec. 1.1 [19] (see also [19] for other references) and, second, on two
representations (“standard” and “nonstandard”) of the predictable process A = (At)t≥0 in the canon-
ical decomposition of the semimartingale (z2

t )t≥0, z2
t = At + mart in the form of the difference of

two predictable increasing processes A1 and A2. According to these representations, two groups of
conditions (I) and (II) ensuring the convergence (2) are introduced.

In Sec. 1.2, the main theorem concerning (2) is formulated. Also, the relationship between groups
(I) and (II) are investigated. In Sec. 1.3, some simple conditions for (I) and (II) are given.

In Sec. 1.4, a series of examples illustrating the efficience of all aspects of our approach are given.
In particular, in Example 1.4.1 we introduced the recursive parameter estimation procedure for semi-
martingale statistical models and show how can it be reduced to the SDE (1). In Example 1.4.2,
we show that the recursive parameter estimation procedure for discrete time general statistical mod-
els can also be embedded in the stochastic approximation procedure given by (1). This procedure
was completely studied in [39]. In Example 1.4.3, we demonstrate that the generalized stochastic
approximation algorithm proposed in [28] is covered by SDE (1).

In Sec. 2, we find the rate of convergence (see Sec. 2.2) and also show that under very mild con-
ditions, the process z = (zt)t≥0 admits an asymptotic representation, in which the principal term is
a normalized, locally square integrable martingale. In the context of the parametric statistical es-
timation, this implies the local asymptotic linearity of the corresponding recursive estimator. This
result enables one to study the asymptotic behavior of process z = (zt)t≥0 using a suitable form of
the central limit theorem for martingales (see [11, 12, 14, 25, 35]).

In Sec. 2.1, we introduce some notation and represent the normalized process χ2z2 in the form

χ2
t z

2
t =

Lt

〈L〉1/2
t

+Rt, (3)

where L = (Lt)t≥0 ∈ M2
loc(P ) and 〈L〉t is the shifted square characteristic of L, i.e., 〈L〉t := 1+ 〈L〉F,P

t

(see also Sec. 2.1 for the definition of all objects in (3)).
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In Sec. 2.2, assuming zt → 0 as t→ ∞ P -a.s., we give various sufficient conditions that ensure the
convergence

γδ
t z

2
t → 0 as t→ ∞ P -a.s. (4)

for all δ, 0 < δ < δ0, where γ = (γt)t≥0 is a predictable increasing process and δ0, 0 < δ0 ≤ 1, is some
constant. In this section, we also give a series of examples illustrating these results.

In Sec. 2.3, assuming that Eq. (4) holds with the process asymptotically equivalent to χ2, we study
sufficient conditions that ensure the convergence

Rt
P→ 0 as t→ ∞, (5)

which implies the local asymptotic linearity of recursive procedure z = (zt)t≥0. As an example
illustrating the efficiency of the introduced conditions, we consider the RM stochastic approximation
procedure with slowly varying gains (see [31]).

An important approach to stochastic approximation problems was proposed by Polyak [33] and
Ruppert [38]. The main idea of this approach is the use of averaging iterates obtained from primary
schemes. Since then, the averaging procedures were studied by a number of authors for various schemes
of stochastic approximation (see [1–7, 31, 34]). The most important result of these studies is that the
averaging procedures lead to asymptotically optimal estimates, and, in some cases, they converges to
the limit more rapoidly than the initial algorithms.

In Sec. 3, the Polyak weighted averaging procedures of the initial process z = (zt)t≥0 are considered.
They are defined as follows:

zt = ε−1
t (g ◦K)

t∫

0

zs dεs(g ◦K), (6)

where g = (gt)t≥0 is a predictable process, gt ≥ 0,

t∫

0

gsdKs <∞,

∞∫

0

gtdKt = ∞,

and εt(X) as usual is the Dolean exponential.
Here, we state the conditions which guarantee the asymptotic normality of process z = (zt)t≥0 in

the case of the continuous process under consideration.
The main result of this section is Theorem 3.3.1, in which, under the assumption that Eq. (4) holds

with some increasing process γ = (γt)t≥0 asymptotically equivalent to the process (Γ2
t 〈L〉−1

t )t≥0, we
give the conditions that ensure the convergence

ε
1/2
t zt

d→
√

2 ξ, ξ ∈ N(0, 1), (7)

where

εt = 1 +

t∫

0

Γ2
s〈L〉−1

s βsdKs.

As special cases, we obtain the results concerning averaging procedures for the standard RM sto-
chastic approximation algorithms and those with slowly varying gains.

All the notations and facts concerning the martingale theory used in the presented work can be
found in [12, 14, 25].
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1. Convergence

1.1. The semimartingales convergence sets. Let (Ω,F , F = (Ft)t≥0, P ) be a stochastic basis
satisfying the usual conditions, and let X = (Xt)t≥0 be an F -adapted process with trajectories in the
Skorokhod space D (denoted as X = F ∩D). Let X∞ = lim

t→∞Xt, and let {X →} denote the set where

X∞ exists and is a finite random variable (r.v.).
In this section, we study the structure of the set {X →} for a nonnegative special semimartingale

X. Our approach is based on the multiplicative decomposition of positive semimartingales.
Denote by V+ (V) the set of processes A = (At)t≥0, A0 = 0, A ∈ F∩D with nondecreasing (bounded

variation on each interval [0, t[) trajectories. We write X ∈ P if X is a predictable process. Denote
by SP the class of special semimartingales, i.e., X ∈ Sp if X ∈ F ∩D and

X = X0 +A+M,

where A ∈ V ∩ P and M ∈ Mloc.
Let X ∈ SP . Denote by ε(X) the solution of the Dolean equation

Y = 1 + Y− ·X,
where

Y− ·Xt :=

t∫

0

Ys−dXs.

If Γ1,Γ2 ∈ F , then Γ1 = Γ2 P -a.s. or Γ1 ⊆ Γ2 P -a.s. means that P (Γ1ΔΓ2) = 0 or P (Γ1∩(Ω\Γ2)) =
0, respectively, where Δ is the sign of the symmetric difference of sets.

Let X ∈ SP . We set A = A1 −A2, where A1, A2 ∈ V+ ∩ P. Denote

Â = (1 +X− +A2
−)−1 ◦A2

(
:=

·∫

0

(1 +Xs− +A2
s−)−1dA1

s

)
.

1.1.1. Theorem. Let X ∈ SP , X ≥ 0. Then

{Â∞ <∞} ⊆ {X →} ∩ {A2
∞ <∞} P -a.s.

Proof. Consider the process Y = 1 +X +A2. Then

Y = Y0 +A1 +M, Y0 = 1 +X0,

Y ≥ 1, and Y −1
− ΔA1 ≥ 0. Thus, the processes Â = Y −1

− ◦ A1 and M̂ = (Y− + ΔA1)−1 ·M are well
defined, and, moreover, Â ∈ V+ ∩ P, M̂ ∈ Mloc. Then using [25, Theorem 1, Sec. 5, Chap. 2], we
obtain the following multiplicative decomposition:

Y = Y0ε(Â)ε(M̂),

where ε(Â) ∈ V+ ∩ P and ε(M̂) ∈ Mloc.
Note that ΔM̂ > −1. Indeed,

ΔM̂ = (Y− + ΔA1)−1ΔM.

But
ΔM = ΔY − ΔA1 = Y − (Y− + ΔA1) > −(Y− + ΔA1).

Therefore, ε(M̂) > 0 and {ε(M̂) →} = Ω P -a.s.. On the other hand (see, e.g., [30, Lemma 2.5]),

εt(Â) ↑ ∞ ⇐⇒ Ât ↑ ∞ as t→ ∞.

Hence
{Â∞ <∞} ⊆ {Y →} = {X →} ∩ {A2

∞ <∞},
since A2 < Y and A2 ∈ V+. The theorem is proved.
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1.1.1. Corollary.

{A1
∞ <∞} = {(1 +X−)−1 ◦A1

∞ <∞} = {Â∞ <∞} P -a.s.

Proof. Obviously,

{A1
∞ <∞} ⊆ {(1 +X−)−1 ◦A1

∞ <∞} ⊆ {Â∞ <∞} ⊆ {X →} ∩ {A2
∞ <∞} P -a.s.

It remains to note that

{A1
∞ <∞} ∩ {X →} ∩ {A2

∞ <∞} = {Â∞ <∞} ∩ {X →} ∩ {A2
∞ <∞} P -a.s.

The corollary is proved.

1.1.2. Corollary.

{Â∞ <∞} ∩ {ε∞(M̂) > 0} = {X →} ∩ {A2
∞ <∞} ∩ {ε∞(M̂) > 0} P -a.s.,

as easily follows from the proof of Theorem 1.1.1.

1.1.1. Remark. The relation

{A1
∞ <∞} ⊆ {X →} ∩ {A2

∞ <∞} P -a.s.

was proved in [25, Chap. 2, Sec. 6, Theorem 7] under the following additional assumptions:
(1) EX0 <∞;
(2) one of the following conditions (α) or (β) is satisfied:

(α) there exists ε > 0 such that A1
t+ε ∈ Ft for all t > 0;

(β) for any predictable Markov moment σ,

EΔA1
σI{σ<∞} <∞.

Let A,B ∈ F ∩D. We write A ≺ B if B −A ∈ V+.

1.1.3. Corollary. Let X ∈ SP , X ≥ 0, A ≤ A1 −A2, and A ≺ A1, where A1, A2 ∈ V+ ∩ P. Then

{A1
∞ <∞} = {(1 +X−)−1 ◦A1

∞ <∞} ⊆ {X →} ∩ {A2
∞ <∞} P -a.s.

Proof. Rewrite X in the form
X = X0 +A1 − Ã 2 +M,

where Ã 2 = A1−A ∈ V1∩P. Then the required assertion follows from Theorem 1.1.1, Corollary 1.1.1,
and the trivial inclusion {Ã2∞ <∞} ⊆ {A2∞ <∞}. The corollary is proved.

1.1.4. Corollary. Let X ∈ SP , X ≥ 0, and let

X = X0 +X− ◦B +A+M

with B ∈ V+ ∩ P, A ∈ V ∩ P and M ∈ Mloc. Assume that for A1, A2 ∈ V+ ∩ P,

A ≤ A1 −A2 and A ≺ A1.

Then
{A1

∞ <∞} ∩ {B∞ <∞} ⊆ {X →} ∩ {A2
∞ <∞} P -a.s.

The proof is similar to the proof of Corollary 1.1.3 if we consider the process Xε−1(B).

1.1.2. Remark. Consider the discrete-time case.
Let F0,F1, . . . be a nondecreasing sequence of σ-algebras, let Xn, βn, ξn, ζn ∈ Fn, n ≥ 0, be

nonnegative r.v., and let

Xn = X0 +
n∑

i=0

Xi−1βi−1 +An +Mn
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(we mean that X−1 = X0, F−1 = F0 and β−1 = ξ−1 = ζ−1 = 0), where An ∈ Fn−1 with A0 = 0 and
M ∈ Mloc. Note that Xn can be always represented in this form by taking

An =
n∑

i=0

(E(Xi|Fi−1) −Xi−1) −
n∑

i=0

Xi−1βi−1.

Denote

A1
n =

n∑
i=0

ξi−1, A2
n =

n∑
i=0

ζi−1.

It is clear that in this case,
A ≺ A1 ⇐⇒ ΔAn ≤ ξn−1

(ΔAn := An −An−1, n ≥ 1).
Therefore, in this case Corollary 1.1.4 can be formulated as follows: For each n, let

An ≤
n∑

i=0

(ξi−1 − ζi−1), ΔAn ≤ ξn−1.

Then { ∞∑
i=0

ξi−1 <∞
}
∩
{ ∞∑

i=0

βi−1 <∞
}

⊆ {X →} ∩
{ ∞∑

i=0

ζi−1 <∞
}

P -a.s.

From this corollary, the result by Robbins and Siegmund (see [37]) follows. Indeed, the above
inclusion holds if, in particular, ΔAn ≤ ξn−1 − ζn−1, n ≥ 1, i.e., when

E(Xn | Fn−1) ≤ Xn−1(1 + βn−1) + ξn−1 − ζn−1, n ≥ 0.

In our terms, the previous inequality means that A ≺ A1 −A2.

1.2. Main theorem. Consider the stochastic equation (RM procedure)

zt = z0 +

t∫

0

Hs(zs−) dKs +

t∫

0

M(ds, zs−), t ≥ 0, z0 ∈ F0, (1.2.1)

or, in the differential form,

dzt = Ht(zt−)dKt +M(dt, zt−), z0 ∈ F0.

Assume that there exists a unique strong solution z = (zt)t≥0 of (1.2.1) on the whole interval of time
[0,∞), M̃ ∈ M2

loc, where

M̃t :=

t∫

0

M(ds, zs−).

We study the problem of P -a.s. convergence zt → 0 as t→ ∞.
For this purpose, apply Theorem 1.1.1 to the semimartingale Xt = z2

t , t ≥ 0. Using the Itô formula,
for the process (z2

t )t≥0, we obtain
dz2

t = dAt + dNt, (1.2.2)
where

dAt = V −
t (zt−)dKt + V +

t (zt−)dKd
t + d〈M̃〉t,

dNt = 2zt−dM̃t +Ht(zt−)ΔKt dM̃
d
t + d([M̃ ]t − 〈M̃〉t),

with
V −

t (u) := 2Ht(u)u, V +
t (u) := H2

t (u)ΔKt.

Note that A = (At)t≥0 ∈ V ∩ P, N ∈ Mloc.
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Represent the process A in the form
At = A1

t −A2
t (1.2.3)

with

(1)

{
dA1

t = V +
t (zt−)dKd

t + d〈M̃〉t,
−dA2

t = V −
t (zt−)dKt,

(2)

{
dA1

t = [V −
t (zt−)I{ΔKt �=0} + V +

t (zt−)]+dKd
t + d〈M̃〉t,

−dA2
t = {V −

t (zt−)I{ΔKt=0} − [V −
t (zt−)I{ΔKt �=0} + V +

t (zt−)]−}dKt,

where [a]+ = max(0, a) and [a]− = −min(0, a).
As follows from condition (A), αt(zt−) ≤ 0 for all t ≥ 0, and, therefore, the representation (1.2.3)(1)

directly corresponds to the usual (in the stochastic approximation procedures) standard form of the
process A (in (1.2.2), A = A1 − A2 with A1, A2 from (1.2.3)(1)). Therefore, representation (1.2.3)(1)
is said to be “standard,” whereas representation (1.2.3)(2) is said to be “nonstandard.”

Introduce the following set of conditions. For all u ∈ R
1 and t ∈ [0,∞), we have

(A) for all t ∈ [0,∞), Ht(0) = 0 P -a.s. and Ht(0)u < 0 for all u 
= 0;
(B) (i) 〈M(u)〉 � K,

(ii) ht(u) ≤ Bt(1 + u2), Bt ≥ 0, B = (Bt)t≥0 ∈ P, B ◦K∞ <∞, where ht(u) =
d〈M(u)〉t
dKt

;

(I) (i1) I{ΔKt �=0}|Ht(u)| ≤ Ct(1 + |u|), Ct ≥ 0, C = (Ct)t≥0 ∈ P, C ◦Kt <∞,
(i2) C2ΔK ◦Kd∞ <∞,
(ii) for each ε > 0,

inf
ε≤|u|≤1/ε

|V −(u)| ◦K∞ = ∞;

(II) (i) [V −
t (u)I{ΔKt �=0} + V +

t (u)]+ ≤ Dt(1 + u2), Dt ≥ 0, D = (Dt)t≥0 ∈ P, D ◦Kd∞ <∞,
(ii) for each ε > 0

inf
ε≤|u|≤1/ε

{|V −(u)|I{ΔKt=0} + [V −(u)I{ΔKt �=0} + V +(u)]−} ◦K∞ = ∞.

1.2.1. Remark. When M(u) ≡ m ∈ M2
loc, we do not claim the condition 〈m〉 � K and replace the

condition (B) by
(B′) 〈m〉∞ <∞.

1.2.2. Remark. Everywhere, we assume that all conditions are satisfied P -a.s.

1.2.3. Remark. It is obvious that (I)(ii)=⇒ C ◦K∞ = ∞.

1.2.1. Theorem. Let conditions (A), (B), (I) or (A), (B), (II) be satisfied. Then

zt → 0 P -a.s. as t→ ∞.

Proof. For example, assume that conditions (A), (B) and (I) are satisfied. Then using Corollary 1.1.1
and (1.2.2) with the standard representation (1.2.3)(1) of process A, we obtain

{(1 + z2
−)−1 ◦A1

∞ <∞} ⊆ {z2 →} ∩ {A2
∞ <∞}. (1.2.4)

But, from conditions (B) and (I)(i), we have

{(1 + z2
−)−1 ◦A1

∞ <∞} = Ω P -a.s.,

and, therefore,
{z2 →} ∩ {A2

∞ <∞} = Ω P -a.s. (1.2.5)
Denote z2∞ = lim

t→∞ z2
t and N = {z2∞ > 0}; assume that P (N) > 0. In this case, by simple arguments,

from (I)(ii) we obtain
P (|V −(z−)| ◦K∞ = ∞) > 0,
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which contradicts (1.2.4). Hence P (N) = 0. The proof of the second case is quite similar. The
theorem is proved.

In the following propositions, the relationship between conditions (I) and (II) are given.

1.2.1. Proposition. (I)⇒(II).

Proof. From (I)(i1), we have

[V −
t (u)I{ΔKt �=0} + V +

t (u)]+ ≤ V +
t (u) ≤ C2

t ΔKt(1 + u2),

and if we take Dt = C2
t ΔKt, then (II)(i) follows from (I)(i2).

Furthermore, from (I)(i1), for each ε > 0 and u with ε ≤ |u| ≤ 1/ε, we have

|V −
t (u)|I{ΔKt=0}+[V −

t (u)+V +
t (u)]−I{ΔKt �=0} ≥ |V −

t (u)|−V +
t (u) ≥ |V −

t (u)|−C2
t ΔKt

(
1+

1
ε2

)
.

Now (II)(ii) follows from (I)(i2) and (I)(ii). The proposition is proved.

1.2.2. Proposition. Under (I)(i), we have (I)(ii) ⇔ (II)(ii).

The proof follows from the previous proposition and the trivial implication (II)(ii)⇒(I)(ii).

1.3. Some simple sufficient conditions for (I) and (II). Introduce the following group of
conditions: for each u ∈ R

1 and t ∈ [0,∞),

(S.1) (i1) Gt|u| ≤ |Ht(u)| ≤ G̃t|u|, Gt ≥ 0, G = (Gt)t≥0, G̃ = (G̃t)t≥0 ∈ P, G̃ ◦Kt <∞,
(i2) G̃2ΔK ◦Kd∞ <∞;
(ii) G ◦K∞ = ∞;

(S.2) (i) G̃[−2 + G̃ΔK]+ ◦Kd∞ <∞;
(ii) G{2I{ΔK=0} + [−2 + G̃ΔK]−I{ΔK �=0} ◦K∞ = ∞.

1.3.1. Proposition. (S.1) ⇒ (I), (S.1)(i1), (S.2) ⇒ (II).

Proof. The first implication is obvious. For the second, note that

V −
t (u)I{ΔKt �=0} + V +

t (u)

= −2|Ht(u)| |u|I{ΔKt �=0} +H2
t (u)ΔKt ≤ |Ht(u)| |u| [−2I{ΔKt �=0} + G̃tΔKt]. (1.3.1)

Therefore,

[V −
t (u)I{ΔKt �=0} + V +

t (u)]+ ≤ |Ht(u)| |u| [−2I{ΔKt �=0} + G̃tΔKt]+ ≤ G̃t[−2I{ΔKt �=0} + G̃tΔKt]+|u2|,
and (II)(i) follows from (S.2)(i) if we take

Dt = G̃t[−2 + G̃tΔKt]+I{ΔKt �=0}.

Furthermore, from (1.3.1), we have

|V −
t (u)|I{ΔKt=0} + [V −

t (u)I{ΔKt �=0} + V +
t (u)]− ≥ u2Gt{2I{ΔKt=0} + [−2I{ΔKt �=0} + G̃tΔKt]−}

and (II)(ii) follows from (1.2.3). The proposition is proved.

1.3.1. Remark.
(a) (S.1) ⇒ (S.2);
(b) under (S.1)(i), we have (S.1)(ii) ⇔ (S.2)(ii);
(c) (S.2)(ii) ⇒ (S.1)(ii).

Summarizing the above, we arrive at the following conclusions: a) if the condition (S.1)(ii) is not
satisfied, then (S.2)(ii) is also not satisfied; b) if (S.1)(i1) and (S.1)(ii) are satisfied, but (S.1)(i2) is
violated, then nevertheless the conditions (S.2)(i) and (S.2)(ii) can be satisfied.

In this case, the nonstandard representations (1.2.3)(2) is useful.
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1.3.2. Remark. Denote

G̃tΔKt = 2 + δt, δt ≥ −2 for all t ∈ [0,∞).

It is obvious that if δt ≤ 0 for all t ∈ [0,∞), then [−2 + G̃tΔKt]+ = 0. Therefore, (S.2)(i) is trivially
satisfied and (S.2)(ii) takes the form

G{2I{ΔK=0} + |δ|I{ΔK �=0} ◦K∞ = ∞. (1.3.2)

Note that if G ·min(2, |δ|)◦K∞ = ∞, then (1.3.2) holds, and the simplest sufficient condition (1.3.2)
is: for all t ≥ 0,

G ◦K∞ = ∞, |δt| ≥ const > 0.

1.3.3. Remark. Let conditions (A), (B), and (I) be satisfied. Since we apply Theorem 1.1.1 and
its corollaries on the semimartingales convergence sets given in Sec. 1.1, we get rid of many of the
“usual” restrictions: “moment” restrictions, boundedness of regression function, etc.

1.4. Examples.

1.4.1. Example. Recursive parameter estimation procedures for statistical models asso-
ciated with semimartingale.

1. Basic model and regularity. The object of consideration is a parametric filtered statistical model

ε = (Ω,F ,F = (Ft)t≥0, {Pθ; θ ∈ R})
associated with a one-dimensional F-adapted RCLL process X = (Xt)t≥0 in the following way: for
each θ ∈ R

1, Pθ is a unique measure on (Ω,F) such that with this measure, X is a semimartingale
with predictable characteristics (B(θ), C(θ), νθ) (with respect to the standard truncation function
h(x) = xI{|x|≤1}). For simplicity, assume that all Pθ coincide on F0.

Assume that for each pair (θ, θ′), Pθ
loc∼ Pθ′ . Fix θ = 0 and denote P = P0, B = B(0), C = C(0),

and ν = ν0.
Let ρ(θ) = (ρt(θ))t≥0 be a local density process (likelihood ratio process):

ρt(θ) =
dPθ,t

dPt
,

where, for each θ Pθ,t := Pθ|Ft, Pt := P |Ft are restrictions of the measures Pθ and P to Ft, respectively.
As is well known (see, e.g., [14, Chap. III, Sec. 3d, Theorem 3.24]), for each θ, there exist a P̃-

measurable positive function

Y (θ) = {Y (ω, t, x; θ), (ω, t, x) ∈ Ω ×R+ ×R},
and a predicable process β(θ) = (βt(θ))t≥0 with

|h(Y (θ) − 1)| ∗ ν ∈ A+
loc(P ), β2(θ) ◦ C ∈ A+

loc(P )

such that
(1) B(θ) = B + β(θ) ◦ C + h(Y (θ) − 1) ∗ ν,
(2) C(θ) = C, (3) νθ = Y (θ) · ν. (1.4.1)

In addition, the function Y (θ) can be chosen in such a way that

at := ν({t}, R) = 1 ⇐⇒ at(θ) := νθ({t}, R) =
∫
Y (t, x; θ)ν({t})dx = 1.

We assume that the model is regular in the Jacod sense (see [15, Sec. 3, Definition 3.12]) at each
point θ, i.e., the process (ρθ′/ρθ)1/2 is locally differentiable with respect to θ′ at θ with the derived
process

L(θ) = (Lt(θ))t≥0 ∈ M2
loc(Pθ).
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In this case the Fisher information process is defined as

Ît(θ) = 〈L(θ), L(θ)〉t. (1.4.2)

In [15, Sec. 2-c, Theorem 2.28], it was proved that the regularity of the model at point θ is equivalent
to the differentiability of characteristics β(θ), Y (θ), and a(θ) in the following sense: there exist a
predictable process β̇(θ) and P̃-measurable function W (θ) with

β̇2(θ) ◦ Ct <∞, W 2(θ) ∗ νθ,t <∞ for all t ∈ R+

and such that for all t ∈ R+, we have as θ′ → θ

(1) (β(θ′) − β(θ) − β̇(θ)(θ′ − θ))2 ◦ Ct/(θ′ − θ)2 Pθ→ 0,

(2)

((
Y (θ′)
Y (θ)

)1/2

− 1 − 1
2
W (θ)(θ′ − θ)

)2

∗ νθ,t

/
(θ′ − θ)2 Pθ→ 0,

(3)
∑
s≤t

as(θ)<1

[
(1 − as(θ′))1/2 − (1 − as(θ))1/2 +

1
2

Ŵ θ
s (θ)

(1 − as(θ))1/2
(θ′ − θ)

]2/
(θ′ − θ)2 Pθ→ 0,

(1.4.3)

where

Ŵ θ
t (θ) =

∫
W (t, x; θ)νθ({t}, dx).

In this case, as(θ) = 1 ⇒ Ŵ θ
s (θ) = 0 and the process L(θ) can be written as

L(θ) = β̇(θ) · (Xc − β(θ) ◦ C) +
(
Ŵ θ(θ) +

Ŵ θ(θ)
1 − a(θ)

)
∗ (μ− νθ), (1.4.4)

and

Î(θ) = β̇2(θ) ◦ C + (Ŵ θ(θ))2 ∗ νθ +
∑
s≤·

(Ŵ θ
s (θ))2

1 − as(θ)
. (1.4.5)

Denote

Φ(θ) = W (θ) +
Ŵ θ(θ)

1 − a(θ)
.

One can consider another alternative definition of the regularity of the model (see, e.g., [35]) based
on the following representation of the process ρ(θ):

ρ(θ) = ε(M(θ)),

where

M(θ) = β(θ) ·Xc +
(
Y (θ) − 1 +

Ŷ (θ) − a

1 − a
I{0<a<1}

)
∗ (μ− ν) ∈ Mloc(P ). (1.4.6)

Here, Xc is a continuous martingale part of X under the measure P (see, e.g., [16, 28]).
We say that the model is regular if for almost all (ω, t, x), the functions β : θ → βt(ω; θ) and

Y : θ → Y (ω, t, x; θ) are differentiable (notation β̇(θ) := ∂
∂θβ(θ), Ẏ (θ) := ∂

∂θY (θ)) and differentiability
under the sign of integral is possible. Then

∂

∂θ
ln ρ(θ) = L(Ṁ(θ),M(θ)) := L̃(θ) ∈ Mloc(Pθ),

where L(m,M) is the Girsanov transformation defined as follows: if m,M ∈ Mloc(P ) and Q � P

with dQ
dP = ε(M), then

L(m,M) := m− (1 + ΔM)−1 ◦ [m,M ] ∈ Mloc(Q).
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It is not difficult to verify that

L̃(θ) = β̇(θ) · (Xc − β(θ) ◦ C) + Φ̃(θ) ∗ (μ− νθ), (1.4.7)

where

Φ̃(θ) =
Ẏ (θ)
Y (θ)

+
ȧ(θ)

1 − a(θ)
with I{a(θ)=1}ȧ(θ) = 0.

If we assume that for each θ ∈ R
1 L̃(θ) ∈ M2

loc(Pθ), then the Fisher information process is

Ît(θ) = 〈L̃(θ), L̃(θ)〉t.
It should be noted that from the regularity of the model in the Jacod sense it follows that L(θ) ∈

M2
loc(Pθ), while under the latter regularity conditions L̃(θ) ∈ M2

loc(Pθ) is an assumption in general.
In the sequel, we assume that the model is regular in both senses given above. Then

W (θ) =
Ẏ (θ)
Y (θ)

, Ŵ θ(θ) = ȧ(θ), L(θ) = L̃(θ).

2. Recursive estimation procedure for MLE. In [18], an heuristic algorithm was proposed for con-
structing recursive estimators of the unknown parameter θ asymptotically equivalent to the maximum
likelihood estimator (MLE).

This algorithm was derived using the following reasoning.
Consider the MLE θ̂ = (θ̂t)t≥0, where θ̂t is a solution of estimation equation

Lt(θ) = 0.

Assume that
(1) for each θ ∈ R

1, the process (Ît(θ))1/2(θ̂t − θ) is Pθ-stochastically bounded, and, in addition,
the process (θ̂t)t≥0 is a Pθ-semimartingale;

(2) for each pair (θ′, θ), the process L(θ′) ∈ M2
loc(Pθ′) and is a Pθ-special semimartingale;

(3) the family (L(θ), θ ∈ R
1) is such that the Ito–Ventzel formula is applicable to the process

(L(t, θ̂t))t≥0 with respect to Pθ for each θ ∈ R
1;

(4) for each θ ∈ R
1, there exists a positive increasing predictable process (γt(θ))t≥0 asymptotically

equivalent to Î−1
t (θ), i.e.,

γt(θ)Ît(θ)
Pθ→ 1 as t→ ∞.

Under these assumptions, using the Itô–Ventzel formula for the process (L(t, θ̂t))t≥0, we obtain an
“implicit” stochastic equation for θ̂ = (θ̂t)t≥0. Analyzing the orders of infinitesimality of terms of this
equation and rejecting the high-order terms, we obtain the following SDE (recursive procedure):

dθt = γt(θt−)L(dt, θt−), (1.4.8)

where L(dt, ut) is a stochastic line integral with respect to the family {L(t, u), u ∈ R
1, t ∈ R+} of

Pθ-special semimartingales along the predictable curve u = (ut)t≥0.
To give an explicit form to the SDE (1.4.8) for the statistical model associated with the semimartin-

gale X, assume for a moment that for each (u, θ) (including the case u = θ),

|Φ(u)| ∗ μ ∈ A+
loc(Pθ). (1.4.9)

Then for each pair (u, θ), we have

Φ(u) ∗ (μ− νu) = Φ(u) ∗ (μ− νθ) + Φ(u)
(

1 − Y (u)
Y (θ)

)
∗ νθ.
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Based on this equality one can obtain the canonical decomposition of Pθ-special semimartingale
L(u) (with respect to measure Pθ):

L(u) = β̇(u) ◦ (Xc − β(θ) ◦ C) + Φ(u) ∗ (μ− νθ)

+ β̇(u)(β(θ) − β(u)) ◦ C + Φ(u)
(

1 − Y (u)
Y (θ)

)
∗ νθ. (1.4.10)

Now, in view of (1.4.10), the meaning of L(dt, ut) is

t∫

0

L(ds, us−) =

t∫

0

β̇s(us−)d(Xc − β(θ) ◦ C)s +

t∫

0

∫
Φ(s, x, us−)(μ− νθ)(ds, dx)

+

t∫

0

β̇s(us)(βs(θ) − βs(us))dCs +

t∫

0

∫
Φ(s, x, us−)

(
1 − Y (s, x, us−)

Y (s, x, θ)

)
νθ(ds, dx).

Finally, the recursive SDE (1.4.8) takes the form

θt = θ0 +

t∫

0

γs(θs−)β̇s(θs−)d(Xc − β(θ) ◦ C)s +

t∫

0

∫
γs(θs−)Φ(s, x, θs−)(μ− νθ)(ds, dx)

+

t∫

0

γs(θ)β̇s(θs)(βs(θ) − βs(θs))dCs +

t∫

0

∫
γs(θs−)Φ(s, x, θs−)

(
1 − Y (s, x, θs−)

Y (s, x, θ)

)
νθ(ds, dx).

(1.4.11)

1.4.1. Remark. One can give sufficient conditions more accurate than (1.4.9) (see, e.g., [12, 14, 25])
to ensure the fulfillment of decomposition (1.4.10).

Assume that there exists a unique strong solution (θt)t≥0 of the SDE (1.4.11).
To investigate the asymptotic properties of recursive estimators (θt)t≥0 as t → ∞, precisely, the

strong consistency, the rate of convergence, and the asymptotic expansion, we reduce the SDE (1.4.11)
to the Robbins–Monro type SDE.

For this purpose, denote zt = θt − θ. Then (1.4.11) can be rewritten as

zt = z0 +

t∫

0

γs(θ + zs−)β̇(θ + zs−)(βs(θ) − βs(θ + zs−)dCs

+

t∫

0

∫
γs(θ + zs−)Φ(s, x, θ + zs−)

(
1 − Y (s, x, θ + zs−)

Y (s, x, θ)

)
νθ(ds, dx)

+

t∫

0

γs(θ + zs)β̇s(θ + zs)d(Xc − β(θ) ◦ C)s

+

t∫

0

∫
γs(θ + zs−)Φ(s, x, θ + zs−)(μ− νθ)(ds, dx). (1.4.12)

For the definition of the objects Kθ, {Hθ(u), u ∈ R
1}, and {M θ(u), u ∈ R

1} we consider a version
of characteristics (C, νθ) such that

Ct = Cθ ◦Aθ
t , νθ(ω, dt, dx) = dAθ

tB
θ
ω,t(dx),
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where Aθ = (Aθ
t )t≥0 ∈ A+

loc(Pθ), Cθ = (Cθ
t )t≥0 is a nonnegative predictable process, Bθ

ω,t(dx) is a
transition kernel from (Ω × R+,P) in (R,B(R)) with Bθ

ω,t({0}) = 0, and

ΔAθ
tB

θ
ω,t(R) ≤ 1

(see [14, Chap. 2, Sec. 2, Proposition 2.9]).
Put Kθ

t = Aθ
t ,

Hθ
t (u) = γt(θ + u)

{
β̇t(θ + u)(βt(θ) − βt(θ + u))Cθ

t

+
∫
φ(t, x, θ + u)

(
1 − Y (t, x, θ + u)

Y (t, x, θ)

)
Bθ

ω,t(dx)
}
, (1.4.13)

M θ(t, u) =

t∫

0

γs(θ + u)β̇s(θ + u)d(Xc − β(θ) ◦ C)s

+

t∫

0

∫
γs(θ + u)Φ(s, x, θ + u)(μ− νθ)(ds, dx). (1.4.14)

Assume that for each u, M θ(u) = (M θ(t, u))t≥0 ∈ M2
loc(Pθ). Then

〈Mθ(u)〉t =

t∫

0

(γs(θ + u)β̇s(θ + u))2Cθ
sdA

θ
s +

t∫

0

γ2
s (θ + u)

(∫
Φ2(s, x, θ + u)Bθ

ω,s(dx)
)
dAθ,c

s

+

t∫

0

γ2
s (θ + u)Bθ

ω,t(R)
{∫

Φ2(s, x, θ + u)qθ
ω,s(dx) − as(θ)

(∫
Φ(s, x, θ + u)qθ

ω,s(dx)
)2}

dAθ,d
s ,

where as(θ) = ΔAθ
sB

θ
ω,s(R), qθ

ω,s(dx)I{as(θ)>0} = Bθ
ω,s(dx)

Bθ
ω,s(R)

I{as(θ)>0}.

Now we give a more detailed description of Φ(θ), Î(θ), Hθ(u), and 〈Mθ(u)〉. Denote

dνc
θ

dνc
:= F (θ),

qθ
ω,t(dx)
qω,t(dx)

:= fω,t(x, θ) (:= ft(θ)).

Then

Y (θ) = F (θ)I{a=0} +
a(θ)
a

f(θ)I{a>0}
and

Ẏ (θ) = Ḟ (θ)I{a=0} +
(
ȧ(θ)
a

f(θ) +
a(θ)
a

ḟ(θ)
)
I{a>0}.

Therefore,

Φ(θ) =
Ḟ (θ)
F (θ)

I{a=0} +
{
ḟ(θ)
f(θ)

+
ȧ(θ)

a(θ)(1 − a(θ))

}
I{a>0} (1.4.15)

with

I{a(θ)>0}
∫
ḟ(θ)
f(θ)

qθ(dx) = 0.

Denote

β̇(θ) = �c(θ),
Ḟ (θ)
F (θ)

:= �π(θ),
ḟ(θ)
f(θ)

:= �δ(θ),
ȧ(θ)

a(θ)(1 − a(θ))
:= �b(θ).

The indices i = c, π, δ, and b have the following meaning: “c” corresponds to the continuous
part, “π” to the Poisson type part, “δ” to the predictable moments of jumps (including a main
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special case, the discrete time case), and “b” to the binomial type part of the likelihood score �(θ) =
(�c(θ), �π(θ), �δ(θ), �b(θ)).

In this notation, for the Fisher information process we have

Ît(θ) =

t∫

0

(�cs(θ))
2dCs +

t∫

0

∫
(�πs (x; θ))2Bθ

ω,s(dx)dA
θ,c
s

+

t∫

0

Bθ
ω,s(R)

[ ∫
(�δs(x; θ))

2qθ
ω,s(dx)

]
dAθ,d

s +

t∫

0

(�bs(θ))
2(1 − as(θ))dAθ,d

s . (1.4.16)

For the random field Hθ(u), we have

Hθ
t (u) = γt(θ+u)

{
�ct(θ+u)(βt(θ)−βt(θ+u))Cθ

t +
∫
�πt (x; θ+u)

(
1−Ft(x; θ + u)

Ft(x; θ)

)
Bθ

ω,t(dx)I{ΔAθ
t =0}

+
{∫

�δt (x; θ + u)qθ
ω,t(dx) + �bt(θ + u)

at(θ) − at(θ + u)
at(θ)

}
Bθ

ω,t(R)I{ΔAθ
t >0}. (1.4.17)

Finally, for 〈M θ(u)〉, we have

〈Mθ(u)〉t = (γ(θ + u)�c(θ + u))2Cθ ◦Aθ
t +

t∫

0

γ2
s (θ + u)

∫
(�πs (x; θ + u))2Bθ

ω,t(dx)dA
θ,c
s

+

t∫

0

γ2
s (θ + u)Bθ

ω,s(R)
{∫

(�δs(x; θ + u) + �bs(θ + u))2qθ
ω,s(dx)

− as(θ)
(∫

(�δs(x; θ + u) + �bs(θ + u))qθ
ω,s(dx)

)2}
dAθ,d

s . (1.4.18)

Thus, we reduced SDE (1.4.12) to the Robbins–Monro type SDE with Kθ
t = Aθ

t , and Hθ(u) and
M θ(u) defined by (1.4.17) and (1.4.14), respectively.

As follows from (1.4.17)
Hθ

t (0) = 0 for all t ≥ 0, Pθ-a.s.
For condition (A) to be satisfied, it suffices to assume that for all t ≥ 0, u 
= 0 Pθ-a.s.,

β̇t(θ + u)(βt(θ) − βt(θ + u)) < 0,(∫
Ḟ (t, x, θ + u)
F (t, x, θ + u)

(
1 − F (t, x; θ + u)

F (t, x; θ)

)
Bθ

ω,t(dx)
)
I{ΔAθ

t =0}u < 0,

(∫
ḟ(t, x; θ + u)
f(t, x; θ + u)

qθ
t (dx)

)
I{ΔAθ

t >0}u < 0,

ȧt(θ + u)(at(θ) − at(θ + u))u < 0,

and the simplest sufficient conditions for the latter is the monotonicity (P -a.s.) of the functions β(θ),
F (θ), f(θ) and a(θ) with respect to θ.

1.4.2. Remark. In the case where the model is only regular in the Jacod sense, we save the same
form of all the above-given objects (precisely of Φ(θ)) using the formal definitions:

Ḟ (θ)
F (θ)

I{a(θ)=0} := W (θ)I{a(θ)=0},

ȧ(θ) := Ŵ θ,
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ḟ(θ)
f(θ)

:= W (θ)I{a(θ)>0} −
Ŵ θ(θ)
a(θ)

I{a(θ)>0}.

1.4.2. Example. Discrete time.

(a) Recursive MLE in parameter statistical models Let X0, X1, . . . , Xn, . . . be observations taking val-
ues in some measurable space (X ,B(X )) such that the regular conditional densities of distributions
(with respect to some measure μ) fi(xi, θ|xi−1, . . . , x0), i ≤ n, n ≥ 1 exist, and f0(x0, θ) ≡ f0(x0),
θ ∈ R

1, is the parameter to be estimated. Denote Pθ corresponding distribution on (Ω,F) :=
(X∞,B(X∞)). Identify the process X = (Xi)i≥0 with coordinate process and denote F0 = σ(X0)
and Fn = σ (Xi, i ≤ n). If ψ = ψ(Xi, Xi−1, . . . , X0) is a r.v., then by Eθ(ψ|Fi−1) we mean the
following version of conditional expectation:

Eθ(ψ | Fi−1) :=
∫
ψ(z,Xi−1, . . . , X0)fi(z, θ | Xi−1, . . . , X0)μ(dz)

if the last integral exists.
Assume that the usual regularity conditions are satisfied and denote

∂

∂θ
fi(xi, θ | xi−1, . . . , x0) := ḟi(xi, θ | xi−1, . . . , x0),

by

li(θ) :=
ḟi

fi
(Xi, θ | Xi−1, . . . , X0)

the maximum likelihood scores, and by

In(θ) :=
n∑

i=1

Eθ(l2i (θ) | Fi−1)

the empirical Fisher information. Also denote

bn(θ, u) := Eθ(ln(θ + u) | Fn−1)

and indicate that for each θ ∈ R
1, n ≥ 1

bn(θ, 0) = 0 (Pθ-a.s.). (1.4.19)

Consider the following recursive procedure:

θn = θn−1 + I−1
n (θn−1)ln(θn−1), θ0 ∈ F0.

Fix θ, denote zn = θn − θ, and rewrite the last equation in the form

zn = zn−1 + I−1
n (θ + zn−1)bn(θ, zn−1) + I−1

n (θ + zn−1)Δmn,

z0 = θ − θ,
(1.4.20)

where Δmn = Δm(n, zn−1) with Δm(n, u) = ln(θ + u) − Eθ(ln(θ + u)|Fn−1).
Note that algorithm (1.4.20) is embedded in the stochastic approximation scheme (1.2.1) with

Hn(u) = I−1
n (θ + u)bn(θ, u) ∈ Fn−1, ΔKn = 1,

ΔM(n, u) = I−1
n (θ + u)Δm(n, u).

This example clearly shows the necessity of considering the random fields Hn(u) and M(n, u).
In [39], the convergence zn → 0 P -a.s. as n → ∞ was proved under conditions equivalent to (A),

(B), and (I) connected with the standard representation (1.2.2)(1).
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1.4.3. Remark. Let θ ∈ Θ ⊂ R
1, where θ is an open proper subset of R

1. It is possible that the
objects ln(θ) and In(θ) are defined only on the set Θ, but for each fixed θ ∈ Θ the objects Hn(u) and
M(n, u) are well-defined functions of variable u on all R

1. Then under the conditions of Theorem 1.2.1,
θn → θ Pθ-a.s. as n → ∞ starting from an arbitrary θ0. The example given below illustrates this
situation. The same example also illustrates the efficiency of representation (1.2.3)(2).

(b) Galton–Watson branching process with immigration. Let the observable process be

Xi =
Xi−1∑
j=1

Yi,j + 1, i = 1, 2, . . . , n; X0 = 1,

Yi,j are i.i.d. random variables having the Poisson distribution with the parameter θ, θ > 0, to be
estimated. If Fi = σ(Xj , j ≤ i), then

Pθ(Xi = m | Fi−1) =
(θXi−1)m−1

(m− 1)!
e−θXi−1 , i = 1, 2, . . . ; m ≥ 1.

From this, we have

li(θ) =
Xi − 1 − θXi−1

θ
, In(θ) = θ−1

n∑
i=1

Xi−1.

The recursive procedure has the form

θn = θn−1 +
Xn − 1 − θn−1Xn−1∑n

i=1Xi−1
, θ0 ∈ F0, (1.4.21)

and if, as usual zn = θn − θ, then

zn = zn−1 − zn−1Xn−1
n∑

i=1
Xi−1

+
εn

n∑
i=1

Xi−1

, (1.4.22)

where εn = Xn−1−θXn is a Pθ-square integrable martingale-difference. In fact, Eθ(εn | Fn−1) = 0 and

Eθ(ε2n | Fn−1) = θXn−1. In this case, Hn(u) = −uXn−1/
n∑

i=1
Xi−1, ΔM(n, u) = Δmn = εn/

n∑
i=1

Xi−1,

and ΔK = 1 and, therefore, they are well defined on all R
1.

Indicate that the solution of Eq. (1.4.21) coincides with MLE

θ̂n =

n∑
i=1

(Xi − 1)

n∑
i=1

Xi−1

,

and it is easy to see that (θ̂n)n≥1 is strongly consistent for all θ > 0.
Indeed,

θ̂n − θ =

n∑
i=1

εi

n∑
i=1

Xi−1

,

and desirability follows from the strong law of large numbers for martingales and the well-known fact
(see, e.g., [10]) that for all θ > 0,

∞∑
i=1

Xi−1 = ∞ (Pθ-a.s.). (1.4.23)

Derive this result as a consequence of Theorem 1.2.1.
First, note that for each θ > 0, the conditions (A) and (B′) are satisfied. Indeed,
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(A) Hn(u)u =
−u2Xn−1

n∑
i=1

Xi−1

< 0 for all u 
= 0 (Xi > 0, i ≥ 0);

(B′) 〈m〉∞ = θ
∞∑

n=1

Xn−1(
n∑

i=1
Xi−1

)2 <∞ owing to (1.4.23).

Now to illustrate the efficiency of the group of conditions (II), let us consider two cases: (1) 0 <
θ ≤ 1 and (2) θ is arbitrary, i.e., θ > 0.

In case (1), conditions (I) are satisfied. In fact,

|Hn(u)| =
(
Xn−1

/ n∑
i=1

Xi−1

)
|u|,

∞∑
n=1

X2
n−1

/( n∑
i=1

Xi−1

)2
<∞, Pθ-a.s.

But if θ > 1, then the last series diverges and, therefore, the condition (I)(i) is not satisfied.
On the other hand, the proof of desirable convergence by verifying the conditions (II) is almost

trivial. Indeed, use Remark 1.3.2 and take G̃n = Gn = Xn−1/
n∑

i=1
Xi−1. Then

∞∑
n=1

Gn = ∞ Pθ-a.s. for

all θ > 0. Moreover, δn = −2 + G̃n < 0, |δn| ≥ 1.

1.4.3. Example. RM algorithm with deterministic regression function.
Consider a particular case of algorithm (1.2.1) where Ht(ω, u) = γt(ω)R(u) and the process γ =

(γt)t≥0 ∈ P, γt > 0 for all t ≥ 0, dM(t, u) = γtdmt, m ∈ M2
loc, i.e.,

dzt = γtR(zt−)dKt + γtdmt, z0 ∈ F0.

(a) Let the following conditions be satisfied:
(A) R(0) = 0, R(u)u < 0 for all u 
= 0;
(B′) γ2 ◦ 〈m〉∞ <∞;

(1) |R(u)| ≤ C(1 + |u|), C > 0 is constant;
(2) for each ε > 0, inf

ε≤u≤ 1
ε

|R(u)| > 0;

(3) γ ◦Kt <∞, ∀t ≥ 0, γ ◦K∞ = ∞;
(4) γ2ΔK ◦Kd∞ <∞.

Then zt → 0 P -a.s. as t→ ∞.
Indeed, it is easy to see that conditions (A), (B′), and (1)–(4) imply (A), (B), and (I) of Theo-

rem 1.2.1.
In [28], this result was proved on the basis of the theorem on the semimartingale convergence

sets noted in Remark 1.1.1. In the case where Kd 
= 0, this automatically leads to the “moment”
restrictions and the additional assumption |R(u)| ≤ const.

(b) As in case (a), let conditions (A) and (B′) be satisfied. Moreover, assume that for each u ∈ R
1

and t ∈ [0,∞),
(1′) V −

t (u) + V +
t (u) ≤ 0;

(2′) for all ε > 0,
Iε := inf

ε≤u≤ 1
ε

{−(V −(u) + V +(u))} ◦K∞ = ∞.

Then zt → 0 P -a.s. as t→ ∞.
Indeed, it is not difficult to verify that (1′), (2′)⇒ (II).
The following question arises: is it possible that (1′) and (2′) can be satisfied? In addition, assume

that
C1|u| ≤ |R(u)| ≤ C2|u|, C1, C2 are constants, (1.4.24)

(3′) 2 − C2γtΔKt ≥ 0;
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(4′) γ(2 − C2γΔK) ◦K∞ = ∞.

Then (3′) ⇒ (1′) and (4′) ⇒ (2′).
Indeed,

V −
t (u) + V +

t (u) ≤ C1γt|u|2[−2 + C2γtΔKt] ≤ 0,

Iε ≥ C1ε
2{γ(2 − C2γΔK) ◦K∞} = ∞.

1.4.4. Remark. (4′) ⇒ γ ◦K∞ = ∞.

In [30], the convergence zt → 0 P -a.s. as t→ ∞ was proved under the following conditions:
(A) R(0) = 0, R(u)u < 0 for all u 
= 0;
(M) there exists a nonnegative predictable process r = (rt)t≥0 integrable with respect to the process

K = (Kt)t≥0 on any finite interval [0, t] with the following properties:
(a) r ◦K∞ = ∞,
(b) A1∞ = γ2ε−1(−r ◦K) ◦ 〈m〉∞ <∞,
(c) all jumps of process A1 are bounded,
(d) rtu2 + γ2

t ΔKtR
2(u) ≤ −2γtR(u)u, for all u ∈ R

1 and t ∈ [0,∞).
Show that (M)⇒(B′), (1′), and (2′).

It is obvious that (b)⇒(B′). Further, (d)⇒(1′), Finally, (2′) follows from (a) and (d) owing to the
relation

Iε := inf
ε≤|u|≤ 1

ε

−(V −(u) + V +(u)) ◦K∞ ≥ ε2r ◦K∞ = ∞.

The implication is proved.
In the particular case where (1.4.24) holds and for all t ≥ 0 γtΔKt ≤ q, q > 0 is a constant and C1

and C2 in (1.4.24) are chosen such that 2C1 − qC2
2 > 0, if we take rt = bγt, b > 0, with b < 2C1 − qC2

2 ,
then (a) and (d) are satisfied if γ ◦K∞ = ∞.

But these conditions imply (3′) and (4′). In fact, on the one hand, 0 < 2C1 − qC2
2 ≤ C1(2 − qC2),

and, therefore, (3′) follows, since 2 − C2γtΔKt ≥ 2 − qC2 > 0. On the other hand, (4′) follows from
γ(2 − C2γΔK) ◦K∞ ≥ (2 − qC2)γ ◦K∞ = ∞.

From the above, we may conclude that if conditions (A), (B′), (1.4.24), γtΔKt ≤ q, q > 0,
2 − qC2 > 0, and γ ◦ K∞ = ∞ are satisfied, then the desirable convergence zt → 0 P -a.s. takes
place, and, therefore, the choice of the process r = (rt)t≥0 with properties (M) is not necessary (cf.
Remark 1.2.3, Sec. 1.3, and [30]).

(c) Linear model (see, e.g., [28]). Consider the linear RM procedure

dzt = bγtzt−dKt + γtdmt, z0 ∈ F ,
where b ∈ B ⊆ (−∞, 0), m ∈ M2

loc.
Assume that

γ2 ◦ 〈m〉∞ <∞, (1.4.25)

γ ◦K∞ = ∞, (1.4.26)

γ2ΔK ◦Kd <∞.

Then for each b ∈ B, conditions (A), (B′), and (I) are satisfied. Hence

zt → 0 P -a.s. as t→ ∞. (1.4.27)

Now let (1.4.25) and (1.4.26) be satisfied, but P (γ2ΔK ◦Kd = ∞) > 0.
At the same time, assume that B = [b1, b2], −∞ < b1 ≤ b2 < 0, and for all t > 0, γtΔKt < |b1|−1.
Then for each b ∈ B, (1.4.27) holds.
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Indeed,

[V −
t (u)I{ΔKt �=0} + V +

t (u)]+ = |b|γtu
2[−2 + |b|γtΔKtI{ΔKt �=0}]+

≤ I{ΔKt �=0}|b|γtu
2[−2 + |b|γtΔKt]+ = 0,

and, therefore, (II)(i) is satisfied. On the other hand,

inf
ε≤|u|≤ 1

ε

u2{2γ|b|I{ΔK �=0} + bγ[2 − |b|γΔK]I{ΔK �=0}} ◦K∞

≥ ε2|b|γ[2 − |b|γΔK] ◦K∞ ≥ ε2|b|γ ◦K∞ = ∞.

Therefore, (II)(ii) also holds.

2. Rate of Convergence and Asymptotic Expansion

2.1. Notation and preliminaries. We consider the RM type stochastic differential equation
(SDE)

zt = z0 +

t∫

0

Hs(zs−)dKs +

t∫

0

M(ds, zs−). (2.1.1)

As usual, we assume that there exists a unique strong solution z = (zt)t≥0 of Eq. (2.1.1) defined on

the whole time interval [0,∞[ and M̃ = (M̃t)t≥0 ∈ M2
loc(P ), where M̃ =

t∫
0

M(ds, zs−) (see [8, 9, 13]).

Let us denote

βt = − lim
u→0

Ht(u)
u

assuming that this limit exists and is finite for each t ≥ 0 and define the random field

βt(u) =

{
−Ht(u)

u if u 
= 0,
βt if u = 0.

It follows from (A) that for all t ≥ 0 and u ∈ R
1,

βt ≥ 0 and βt(u) ≥ 0 P -a.s.

Further, rewrite Eq. (2.1.1) as

zt = z0 −
t∫

0

βszs−I{βsΔKs �=1}dKs +

t∫

0

M(ds, 0) −
∑
s≤t

zs−I{βsΔKs=1}

+

t∫

0

(βs − βs(zs−))zs−dKs +

t∫

0

(M(ds, zs−) −M(ds, 0))

(we suppose that M(·, 0) 
≡ 0).
Denote

βt = βtI{βtΔKt �=1}, R
(1)
t = −

∑
s≤t

zs−I{βsΔKs=1},

R
(2)
t =

t∫

0

(βs − βs(zs−))zs−dKs, R
(3)
t =

t∫

0

(M(ds, zs−) −M(ds, 0)).
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In this notation,

zt = z0 −
t∫

0

βszs−dKs +

t∫

0

M(ds, 0) +Rt,

where

Rt = R
(1)
t +R

(2)
t +R

(3)
t .

Solving this equation with respect to z, we have

zt = Γ−1
t

(
z0 +

t∫

0

ΓsM(ds, 0) +

t∫

0

ΓsdRs

)
, (2.1.2)

where
Γt = ε−1

t (−β ◦K).

Here, α ◦Kt =
t∫
0

αsdKs and εt(A) is the Dolean exponential.

The process Γ = (Γt)t≥0 is predictable (but not positive in general) and, therefore, the process
L = (Lt)t≥0 defined by

Lt =

t∫

0

ΓsM(ds, 0)

belongs to the class M2
loc(P ). It follows from Eq. (2.1.2) that

χtzt =
Lt

〈Lt〉1/2
t

+Rt,

where

χt = Γt〈L〉−1/2
t , Rt =

z0

〈L〉1/2
t

+
1

〈L〉1/2
t

t∫

0

ΓsdRs

and 〈L〉 is the shifted square characteristic of L, i.e., 〈L〉t := 1 + 〈L〉F,P
t .

This section is organized as follows. In Sec. 2.2 assuming that zt → 0 as t → ∞ P -a.s., we give
various sufficient conditions for the convergence

γδ
t z

2
t → 0 as t→ ∞ P -a.s. (2.1.3)

for all 0 ≤ δ ≤ δ0, where γ = (γt)t≥0 is a predictable increasing process and δ0, 0 ≤ δ0 ≤ 1, is some
constant. There we also give a series of examples illustrating these results.

In Sec. 2.3 assuming that Eq. (2.1.3) holds with γ asymptotically equivalent to χ2 (see the definition
in Sec. 2.2), we study sufficient conditions for the convergence

Rt
P→ 0 as t→ ∞,

which implies the local asymptotic linearity of the solution.
We say that the process ξ = (ξt)t≥0 has some property eventually if for every ω in a set Ω0 of P

probability 1, the trajectory (ξt(ω))t≥0 of the process has this property on the set [t0(ω),∞) for some
t0(ω) <∞.

Everywhere in this section, we assume that zt → 0 as t→ ∞ P -a.s.
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2.2. Rate of convergence. Throughout this section we assume that γ = (γt)t≥0 is a predictable
increasing process such that P -a.s.

γ0 = 1, γ∞ = ∞.

Also, assume that for each u ∈ R
1, the processes 〈M(u)〉 and γ are locally absolutely continuous

with respect to the process K and denote

ht(u, v) =
d〈M(u),M(v)〉t

dKt
, gt =

dγt

dKt

assuming that gt > 0 for simplicity, and hence I{ΔKt �=0} = I{Δγt �=0} P -a.s. for all t > 0.
In this section, we study the problem of the convergence

γδ
t zt → 0 as t→ ∞ P -a.s.

for all δ, 0 < δ < δ0/2, 0 < δ0 ≤ 1.
Note that consideration of the two control parameters δ and δ0 substantially simplifies the ap-

plication of the results and also clarifies their relation with the classical ones (see Examples 2.2.1
and 2.3.1).

We consider two approaches to this problem. The first approach is based on the results on the
convergence sets of nonnegative semimartingales and on the so-called “nonstandard representations.”

The second approach presented exploits the stochastic version of the Kronecker lemma. This ap-
proach is employed in [39] for the discrete time case under the assumption (2.2.23). A comparison of
the results obtained in this section with those obtained before is also presented.

We also note that these two approaches give different sets of conditions in general. This fact is
illustrated by the various examples.

Let us formulate some auxiliary results based on the convergence sets.
Suppose that r = (rt)t≥0 is a nonnegative predictable process such that

rtΔKt < 0, r ◦Kt <∞ P -a.s.

for each t > 0 and
r ◦K∞ = ∞ P -a.s.

Denote by εt = εt(−r ◦K) the Dolean exponential, i.e.,

εt = e−
∫ t
0 rsdKc

s

∏
s≤t

(1 − rsΔKs).

Then, as is well known (see [25, 28]), the process ε−1
t = {εt(−r ◦K)}−1 is a solution of the linear

SDE
ε−1
t = ε−1

t rtdKt, ε−1
0 = 1,

and ε−1
t → ∞ as t→ ∞ (P -a.s.).

2.2.1. Proposition. Suppose that
∞∫

0

ε−1
t εt−[rt − 2βt(zt−) + β2

t (zt−)ΔKt]+dKt <∞ P -a.s., (2.2.1)

∞∫

0

ε−1
t ht(zt−, zt−)dKt <∞ P -a.s., (2.2.2)

where [x]+ denotes the positive part of x. Then ε−1z2 → P -a.s. (the notation X → means that
X = (Xt)t≥0 has a finite limit as t→ ∞).
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Proof. Using the Ito formula, we have

d(ε−1
t z2

t ) = z2
t−dε

−1
t + ε−1

t dz2
t = ε−1

t z2
t−(rt − 2βt(zt−) + β2

t (zt−)ΔKt)dKt

+ ε−1
t ht(zt−, zt−)dKt + d(Mart) = ε−1

t z2
t−dBt + dA1

t − dA2
t + d(Mart),

where

dBt = ε−1
t εt−

[
rt − 2βt(zt−) + β2

t (zt−)ΔKt

]+
dKt,

dA1
t = ε−1

t ht(zt−, zt−)dKt,

dA2
t = ε−1

t εt−
[
rt − 2βt(zt−) + β2

t (zt−)ΔKt

]−
dKt.

Now, applying Corollary 1.1.4 to the nonnegative semimartingale (ε−1
t z2

t )t≥0, we obtain

{B∞ <∞} ∩ {A1
∞ <∞} ⊆ {ε−1z2 →} ∩ {A2

∞ <∞}
and the result follows from Eqs. (2.2.1) and (2.2.2).

The following lemma is an immediate consequence of the Ito formula applied to the process (γδ
t )t≥0,

0 < δ < 1.

2.2.1. Lemma. Suppose that 0 < δ < 1. Then

γδ
t = ε−1

t (−rδ ◦K),

where

rδ
t = rδ

tgt/γt, rδ
t = δI{Δγt=0} +

1 − (1 − Δγt/γt)δ

Δγt/γt
I{Δγt �=0}.

The following theorem is the main result based on the first approach.

2.2.1. Theorem. Suppose that for each δ, 0 < δ < δ0, 0 < δ0 ≤ 1,
∞∫

0

(
γt−
γt

)−δ

[rδ
t − 2βt(zt−) + β2

t (zt−)ΔKt]+dKt <∞ P -a.s. (2.2.3)

and
∞∫

0

γδ
t ht(zt−, zt−)dKt <∞ P -a.s. (2.2.4)

Then γδ
t z

2
t → 0 as t→ ∞ P -a.s. for each δ, 0 < δ < δ0, 0 < δ0 ≤ 1.

Proof. It follows from Proposition 2.2.1, Lemma 2.2.1 and the conditions (2.2.3) and (2.2.4) that

P{γδz2 →} = 1

for all δ, 0 < δ < δ0, 0 < δ0 ≤ 1. Now the result follows since

{γδz2 → for all δ, 0 < δ < δ0} ⇒ {γδz2 → 0 for all δ, 0 < δ < δ0}.

2.2.1. Remark. Note that if Eq. (2.2.3) holds for δ = δ0, than it holds for all δ ≤ δ0.

Some simple conditions ensuring Eq. (2.2.3) are given in the following corollaries.
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2.2.1. Corollary. Suppose that the process
γ

γ−
(2.2.5)

is eventually bounded. Then for each δ, 0 < δ < δ0, 0 < δ0 ≤ 1,
{[

(δI{Δγ=0} + I{Δγ �=0}
g

γ
− 2β(z−) + β2(z−)ΔK

]+

◦K∞ <∞
}

⊆
{[(

δ + (1 − δ)
Δγ
γ

)
g

γ
− 2β(z−) + β2(z−)ΔK

]+

◦K∞ <∞
}

⊆
{(

γ−
γ

)−δ

[rδ − 2β(z−) + β2(z−)ΔK]+ ◦K∞ <∞
}
.

Proof. The proof immediately follows from the following simple inequalities

1 − (1 − x)δ ≤ δx+ (1 − δ)x2 ≤ x

if 0 < x < 1 and 0 < δ < 1, which with x = Δγt/γt yields

rδ
t ≤

(
δ + (1 − δ)

Δγt

γt

)
≤ (

δI{Δγt=0} + I{Δγt �=0}
)
.

It remains to apply condition (2.2.5).

In the next corollary, we need the following group of conditions: for δ, 0 < δ < δ0/2,[
δ
g

γ
− β(z)

]+

◦Kc
∞ <∞ P -a.s.; (2.2.6)

∑
t≥0

[
(1 − βt(zt−)ΔKt −

(
1 − Δγt

γt

)δ
]+

I{βt(zt−)ΔKt≤1} <∞ P -a.s.; (2.2.7)

∑
t≥0

[
(βt(zt−)ΔKt − 1 −

(
1 − Δγt

γt

)δ
]+

I{βt(zt−)ΔKt≥1} <∞ P -a.s. (2.2.8)

2.2.2. Corollary. Suppose that the process

(βt(zt−)ΔKt)t≥0 (2.2.9)

is eventually bounded. If Eq. (2.2.5) holds, then
(1) {(2.2.6), (2.2.7), and (2.2.8) for all δ, 0 < δ < δ0/2} ⇒ {(2.2.3) for all δ, 0 < δ < δ0};
(2) if, in addition, the process ξ = (ξt)t≥0, with ξt = sup

s≥t
(Δγs/γs) is eventually < 1, then the reverse

implication “⇐” holds in (1);
(3) {(2.2.6), (2.2.7), (2.2.8) for δ = δ0/2} ⇒ {(2.2.6), (2.2.7), (2.2.8) for all δ, 0 < δ < δ0/2} (here,

δ0 is some fixed constant with 0 < δ0 ≤ 1).

Proof. By simple calculations, for all δ, 0 < δ < δ0, 0 < δ0 ≤ 1, we have
∞∫

0

(
γt−
γt

)−δ [(
δI{Δγt=0} +

1 − (1 − Δγt/γt)δ

Δγt/γt
I{Δγt �=0}

)
gt

γt
− 2βt(zt−) + β2

t (zt−)ΔKt

]+

dKt

=

∞∫

0

[
δ
gt

γt
− 2βt(zt−)

]+

dKc
t +

∑
t≥0

(
γt−
γt

)−δ
(

1 − βt(zt−)ΔKt −
(

1 − Δγt

γt

)δ/2
)

×
[
1 − βt(zt−)ΔKt +

(
1 − Δγt

γt

)δ/2
]+

I{βt(zt−)ΔKt≤1}
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+
∑
t≥0

(
γt−
γt

)−δ
(
βt(zt−)ΔKt − 1 +

(
1 − Δγt

γt

)δ/2
)

×
[
βt(zt−)ΔKt − 1 −

(
1 − Δγt

γt

)δ/2
]+

I{βt(zt−)ΔKt≥1}. (2.2.10)

Now for the fulfillment of implications (1) and (2), it suffices to show that under conditions (2.2.5)
and (2.2.9), the processes (

1 − β(z−)ΔK + (1 − Δγ/γ)δ/2
)
I{β(z−)ΔK≤1}

and (
β(z−)ΔK − 1 + (1 − Δγ/γ)δ/2

)
I{β(z−)ΔK≥1}

are eventually bounded, and, moreover, if ξ < 1 eventually, these processes are bounded from below
by a strictly positive random constant. Indeed, for each 0 < δ < 1 and t ≥ 0, if βt(zt−)ΔKt ≤ 1, then

1 − sup
s≥t

Δγs

γs
≤ 1 − βt(zt−)ΔKt + (1 − Δγt/γt)δ/2 ≤ 2, (2.2.11)

and if βt(zt−)ΔKt ≥ 1, then

1 − sup
s≥t

Δγs

γs
≤ βt(zt−)ΔKt − 1 + (1 − Δγt/γt)δ/2 ≤ βt(zt−)ΔKt. (2.2.12)

The implication (3) simply follows from the inequality (1 − x)δ ≤ (1 − x)1/2 if 0 < x < 1 and
0 < δ < 1/2.

The following result is an immediate consequence of Corollary 2.2.2.

2.2.3. Corollary. Suppose that
∑
t≥0

I{βt(zt−)ΔKt≥1} <∞ and
∑
t≥0

(
Δγt

γt

)2

<∞ P -a.s. (2.2.13)

Then Eq. (2.2.7) is equivalent to
∞∫

0

[
δ − γtβt(zt−)

γt

]+dγd
t

γt
<∞ P -a.s. (2.2.14)

and
{(2.2.6), (2.2.14) for all δ, 0 ≤ δ ≤ δ0/2} ⇔ {(2.2.3) for all δ, 0 < δ < δ0}.

Proof. Conditions (2.2.8) and (2.2.9) are automatically satisfied, and also ξ < 1 eventually (ξ = (ξt)t≥0

is the process with ξt = sup
s≥t

(Δγs/γs)). Therefore, it follows from Corollary 2.2.2 (2) that

{(2.2.6), (2.2.7) for all δ, 0 < δ < δ0/2} ⇒ {(2.2.3) for all δ, 0 < δ < δ0}.
It remains to prove that Eq. (2.2.7) is equivalent to Eq. (2.2.14). This immediately follows from

the inequalities

[a+ b]+ ≤ [a]+ + [b]+, δx ≤ 1 − (1 − x)δ ≤ δx+ (1 − δ)x2,

0 < x < 1, 0 < δ < 1,

applied to x = (Δγs/γs) and to the expression[
1 − βt(zt−)ΔKt + (1 − Δγt/γt)δ

]+
,
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and from the condition
∑
t≥0

(Δγt/γt)2 <∞ P -a.s.

2.2.2. Remark. Condition (2.2.14) can be written as
∑
t≥0

[
δ

Δγt

γt
− βt(zt−)ΔKt

]+

<∞ P -a.s.

Below, using the stochastic version of the Kronecker lemma, we give an alternative group of condi-
tions that ensure the convergence

γδ
t zt → 0 as t→ ∞ P -a.s.

for all 0 < δ < δ0/2, 0 < δ0 ≤ 1.
Rewrite Eq. (2.1.1) in the form

zt = z0 +

t∫

0

zs−dBs +Gt,

where
dBt = −βt(zt−)dKt, βt(u) = βt(u)I{βt(u)ΔKt �=1}

and

Gt = −
∑
s≤t

zs−I{βt(zt−)ΔKt=1} +

t∫

0

M(ds, zs−). (2.2.15)

Since ΔBt = −βt(zt−)ΔKt 
= −1, we can represent z as

zt = εt(B)
(
z0 +

t∫

0

ε−1
s (B) dGs

)
,

and multiplying this equation by γδ
t , we obtain

γδ
t zt = sign εt(B)Γ(δ)

t

(
z0 +

t∫

0

sign εs(B){Γ(δ)
s }−1γδ

s dGs

)
, (2.2.16)

where Γ(δ)
t = γδ

t |εt(B)|.
2.2.1. Definition. We say that predictable processes ξ = (ξt)t≥0 and η = (ηt)t≥0 are equivalent as
t→ ∞ and write ξ � η if there exists a process ζ = (ζt)t≥0 such that

ξt = ζtηt,

and
0 < ζ1 < |ζ| < ζ2 <∞

eventually for some random constants ζ1 and ζ2.

The proof of the following result is based on the stochastic version of the Kronecker lemma.

2.2.2. Proposition. Suppose that for all δ, 0 < δ < δ0/2, 0 < δ0 ≤ 1,

(1) there exists a positive decreasing predictable process Γ(δ) = (Γ(δ)
t )t≥0 such that

Γ(δ)
0 = 1 P -a.s., P

{
lim
t→0

Γ(δ)
t = 0

}
= 1, Γ(δ) � Γ(δ),

and
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(2) ∑
t≥0

I{βt(zt−)ΔKt=1} <∞ P -a.s., (2.2.17)

∞∫

0

γ2δ
t ht(zt−, zt−)dKt <∞ P -a.s. (2.2.18)

Then
γδ

t zt → 0 as t→ ∞ P -a.s.

for all 0 < δ < δ0/2, 0 < δ0 ≤ 1.

Proof. Recall the stochastic version of the Kronecker lemma (see, e.g., [25, Chap. 2, Sec. 6]):
Kronecker lemma. Suppose that X = (Xt)t≥0 is s semimartingale and L = (Lt)t≥0 is a predictable
increasing process. Then

{L∞ = ∞} ∩ {Y →} ⊆
{
X

L
→ 0

}
P -a.s.,

where Y = (1 + L)−1 ·X.
We set

(1 + Lt)−1 = Γ(δ)
t , Xt =

t∫

0

(Γ(δ)
s )−1 sign εs(B)γδ

sdGs.

Then it follows from condition (1) that L is an increasing process with L∞ = ∞ P -a.s. and

A = {Γ(δ)
∞ = 0} ∩

{ ·∫

0

Γ(δ)
s (Γ(δ)

s )−1 sign εs(B)γδ
sdGs →

}

⊆
{

Γ(δ)

1 − Γ(δ)

·∫

0

(Γ(δ)
s )−1 sign εs(B)γδ

sdGs → 0
}

⊆ {γδz → 0},

where the latter inequality follows from the relation Γ(δ) � Γ(δ) and Eq. (2.2.16).
At the same time, from Eq. (2.2.15) and the well-known fact that if M ∈ M2

loc, then {〈M〉∞ <
∞} ⊆ {M →} (see, e.g., [25]), we have

{Γ(δ)
∞ = 0} ∩

{∑
t≥0

I{βt(zt−)ΔKt=1} <∞
}
∩
{ ∞∫

0

γ2δ
t ht(zt−, zt−)dKt <∞

}
⊆ A.

Now the result follows from Eqs. (2.2.17) and (2.2.18).

Now we establish some simple results, which are useful for verifying condition (1) of Proposi-
tion 2.2.2.

By the definition of εt(B),

εt(B) = eB
c
t

∏
s≤t

(1 + ΔBs)

and since

γδ
t = exp

(
δ

t∫

0

dγc
s

γs
−
∑
s≤t

log
(

1 − Δγs

γs

)δ
)
,
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we obtain

Γ(δ)
t = exp

(
Bc

t + δ

t∫

0

dγc
s

γs
+
∑
s≤t

log
|1 + ΔBs|(
1 − Δγs

γs

)δ

)
= exp

(
−

t∫

0

DsdC
(δ)
s

)
, (2.2.19)

where Dt = 1/γt and

C
(δ)
t =

t∫

0

({
βs(zs−)γs

gs
− δ

}
I{Δγs=0} −

γs

Δγs
log

|1 + ΔBs|(
1 − Δγs

γs

)δ
I{Δγs �=0}

)
dγs. (2.2.20)

Integrating by parts
d(DtCt) = DtdCt + Ct−dDt

and using the relation

d

(
1
γt

)
= − 1

γt−
dγt

γt
,

we obtain from Eq. (2.2.19) that

Γ(δ)
t = exp

(
− C

(δ)
t

γt
−

t∫

0

C
(δ)
s−

1
γs−

dγs

γs

)
.

Therefore,
Γ(δ)

t = ζtΓ
(δ)
t , (2.2.21)

where

Γ(δ)
t = exp

(
−

t∫

0

[
C

(δ)
s−
γs−

]+dγs

γs

)
, ζt = exp

(
− C

(δ)
t

γt
+

t∫

0

[
C

(δ)
s−
γs−

]+dγs

γs

)
.

The following proposition is an immediate consequence of Eq. (2.2.21).

2.2.3. Proposition. Suppose that for each δ, 0 < δ < δ0/2, 0 < δ0 ≤ 1, the following conditions
hold :

(a) There exist random constants C(δ) and C(δ) such that

−∞ < C(δ) <
C(δ)

γ
< C(δ) <∞

eventually, where C(δ)/γ = (C(δ)
t /γt)t≥0.

(b)

∞∫

0

[
C

(δ)
t−
γt−

]−dγt

γt
<∞ P -a.s.

(c)

∞∫

0

[
C

(δ)
t−
γt−

]+dγt

γt
= ∞ P -a.s.

Then Γ(δ) � Γ(δ) for each δ, 0 < δ < δ0/2.

2.2.4. Corollary. Suppose that

0 <
C(δ0/2)

γ
<
C(0)

γ
< C(0) <∞

eventually, where C(0) is some random constant and the processes C(δ0/2) and C(0) are defined in
Eq. (2.2.20) for δ = δ0/2 and δ = 0, respectively.

Then Γ(δ) � Γ(δ) for each δ, 0 < δ < δ0/2, 0 < δ0 ≤ 1.
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This result follows since, as is easy to verify,

C
(δ0/2)
t < C

(δ)
t < C

(0)
t and C

(δ)
t − C

(δ0/2)
t ≥

(
δ0
2

− δ

)
γt

for each δ, 0 < δ < δ0/2, which yields

δ0
2

− δ <
C(δ)

γ
< C(0)

and [
C(δ)

γ

]+

>
δ0
2

− δ and
[
C(δ)

γ

]−
= 0

eventually.
We now formulate the main result of this approach, which is an immediate consequence of Propo-

sitions 2.2.2 and 2.2.3.

2.2.2. Theorem. Suppose that conditions (2.2.17), (2.2.18), and the conditions of Proposition 2.2.3
hold for all δ, 0 < δ < δ0/2, 0 < δ0 ≤ 1. Then P -a.s.,

γδ
t zt → 0 as t→ ∞

for all δ, 0 < δ < δ0/2, 0 < δ0 ≤ 1.

Consider the following two cases in more detail: (1) all the processes under consideration are
continuous; (2) the discrete time case. In addition assume that M(t, u) = M(t) for all u ∈ R

1, t ≥ 0.
In the case of continuous processes, conditions (2.2.7) and (2.2.8) are trivially satisfied, the condition

(2.2.6) takes the form
∞∫

0

[
δ − γtβt(zt−)

gt

]+dγt

γt
<∞ P -a.s., (2.2.22)

and also
{(2.2.22) for δ = δ0/2} ⇒ {(2.2.22) for all δ, 0 < δ < δ0/2}.

Further, since

C
(δ)
t

γt
=

1
γt

t∫

0

βs(zs)γs

gs
dγs − δ ≥ −δ,

conditions (a)–(c) of Proposition 2.2.3 can be simplified to the following conditions:
(a′) The process (

1
γt

t∫

0

βs(zs)γs

gs
dγs

)
t≥0

is eventually bounded.

(b′)
∞∫

0

[
1
γt

t∫

0

βs(zs)γs

gs
dγs − δ

]−dγt

γt
<∞ P -a.s.

(c′)
∞∫

0

[
1
γt

t∫

0

βs(zs)γs

gs
dγs − δ

]+dγt

γt
= ∞ P -a.s.

Also, if (a′) holds and

(bc′)
C(δ0/2)

γ
=

(
1
γt

t∫

0

βs(zs)γs

gs
dγs − δ0

2

)

t≥0

> 0, eventually,
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then (b′) and (c′) hold for each δ, 0 < δ < δ0/2.
In the discrete-time case, we additionally assume that

∑
t≥0

(
Δγt

γt

)2

<∞ and
∑
t≥0

(βt(zt−1))2 <∞ P -a.s. (2.2.23)

Then the conditions of Corollary 2.2.3 are trivially satisfied. Hence conditions (2.2.3) and (2.2.14)
are equivalent and can be written as

∑
t≥0

[
δ − γtβt(zt−1)

gt

]+ Δγt

γt
<∞ P -a.s., (2.2.24)

and also
{(2.2.24) for δ = δ0/2} ⇒ {(2.2.24) for all δ, 0 < δ < δ0/2} .

Note that the inverse implication “⇐” does not hold in general (see Example 2.2.3).
It is not difficult to verify that (a), (b), and (c) are equivalent to (ã), (b̃), and (c̃) defined as follows.
(ã) The process (

1
γt

∑
s≤t

βs(zs−1)γs

)
t≥0

is eventually bounded.

(b̃)
∑
t≥1

[
1

γt−1

∑
s<t

βs(zs−1)γs − δ

]−Δγt

γt
<∞ P -a.s.

(c̃)
∑
t≥1

[
1

γt−1

∑
s<t

βs(zs−1)γs − δ

]+ Δγt

γt
= ∞ P -a.s.

Also, if (ã) holds and

(b̃c)
(

1
γt

∑
s≤t

βs(zs−1)γs − δ

)
t≥0

> δ0/2 eventually,

then (b̃) and (c̃) hold for each δ, 0 < δ < δ0/2.
Hence {(ã), (b̃c)} ⇒ {(ã), (b̃), (c̃) for all δ, 0 < δ < δ0/2}. However, the inverse implication is not

true (see Examples 2.2.3 and 2.2.4).
Note that the conditions imposed on the martingale part of Eq. (2.1.1) in Theorems 2.2.1 (see

Eq. (2.2.4)) and 2.2.2 (see Eq. (2.2.18)) are identical. Therefore, assume that these conditions hold in
all the examples given below.

2.2.1. Example. This example illustrates that Eq. (2.2.22) holds whereas (a′) is violated.
Let

Kt = γt = t+ 1 and βt(u) ≡ (t+ 1)−(1/2+α),

where 0 < α < 1/2.
Substituting Kt, γt, βt on the left-hand side of Eq. (2.2.22), we obtain

∞∫

0

[
δ − (t+ 1)−(1/2−α)(t+ 1)

]+ dt

t+ 1
=

∞∫

0

[
δ − (t+ 1)1/2−α

]+ dt

t+ 1
.

Since ([δ − (t+ 1)1/2−α]+)t≥0 = 0 eventually, the condition (2.2.22) holds.
Conditions (a′) does not hold, since

1
γt

t∫

0

βs(zs)γs

gs
dγs =

1
t+ 1

t∫

0

(s+ 1)1/2−αds ∝ (t+ 1)1/2−α → ∞ as t→ ∞.
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Note that conditions (b′) and (c′) are satisfied.
Note that although Eq. (2.2.22) holds for all δ, δ > 0, if, e.g.,

d〈M〉t =
dt

(t+ 1)3/2+α
,

conditions (2.2.4) only holds for δ satisfying 0 < δ < δ0 = 1/2 + α.

2.2.2. Example. In this example, conditions (ã) and (b̃c) hold for δ0 = 1, while Eq. (2.2.24) fails
for some δ, 0 < δ < 1/2 = δ0/2.

Consider the discrete-time model with Kt = γt = t, βt(u) ≡ βt and

βtγt =

{
1/2 + a if t is odd,
1/2 − b otherwise,

where 0 < b < 1/2 ≤ a. Then, since

1
2

+ a >
1
γt

∑
s≤t

βsγs =
1
2

+

{
a−b
2 if t = 2k, k = 1, 2, . . .

k(a−b)+a
2k+1 if t = 2k + 1, k = 1, 2, . . .

>
1
2
,

conditions (ã) and (b̃c) hold for δ0 = 1.
It is easy to verify that if 1/2 − b < δ < 1/2, then

∑
t≥1

[δ − βtγt]+
1
t

=
∑
t≥1

[
δ − 1

2
+ b

]+ 1
t
I{t is even} = ∞

which implies that Eq. (2.2.24) does not hold for all δ with 1/2 < b < δ < 1/2.

2.2.3. Example. In this discrete-time example, δ0 = 1 and

{(2.2.24) for all δ, 0 < δ < 1/2} 
⇒ {(2.2.24) for δ = 1/2}.
Suppose that Kt = γt = t, βt(u) ≡ βt and

βtγt =
[
1
2
− 1

log(t+ 1)

]+

.

Then for 0 < δ < 1/2 and large t,
[δ − βtγt]+ = 0,

and it follows that ∑
t≥1

[δ − βtγt]+
1
t
<∞.

But, for δ = 1/2,

∑
t≥1

[
1
2
− βtγt

]+ 1
t
≥
∑
t≥1

1
t log(t+ 1)

I{log(t+1)>1} = ∞.

Also, note that by the Toeplitz lemma,

1
t

∑
s≤t

βsγs =
1
t

∑
s≤t

[
1
2
− 1

log(s+ 1)

]+

↑ 1
2

as t→ ∞.

Therefore, for all δ, 0 < δ < 1/2, conditions (ã), (b̃) and (c̃) hold, whereas (b̃c) does not.
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2.2.4. Example. This is a discrete time example illustrating that Eq. (2.2.24) holds for δ = 1/2
(hence for all 0 < δ < 1/2) and for all δ, 0 < δ < 1/2, conditions (ã), (b̃) and (c̃), hold whereas (b̃c)
does not.

Suppose that Kt = γt = t, βt(u) ≡ βt, and for t > 0,

βtγt =
1
2
− 1
t
.

Then for δ = 1/2, condition (2.2.24) follows, since
∑
t>2

[
1
2
− βtγt

]+ 1
t

=
∑
t>2

1
t2
<∞.

It remains to note that
1
t

∑
s≤t

βsγs ↑ 1
2

by the Toeplitz lemma.

2.2.5. Example. Here, we drop the “traditional” assumptions
∑
t>0

(
Δγt

γt

)2

<∞ and
∑
t≥0

(βt(zt−1))2 <∞ P -a.s.

and give an example where the conditions of Theorems 2.2.1 and 2.2.2 are satisfied.
Suppose that Kt = t and the process γ and β(u) = β are defined as follows: γ1 = 1,

γt =
t∑

s=1

qs =
q

1 − q
(1 − qt), where q > 1,

and
βt =

α

β

Δγt

γt
,

where α = q/(q− 1) and β, β > 1, are some constants satisfying (1− 1/α)1/2 > 1− 1/β. In this case,
Δγt

γt
→ 1

α
as t→ ∞

and
βtΔKt =

α

β

Δγt

γt
→ 1

β
< 1 as t→ ∞.

Therefore, the conditions of Corollary 2.2.3 hold, and it follows that conditions (2.2.3) and (2.2.14)
are equivalent.

To verify Eq. (2.2.14), note that for all 0 < δ < 1/2,

∑
t>0

[
1 − βt(zt−)ΔKt −

(
1 − Δγt

γt

)δ
]+

I{βt(zt−)ΔKt≤1}

≤
∑
t>0

[
1 − βt(zt−)ΔKt −

(
1 − Δγt

γt

)1/2
]+

I{βt(zt−)ΔKt≤1}

≤
∑
t>0

[
1 − 1

β

qt

qt − 1
−
(

1 − 1
α

qt

qt − 1

)1/2
]+

I{βt(zt−)ΔKt≤1}.

But since

1 − 1
β

qt

qt − 1
−
(

1 − 1
α

qt

qt − 1

)1/2

→ 1 − 1
β
−
(

1 − 1
α

)1/2

< 0,
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we have [
1 − 1

β

qt

qt − 1
−
(

1 − 1
α

qt

qt − 1

)1/2
]+

= 0

for large t. Hence Eq. (2.2.14) holds.
To verify conditions (a), (b) and (c) of Theorem 2.2.2, note that by the Toeplitz lemma,

1
γt
C

(δ)
t = − 1

γt

∑
s≤t

Δγs log
|1 − βs(zs−1)|(

1 − Δγs

γs

)δ

γs

Δγs
→ a,

where

a = −α log
1 − 1/β

(1 − 1/α)δ
> −α log

1 − 1/β
(1 − 1/α)1/2

> 0,

which implies (a), (b), and (c).

2.3. Asymptotic expansion. In Sec. 2.1, we have derived the representation

χtzt =
Lt

〈L〉1/2
t

+Rt, (2.3.1)

where all objects are defined there.
Throughout this section, we assume that

〈L〉∞ = ∞ P -a.s.

and there exists a predictable increasing process γ = (γt)t≥0 such that γ0 = 1, γ∞ = ∞ P -a.s., the
process γ/γ− is eventually bounded, and

γ � Γ2〈L〉−1.

In this section, assuming that γδ
t zt → 0 P -a.s. for all 0 < δ < δ0/2 (for some 0 < δ0 ≤ 1), we

establish sufficient conditions for the convergence Rt
P→ 0 as t→ ∞.

Consider the following conditions:
(d) There exists a nonrandom increasing process (〈〈L〉〉t)t≥0 such that

〈L〉t
〈〈L〉〉t

d→ ζ as t→ ∞,

where d→ denotes the convergence in distribution and ζ > 0 is some random variable.

(e)
∑
t≥0

I{βtΔKt=1} <∞ P -a.s.

(f) There exists ε, 1/2 − δ0/2 < ε < 1/2, such that

1
〈L〉t

t∫

0

|βs − βs(zs−)|γε
s−〈L〉sdKs → 0 as t→ ∞ P -a.s.

(g)
1

〈L〉t

t∫

0

Γ2
s(hs(zs−, zs−) − 2hs(zs−, 0) + hs(0, 0))dKs

P→ 0 as t→ ∞.

2.3.1. Theorem. Suppose that γδ
t zt → 0 P -a.s. for all δ, 0 < δ < δ0/2 (0 < δ0 ≤ 1), and conditions

(d)–(g) are satisfied. Then

Rt
P→ 0 as t→ ∞.
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Proof. Recall from Sec. 2.1 that

Rt =
1

〈L〉1/2
t

z0 +R
(1)
t +R

(2)
t +R

(3)
t ,

where

R
(1)
t = − 1

〈L〉1/2
t

∑
s≤t

Γszs−I{βsΔKs=1},

R
(2)
t =

1

〈L〉1/2
t

t∫

0

Γs(βs − βs(zs−))zs−dKs,

R
(3)
t =

1

〈L〉1/2
t

t∫

0

Γs(M(ds, zs−) −M(ds, 0)).

Since 〈L〉t → ∞, we have z0/〈L〉1/2
t → 0 as t → ∞. Further, it follows from (e) that the process

(I{βtΔKt=1})t≥0 = 0 eventually, and, therefore, R(1)
t → 0 as t→ ∞.

Since the process γ/γ− is bounded eventually and γ
1/2−ε
t zt → 0 as t → ∞ P -a.s., we obtain that

the process γ1/2−εz− is bounded eventually for each ε, 1/2− δ0/2 < ε < 1/2. Also, |Γ|〈L〉−1/2 � γ1/2.
Therefore, it follows that there exists an eventually bounded positive process η = (ηt)t≥0 such that

|R(2)
t | ≤ 1

〈L〉1/2
t

t∫

0

|Γs| |βs − βs(zs−)| |zs−| dKs

=
1

〈L〉1/2
t

t∫

0

|βs − βs(zs−)|γε
s〈L〉sηs

dKs

〈L〉1/2
s

=
1

〈L〉1/2
t

t∫

0

DsdC
ε
s ,

where

Dt =
1

〈L〉1/2
t

, Cε
t =

t∫

0

|βs − βs(zs−)|γε
s〈L〉sηsdKs.

Using the formulas d(DtCt) = DtdCt + Ct−dDt we obtain

|R(2)
t | ≤

(
1

〈L〉t C
ε
t − 1

〈L〉1/2
t

t∫

0

Cε
s−d〈L〉−1/2

s

)
.

It is easy to verify that

d(〈L〉−1/2
t ) = − 1

〈L〉1/2
t−

d〈L〉1/2
t

〈L〉1/2
t

and

|R(2)
t | ≤ 1

〈L〉t C
ε
t +

1

〈L〉1/2
t

t∫

0

1
〈L〉s−C

ε
s−d〈L〉1/2

s .

Now, from the condition (f) and the Toeplitz lemma, R(2)
t → 0 P -a.s.

244



To prove the convergence R(3)
t → 0 note that by condition (d), it suffices to consider the case where

〈L〉t is nonrandom. Denote

Nt =

t∫

0

Γs(M(ds, zs−) −M(ds, 0)).

Using the Lenglart–Rebolledo inequality (see, e.g., [25, Chap. 1, Sec. 9] and [22]), we obtain

P{〈L〉−1/2
t Nt > a} = P{〈L〉−1

t N2
t > a2} = P{N2

t − 〈L〉tε > (a2 − ε)〈L〉t}
≤ b

(a2 − ε)〈L〉t + P{〈N〉t − 〈L〉tε > b}

for any a > 0, b > 0 and 0 < ε < a2. Now, the result follows, since 〈L〉∞ = ∞ P -a.s. and

1
〈L〉t 〈N〉t =

1
〈L〉t

t∫

0

Γ2
s(hs(zs−, zs−) − 2hs(zs−, 0) + hs(0, 0))dKs

P→ 0 as t→ ∞.

The theorem is proved.

2.3.1. Remark. Suppose that P -a.s.,

β ◦K∞ = ∞, inf
t≥0

βtI{ΔKt �=0} > 0, sup
t≥0

βtΔKtI{ΔKt �=0} < 2.

Then, as is easy to see, |Γ| is an increasing process with |Γ∞| = ∞ P -a.s..

2.3.2. Remark. (1) Condition (f) can be replaced by the following one: (f′) there exists ε >
(1 − δ0)/δ0 such that

1
〈L〉t

t∫

0

|βs − βs(zs−)| |zs−|−ε〈L〉sdKs → 0 as t→ ∞ P -a.s.

(2) It follows from Eq. (2.3.1) that under the conditions of Theorem 2.3.1, the asymptotic behavior
of the normalized process (χtzt)t≥0 coincides with the asymptotic behavior of (Lt/〈L〉t)t≥0 as
t→ ∞.

(3) Assume that the first two conditions in Remark 2.3.1 hold, and, moreover,

sup
t≥0

βtΔKtI{ΔKt �=0} < 1 P -a.s.

In this case, βt = βtI{βtΔKt �=1} = βt, Γ = ε−1(−β ◦K) is a positive increasing process, Γt ↑ ∞
P -a.s. as t→ ∞, and if we suppose that Γ � 〈L〉, then taking γ = 〈L〉, we obtain

γ � Γ2〈L〉−1 � Γ

and under the conditions of Theorem 2.3.1,

Γ1/2
t zt =

Lt

〈L〉1/2
t

+Rt, Rt
P→ 0 as t→ ∞.

Note that for the recursive parametric estimation procedures in the discrete time case, Γ2〈L〉−1 = Γ
(see [39]).

2.3.1. Example. The RM stochastic approximation procedure with slowly varying gains (see [31]).
Consider the SDE

dzt = − αR(zt)
(1 +Kt)r

dKt +
α

(1 +Kt)r
dmt.
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Here, K = (Kt)t≥0 is a continuous increasing nonrandom function with K∞ = ∞, 1/2 < r < 1,
0 < α < 1, m = (mt)t≥0 ∈ M2

loc(P ), d〈m〉t = σ2
t dKt, and σ2

t → σ2 > 0 as t→ ∞ and the nonrandom
regression function R satisfies the following conditions:

R(0) = 0, uR(u) > 0 if u 
= 0,

for each ε > 0, inf
ε<|u|< 1

ε

uR(u) > 0, and

R(u) = βu+ v(u) with v(u) = O(u2) as u→ 0.

In our notation,

βt =
αβ

(1 +Kt)r
and βt(u) =

αR(u)
u(1 +Kt)r

.

It follows from Theorem 1.2.1 that zt → 0 P -a.s. as t→ ∞.
From Sec. 2.1, it follows that

χtzt =
Lt

〈L〉1/2
t

+Rt

with Γt = ε−1
t (−β ◦K),

Lt =

t∫

0

Γs
α

(1 +Ks)r
dms, χ2

t = Γ2
t 〈L〉−1

t ,

and

Rt =
1

〈L〉1/2
t

t∫

0

Γs(βs − βs(zs−))zs−dKs +
z0

〈L〉1/2
t

.

On can verify that

(1 +Kt)−rχ2
t → 2β

ασ2

as t→ ∞. Since
Lt

〈L〉1/2
t

w→ N (0, 1),

it follows that if the convergence Rt
P→ 0 holds, we have

(1 +Kt)r/2zt
w→ N

(
0,
ασ2

2β

)
. (2.3.2)

It remains to prove that Rt
P→ 0 as t→ ∞. Let us first prove that if 1/2 < r < 1, then P -a.s.,

(1 +Kt)rδzt → 0 for all δ < 1 − 1
2r
. (2.3.3)

It is easy to verify that

(1 +Kt)2rδ = ε−1
t

(
− 2rδ

(1 +K)
◦K

)
.

Therefore, conditions (2.2.3) and (2.2.4) of Theorem 2.2.1 can be rewritten as
∞∫

0

[
2rδ

(1 +Kt)
− 2αβ

(1 +Kt)r
− 2αv(zt)
zt(1 +Kt)r

]+

dKt <∞ P -a.s. (2.3.4)

and ∞∫

0

(1 +Kt)2rδ α2σ2
t

(1 +Kt)2r
dKt <∞ P -a.s. (2.3.5)
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Condition (2.3.4) holds since[
2rδ

(1 +Kt)
− 2αβ

(1 +Kt)r
− 2αv(zt)
zt(1 +Kt)r

]+

= 0

eventually. Condition (2.3.5) is satisfied, since 2r−2rδ > 1 if δ < 1−1/(2r). Therefore, Theorem 2.2.1
yields Eq. (2.3.3). Conditions (d) and (e) of Theorem 2.3.1 are trivially fulfilled. To verify (f), note
that from the Kronecker lemma, it suffices to verify that

∞∫

0

|βt − βt(zt)|γε
t dKt <∞ P -a.s.

for some ε with 1/2 − δ0/2 < ε < 1/2, δ0 = 2 − 1/r. For each δ, 0 < δ < δ0/2 = 1 − 1/(2r), we have
∞∫

0

|βt − βt(zt)|γε
t dKt =

∞∫

0

|v(zt)|
|zt|2 |zt|γε

t (1 +Kt)−rdKt ≤ ξ

∞∫

0

(1 +Kt)−r(a+δ−ε)dKt

for some random variables ξ. Therefore, it follows that if there exists a triple (r, δ, ε) satisfying the
inequalities

1
2
< r < 1, 0 < δ <

1
2
, ε > 0, r(1 + δ − ε) > 1,

1
2r

− 1
2
< ε <

1
2
, δ < 1 − 1

2r
,

then Eq. (2.3.2) holds. It is easy to verify that such a triple exists only for r > 4/5. Therefore, it
follows that Eq. (2.3.2) holds for r > 4/5.

3. The Polyak Weighted Averaging Procedure

3.1. Preliminaries. Consider the RM type SDE

zt = z0 +

t∫

0

Hs(zs) dKs +

t∫

0

�s(zs) dms, (3.1.1)

where
(1) {Ht(u), t ≥ 0, u ∈ R

1} is a random field described in Sec. 0;
(2) {M(t, u), t ≥ 0, u ∈ R

1} is a random field such that

M(u) = (M(t, u))t≥0 ∈M2
loc(P )

for each u ∈ R
1 and M(t, u) =

t∫
0

�s(u) dms, where m = (mt)t≥0 ∈ M2,c
loc (P ), M(·, 0) 
= 0;

�(u) = (�t(u))t≥0 is a predictable process for each u ∈ R
1. Denote �s := �s(0).

(3) K = (Kt)t≥0 is a continuous increasing process.
Suppose that this equation has a unique strong solution z = (zt)t≥0 defined on the whole time

interval [0,∞) such that

(
M(t)

)
t≥0

=
( t∫

0

�s(zs) dms

)
t≥0

∈M2,c
loc (P ).

In Sec. 1 we have established the conditions that guarantee the convergence

zt → 0, as t→ ∞ P -a.s. (3.1.2)
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In Sec. 2, assuming (3.1.2), we have stated the conditions under which the following property of
z = (zt)t≥0 holds:

(a) for each δ, 0 < δ < δ0, 0 < δ0 ≤ 1,

γδ
t z

2
t → 0 as t→ ∞ P -a.s.,

where γ = (γt)t≥0 is a predictable increasing process with γ0 = 1, γ∞ = ∞ P -a.s.
Furthermore, assuming that z = (zt)t≥0 has property (a) with the process γ = (γt)t≥0, equivalent

to the process Γ2〈L〉−1 = (Γ2
t 〈L〉−1

t )t≥0 (i.e., lim
t→∞

Γ2
t 〈L〉−1

t
γt

= γ̃−1, 0 < γ̃ <∞), in Sec. 2, we have found
the conditions under which the asymptotic expansion

Γt〈L〉1/2
t zt =

Lt

〈L〉1/2
t

+Rt, (3.1.3)

where Rt
P→ 0 as t→ ∞, holds.

Here, the objects γt, Lt, and 〈L〉t are defined as follows:

Γt = εt(β ◦K) := exp
( t∫

0

βs dKs

)
,

where βt = −H ′
t(0), Lt =

t∫
0

Γs�s(0) dms, and 〈L〉 is the shifted square characteristics of L, i.e.,

〈L〉t = 1 + 〈L〉F,P
t , where 〈L〉F,P

t =
t∫
0

Γ2
s�

2
sdKs.

Now let us consider the following weighted averaging procedure:

zt =
1

εt(g ◦K)

t∫

0

zs dεs(g ◦K), (3.1.4)

where g = (gt)t≥0 is a predictable process, gt ≥ 0 for all t ≥ 0, P -a.s.,

εt = εt(g ◦K) = exp

⎛
⎝

t∫

0

gs dKs

⎞
⎠ ,

t∫

0

gs dKs <∞, t ≥ 0,

∞∫

0

gs dKs = ∞ P -a.s.

The aim of this section is to study the asymptotic properties of the process z = (zt)t≥0 as t→ ∞.
First it should be noted that if zt → 0 as t→ ∞ P -a.s., then by the Toeplitz lemma (see, e.g., [25]),

it immediately follows that

zt → 0 as t→ ∞ P − a.s.

In Sec. 3.2 we establish the asymptotic distribution of the process z in the ”linear” case where

Ht(u) = −βtu, M(t, u) ≡M(t) =
t∫
0

�s dms with deterministic g, β, �, and K, and d〈m〉t = dKt.

The general case, i.e., when the process z in (3.1.4) is a strong solution of SDE (3.1.1), is considered
in Sec. 3.3.

3.2. Asymptotic properties of z. “Linear” case. In this section, we consider the “linear” case
where the SDE (3.1.1) is of the form

dzt = −βtzt dKt + �t dmt, z0, (3.2.1)
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whereK = (Kt)t≥0 is a deterministic increasing function, β = (βt)t≥0, and � = (�t)t≥0 are deterministic
functions, βt ≥ 0 for all t ≥ 0,

∞∫

0

βsdKs = ∞,

t∫

0

βsdKs <∞ ∀t ≥ 0,

∞∫

0

�2sdKs <∞.

Define the following objects:

Γt = exp
( t∫

0

βs dKs

)
, Lt =

t∫

0

Γs�s dms, t ≥ 0.

Under the above conditions, we have Γ∞ = ∞, Γ2∞〈L〉−1∞ = ∞. Indeed, the application of the
Kronecker lemma (see, e.g., [25]) yields

Γ−2
t 〈L〉t =

1
Γ2

t

t∫

0

Γ2
s�

2
s dKs → 0 as t→ ∞,

since
∞∫
0

�2s dKs <∞.

Solving Eq. (3.2.1), we obtain

zt = Γ−1
t

{
z0 +

t∫

0

Γs�s dms

}
, t ≥ 0. (3.2.2)

From (3.2.2) and CLT for continuous martingales (see, e.g., [25]), it directly follows that

zt → 0 as t→ ∞, (3.2.3)

Γt〈L〉−1/2
t zt

d→ ξ as t→ ∞, (3.2.4)

where “ d→” denotes the convergence in distribution and ξ is a standard normal random variable
(ξ ∈ N(0, 1)).

Now let z = (zt) be an averaged process defined by (3.1.4) with the deterministic function g =
(gt)t≥0,

∞∫

0

gtdKt = ∞,

t∫

0

gsdKs <∞ ∀t ≥ 0.

Denote

Bt =

t∫

0

Γ−1
s dεs, B̃t =

t∫

0

(Bt −Bs)2d〈L〉s, εt = εt(g ◦K).

3.2.1. Proposition. Suppose that 〈L〉∞ = ∞, 〈L〉 ◦B∞ = ∞, and B̃∞ = ∞. Then

εtB̃
−1/2
t zt

d→ ξ as t→ ∞, ξ ∈ N(0, 1), (3.2.5)

Proof. Substituting (3.2.2) in (3.1.4) and integrating by parts, we obtain

zt =
z0Bt

εt
+ ε−1

t

t∫

0

(Bt −Bs) dLs
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Hence

εtB̃
−1/2
t zt = z0Bt/(B̃t)1/2 + (B̃t)−1/2

t∫

0

(Bt −Bs) dLs = I1
t + I2

t . (3.2.6)

First, we show that
I1
t → 0 as t→ ∞.

It is easy to verify that

B̃t =

t∫

0

(Bt −Bs)2d〈L〉s = 2

t∫

0

( s∫

0

〈L〉u dBu

)
dBs. (3.2.7)

Rewrite (I1
t )2 in the form

(I1
t )2 = B2

t (B̃t)−1 =

2

t∫

0

Bs

⎛
⎝

s∫

0

〈L〉u dBu

⎞
⎠

−1

dB̃s

B̃t

.

Since B̃∞ = ∞, applying the Toeplitz lemma, we obtain

lim
t→∞(I1

t )2 = lim
t→∞

Bt

t∫

0

〈L〉u dBu

.

Furthermore, as
∞∫
0

〈L〉u dBu = ∞, applying the Toeplitz lemma once again, we obtain

lim
t→∞

Bt

t∫

0

〈L〉u dBu

= lim
t→∞

t∫

0

〈L〉−1
u 〈L〉u dBu

t∫

0

〈L〉u dBu

= lim
t→∞

1
〈L〉t = 0.

It remains to show that
I2
t

d→ ξ as t→ ∞, ξ ∈ N(0, 1).

For any sequence tn → ∞ as n→ ∞, we define the sequence of martingales as follows:

Mn(u) =

tnu∫

0

(Btn −Bs) dLs

⎛
⎝

tn∫

0

(Btn −Bs)2d〈L〉s
⎞
⎠

1/2
, u ∈ [0, 1].

Obviously, 〈Mn〉1 = 1 for each n ≥ 1, and from the CLT for continuous martingales, we have

Mn(1) = I2
tn

d→ ξ as n→ ∞, ξ ∈ N(0, 1).

The proposition is proved.
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3.2.1. Remark. Note that ε∞B̃
−1/2
∞ = ∞. Indeed, by the Toeplitz lemma,

lim
t→∞

B̃t

ε2t
= lim

t→∞

t∫

0

⎛
⎝

s∫

0

〈L〉udBu

⎞
⎠Γ−1

s ε−1
s dε2s

ε2t
= lim

t→∞
1

Γtεt

t∫

0

〈L〉sΓ−1
s dεs

= lim
t→∞

1
Γtεt

t∫

0

〈L〉sΓ−2
s Γs dεs ≤ lim

t→∞
1
εt

t∫

0

〈Ls〉Γ−2
s dεs = 0,

since ε∞ = ∞ and 〈L〉∞Γ−2∞ = 0.

Now let us define the process ε(α)
t := εt(g(α) ◦K) as follows: let (αt)t≥0 be a function, αt ≥ 0 for all

t ≥ 0, and let lim
t→∞αt = α, 0 < α <∞. Define ε(α) by the relation

ε
(α)
t = 1 +

t∫

0

αsβs〈L〉−1
s Γ2

sdKs. (3.2.8)

Note that
〈L〉tΓ−2

t ε
(α)
t g

(α)
t /βt = αt. (3.2.9)

Indeed, it is easily seen that if

εt(ψ) = 1 +

t∫

0

ϕsdKs,

then
ψt =

ϕt

εt(ψ ◦K)
.

Hence, if εt(g(α) ◦K) = ε
(α)
t , then

g
(α)
t = αtβt〈L〉−1

t Γ2
t /ε

(α)
t ,

and (3.2.9) follows.
It should be also noted that for each (αt)t≥0 with lim

t→∞αt = α,

lim
t→∞

εα
t

1
+

t∫

0

αβs〈L〉−1
s Γ2

sdKs = 1.

3.2.2. Proposition. Let z(α) = (z(α)
t )t≥0 be the averaged process corresponding to the averaging

process ε(α) (see (3.1.4)), i.e.,

z
(α)
t =

1

ε
(α)
t

t∫

0

zsdε
(α)
s , t ≥ 0.

Then (
1 +

t∫

0

βs〈L〉−1
s Γ2

sdKs

)1/2

z
(α)
t

d→
√

2 ξ as t→ ∞, ξ ∈ N(0, 1).
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Proof. By virtue of Proposition 3.2.1, it suffices to show that

ε
(1)
t

(ε(α)
t )2(B̃(α)

t )−1
→ 2 as t→ ∞, (3.2.10)

where

B
(α)
t =

t∫

0

Γ−1
s dε(α)

s , B̃
(α)
t =

t∫

0

(B(α)
t −B(α)

s )2 d〈L〉s.

We have

lim
t→∞

ε
(1)
t

(ε(α)
t )2(B̃(α)

t )−1
= lim

t→∞
ε
(1)
t

ε
(α)
t

B̃
(α)
t

ε
(α)
t

=
1
α

lim
t→∞

B̃
(α)
t

ε
(α)
t

=
1
α

lim
t→∞

2

t∫

0

⎛
⎝

s∫

0

〈L〉udB(α)
u

⎞
⎠Γ−1

s dε(α)
s

ε
(α)
t

=
2
α

lim
t→∞

1
Γt

t∫

0

〈L〉sdB(α)
s .

Now, applying relation (3.2.9) and the Toeplitz lemma, we obtain

lim
t→∞

1
Γt

t∫

0

〈L〉sdB(α)
s = lim

t→∞
1
Γt

t∫

0

〈L〉sΓ−1
s dε(α)

s

= lim
t→∞

1
Γt

t∫

0

〈L〉sΓ−2
s ε(α)

s

g
(α)
s

βs
ΓsβsdKs = lim

t→∞
1
Γt

t∫

0

αsdΓs = α.

3.2.1. Corollary. Let γ = (γt)t≥0 be an increasing process such that γ0 = 1, γ∞ = ∞, and let

lim
t→∞

〈L〉−1
t Γ2

t

γt
= γ̃−1 as t→ ∞,

where γ̃ is a constant, 0 < γ̃ <∞. Then

(1) γ1/2
t zt

d→ γ̃1/2 ξ as t→ ∞;

(2)

⎛
⎝1 +

t∫

0

γsβsdKs

⎞
⎠

1/2

z
(α)
t

d→
√

2γ̃ ξ as t→ ∞;

(3) if γsβs = 1 eventually, then (1 +Kt)1/2z
(α)
t →

√
2γ̃ ξ as t→ ∞, ξ ∈ N(0, 1).

3.2.2. Remark. (1) Let

γ = (γt)t≥0 :=
(
βt

�2t

)
t≥0

be an increasing process, γ0 = 1, γ∞ = ∞, dγ � dK. Then γ can be represented as a solution of the
SDE dγt = γtλtdKt, γ0 = 1, with some λ = (λt)t≥0.

Assume that λt → 0 as t→ ∞ and λt/βt → 0 as t→ ∞. Then

lim
t→∞

〈L〉−1
t Γ2

t

γt
= 2.
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Indeed,
〈L〉−1

t Γt

γt
=

Γ2
tγ

−1
t

〈L〉t .

and integration by parts and the application of the Toeplitz lemma yield

〈L〉−1
t Γ2

t

γt
=

t∫

0

2Γ2
sβsγ

−1
s dKs −

t∫

0

Γ2
sγ

−2
s γsλsdKs

〈L〉t

= 2 − 1
〈L〉t

t∫

0

λs

γs�2s
d〈L〉s = 2 − 1

〈L〉t

t∫

0

λs

βs
d〈L〉s → 2 as t→ ∞.

Thus, if we set γt = βt

�2t
in the above Corollary 3.2.1, then all the assertions hold with

γt =
βt

�2t
, γ̃ =

1
2
;

(2) Let �t = σβt, where βt is a decreasing function, βt → 0 as t→ ∞, dβt = −β′tdKt, and β′t > 0.
Then, if

β′t/β
2
t → 0 as t→ ∞,

we have
lim
t→∞〈L〉−1

t Γ2
tβt = 2σ2.

From Proposition 3.2.2, it immediately follows that

(1 +Kt)1/2z
(α)
t

d→
√

2σ ξ as t→ ∞.

3.2.3. Remark. Summarizing the above statements, we conclude that: as t→ ∞,

(a) (ε(1)t )1/2z
(α)
t

d→ √
2 ξ;

(b) (ε(α)
t )1/2z

(α)
t

d→
√

2
α ξ;

(c) (ε(1)t )1/2z
(1)
t

d→ √
2 ξ;

(d) Γt〈L〉−1/2
t zt

d→ ξ,
where ξ ∈ N(0, 1).

3.2.1. Example. Standard “linear” procedure.
Let βt = αβ(1+Kt)−1, �t = ασ(1+Kt)−1, αβ > 0, and let 2αβ > 1. Then Γ2

t 〈L〉−1
t = 2αβ−1

α2σ2 (1+Kt).
Hence, from (3.2.4) it follows that

(1 +Kt)1/2zt
d→ ασ√

2αβ − 1
ξ as t→ ∞, ξ ∈ N(0, 1).

On the other hand,

ε
(1)
t = 1 +

t∫

0

βsΓ2
s〈L〉−1

s dKs = 1 +
α2σ2

β(2αβ − 1)
Kt,

and it follows from Proposition 3.2.2 that if we define

z
(1)
t =

1

ε
(1)
t

t∫

0

zs dε
(1)
s , zt =

1
1 +Kt

t∫

0

zs dKs,
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then

(1 +Kt)1/2z
(1)
t

d→ σ

√
2α

β(2αβ − 1)
ξ as t→ ∞,

(1 +Kt)1/2zt
d→ σ

√
2α

β(2αβ − 1)
ξ as t→ ∞, ξ ∈ N(0, 1).

Hence the rate of convergence is the same, but the asymptotic variance of the averaged procedure z
is smaller than that of the initial one.

3.2.2. Example. “Linear” procedure with slowly varying gains.
Let βt = αβ(1 + Kt)−r, �t = ασ(1 + Kt)−r, αβ > 0, 1

2 < r < 1. Then the process γ = (γt)t≥0

defined in Remark 3.2.2 is γt = β
ασ2 (1 + Kt)r, dγt = rβ

ασ2 (1 + Kt)r dt
1+Kt

. Hence λt = rβ
ασ2 (1 + Kt)−1

and λt/βt → 0 as t→ ∞. From Remark 3.2.2, it follows that

lim
t→∞

Γ2
t 〈L〉−1

t

γt
= 2, (3.2.11)

and from (3.2.4), we have

(1 +Kt)r/2zt
d→ σ

√
α

2β
ξ as t→ ∞, ξ ∈ N(0, 1).

On the other hand,

ε
(1)
t = 1 +

t∫

0

βsΓ2
s〈L〉−1

s dKs = 1 +

t∫

0

βsγs
Γ2

s〈L〉−1
s

γs
dKs = 1 +

β2

σ2

t∫

0

Γ2
s〈L〉−1

s

γs
dKs.

Hence, taking into the account (3.2.11), by the Toeplitz lemma, we have

ε
(1)
t

1 +Kt
→ 2

β2

σ2
as t→ ∞.

Therefore, from Remark 3.2.3 (c), we obtain

(1 +Kt)1/2z
(1)
t

d→ σ

β
ξ as t→ ∞, ξ ∈ N(0, 1).

and
(1 +Kt)1/2zt

d→ σ

β
ξ as t→ ∞, ξ ∈ N(0, 1).

Note that if αβ > 2, then the asymptotic variance of z is smaller than that of the initial one.

3.2.3. Example. Let βt = (1 + t)−( 1
2
+α), where α is a constant, 0 < α < 1

2 , �2t = (1 + t)−( 3
2
+α).

If we take γt = βt/�
2
t = (1 + t)−( 1

2
+α)(1 + t)

3
2
+α = 1 + t, dγt = γt

1
1+tdt, then λt = (1 + t)−1,

λt
βt

= (1+ t)−1(1+ t)
1
2
+α = (1+ t)α− 1

2 → 0 as t→ ∞. Therefore, from Remark 3.2.2 (1) it follows that

lim
t→∞

Γ2
t 〈L〉−1

t

1 + t
= 2,

and from Corollary 3.2.1 (1), we have

(1 + t)1/2zt
d→
√

1
2
ξ as t→ ∞, ξ ∈ N(0, 1).
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Now, if we define

ε
(1)
t = 1 +

t∫

0

βs〈L〉−1
s Γ2

sds = 1 +

t∫

0

βsγs
Γ2

s〈L〉−1
s

γs
ds = 1 +

t∫

0

(1 + s)
1
2
−α Γ2

s〈L〉−1
s

γs
ds,

then ε(1)t /(1 + t)3/2−α → 4
3−2α , and from Corollary 3.2.1 (2), we obtain

(1 + t)3/2−αz
(1)
t →

√
4

3 − 2α
ξ as t→ ∞, ξ ∈ N(0, 1).

In the last two examples, the rate of convergence of the averaged procedure is higher than that of
the initial one.

3.3. Asymptotic properties of z. General case. In this section, we study the asymptotic
properties of the averaged process z = (z)t≥0 defined by (3.1.4), where z = (zt)t≥0 is the strong
solution of SDE (3.1.1).

In the sequel, we will need the following objects:

βt = −H ′
t(0), βt(u) =

{
−Ht(u)

u if u 
= 0,
βt if u = 0,

Γt = εt(β ◦K) = exp

⎧⎨
⎩

t∫

0

βsdKs

⎫⎬
⎭ , Lt =

t∫

0

Γs�sdms, �t = �t(0), d〈m〉t = dKt.

Assume that processes K, β, and � are deterministic. Rewrite Eq. (3.1.1) in terms of these objects:

dzt = −βtztdKt + �tdmt + (βt − βt(zt))ztdKt + (�t(zt) − �t)dmt. (3.3.1)

Furthermore, formally solving the last equation as the linear one with respect to z, we obtain

zt = Γ−1
t

[
z0 + Lt +

t∫

0

ΓsdR1(s) +

t∫

0

ΓsdR2(s)
]
, (3.3.2)

where

Γt = exp
( t∫

0

βs dSs

)
, Lt =

t∫

0

Γs�s dms, dR1(t) =
(
βt−βt(zt)

)
ztdKt, dR2(t) =

(
�t(zt)−�t

)
dmt.

Now we consider the following averaging procedure:

zt =
1
εt

t∫

0

zsdεs, (3.3.3)

where

εt := εt = 1 +

1∫

0

Γ2
s〈L〉−1

s βsdKs,

i.e., it is defined by relation (3.2.8) with αt = 1.
In the sequel, it will be assumed that the functions β, �, K, and g satisfy all the conditions imposed

on the corresponding functions in Propositions 3.2.1 and 3.2.2.

Let γ = (γ)t≥0 be an increasing function such that γ0 = 1, γ∞ = ∞, and lim
t→∞

Γ2
t 〈L〉−1

t

γt
= γ̃−1.

255



3.3.1. Theorem. Suppose that γδ
t z

2
t → 0 as t → ∞ for all δ, 0 < δ < δ0, 0 < δ0 ≤ 1. Assume that

the following conditions are satisfied :
(i) there exists δ, 0 < δ < δ0/2 such that

∞∫

0

ε
−1/2
t γ−δ

t

∣∣βt(zt) − βt

∣∣dKt <∞ P -a.s.;

(ii)
〈N〉t
〈L〉t → 0 as t→ ∞, where

Nt =

t∫

0

Γs

(
�s(zs) − �s

)
dms.

Then
ε
1/2
t zt

d→
√

2 ξ as t→ ∞, ξ ∈ N(0, 1).

Proof. Substituting (3.3.2) in (3.3.3), we obtain

zt =
z0Bt

εt
+

1
εt

t∫

0

LsdBs +R1
t +R2

t , (3.3.4)

where

Ri
t =

1
εt

t∫

0

s∫

0

(
LudRi(u)

)
dBs, i = 1, 2,

and dBt ≡ Γ−1
t dεt.

Integration of the second term in (3.3.4) by parts results in

zt =
z0Bt

εt
+

1
εt

t∫

0

(Bt −Bs)dLs +R1
t +R2

t . (3.3.5)

Denoting B̃t =
∫ t
0 (Bt −Bs)2d〈L〉s, we have

εtB̃
−1/2
t zt = z0

Bt

(B̃t)1/2
+

∫ t
0 (Bt −Bs)dLs

(B̃1/2
t )

+
R1

t

(B̃t)1/2
+

R2
t

(B̃t)1/2
. (3.3.6)

As is seen, the first two terms on the right-hand side of (3.3.6) coincide with those in (3.2.6), and
since by our assumption, the conditions of Propositions 3.2.1 and 3.2.2 are satisfied, taking into the
account (3.2.10) with α = 1, one can conclude that it suffices to show that

ε
1/2
t Ri

t
P→ 0 as t→ ∞, i = 1, 2. (3.3.7)

Let us investigate the case i = 1:

ε
1/2
t R1

t =
1

ε
1/2
t

t∫

0

( s∫

0

ΓudR1(u)
)
dBs =

1

ε
1/2
t

t∫

0

( s∫

0

ΓudR1(u)
)

Γ−1
s d εs

=
2

ε
1/2
t

t∫

0

( s∫

0

ΓudR1(u)
)

Γ−1
s ε1/2

s dε1/2
s .
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Since εt is an increasing process, ε∞ = ∞, by virtue of the Toeplitz lemma, it suffices to show that

At =
1

Γtε
1/2
t

t∫

0

ΓsdR1(s) → 0 as t→ ∞, P -a.s.

For all δ, 0 < δ < δ0/2, since γδ
t |zt| → 0 as t→ ∞, we have

|At| ≤ 1

Γtε
1/2
t

t∫

0

Γs|βs − βs(zs)||zs|dKs ≤ const(ω)
1

Γtε
1/2
t

t∫

0

Γsγ
−δ
s |βs − βs(zs)|dKs

= const(ω)
1

Γtε
1/2
t

t∫

0

Γsε
1/2
s ε−1/2

s γ−δ
s |βs − βs(zs)|dKs.

Now the desired convergence At → 0 as t → ∞ follows from condition (i) and the Kronecker lemma
applied to the last term of the previous inequalities.

Now let us consider the second term

ε
1/2
t R2

t =
1

ε
1/2
t

t∫

0

( s∫

0

Γu

(
�u(zu) − �u

)
dmu

)
Γ−1

s dεs. (3.3.8)

Denoting Nt =
t∫
0

Γs(�s(zs) − �s)dms and integrating by parts, from (3.3.8), we obtain

ε
1/2
t R2

t =
1

ε
1/2
t

t∫

0

(Bt −Bs)dNs.

Furthermore, for any sequence tn, tn → ∞ as n → ∞, let us consider the sequence of martingales
Y n

u , u ∈ [0, 1], defined as follows:

Y n
u =

1

ε
1/2
tn

tnu∫

0

(Btn −Bs)dNs, 〈Y n〉1 =
1
εtn

tn∫

0

(Btn −Bs)2d〈N〉s.

Now, if we show that 〈Y n〉1 P→ 0 as n → ∞, then from the well-known fact that 〈Y n〉1 P→ 0 ⇒
Y n

1
P→ 0 (see, e.g., [25]), we obtain ε1/2

tn R2
tn → 0 as n→ ∞, and hence ε1/2

t R2
t → 0 as t→ ∞.

Thus, we need to show that

1
εt

t∫

0

(Bt −Bs)2d〈N〉s → 0 as t→ ∞ P -a.s.

Using the relation
t∫

0

(Bt −Bs)2d〈N〉s = 2

t∫

0

⎛
⎝

s∫

0

〈N〉udBu

⎞
⎠ dBs,

we need to show that

1
εt

t∫

0

(Bt −Bs)2d〈N〉s = 2
1
εt

t∫

0

⎛
⎝

s∫

0

〈N〉udBu

⎞
⎠Γ−1

s dεs → 0 as t→ ∞ (3.3.9)
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Applying the Toeplitz lemma to (3.3.9), it suffices to show that

1
Γt

t∫

0

〈N〉sdBs → 0 as t→ ∞ P -a.s. (3.3.10)

But

1
Γt

t∫

0

〈N〉sdBs =
1
Γt

t∫

0

〈N〉sΓ−1
s dεs =

1
Γt

t∫

0

〈N〉s〈L〉−1
s dΓs (3.3.11)

(recall that dεs = Γ2
s〈L〉−1

s βsdKs).
Applying the Toeplitz lemma to (3.3.11) once again, we can see that (3.3.10) follows from condi-

tion (ii).

3.3.1. Corollary. Let Ht(u) = −βtu + vt(u), where, for each t ∈ [0,∞),
∣∣∣∣vt(u)
u2

− vt

∣∣∣∣ → 0 as u → 0

P -a.s. Assume that the following condition holds :
(i′) there exists δ, 0 < δ < δ0, such that

∞∫

0

ε
1/2
t γ−2δ

t |vt|dKt <∞.

Then condition (i) of Theorem 3.3.1 holds.

Proof. Since |βt(u) − βt| = |vt(u)
u |, for δ, 0 < δ < δ0

2 , we have

∞∫

0

ε
1/2
t γ−δ|βs(zt) − βt|dKt ≤

∞∫

0

ε
1/2
t γ−δ

t

∣∣∣vt(zt)
z2
t

∣∣∣|zt|dKt

≤ const(ω)

∞∫

0

ε
1/2
t γ−2δ

t

∣∣∣vt(zt)
z2
t

∣∣∣dKt ≤ const(ω)

∞∫

0

ε
1/2
t γ−2δ

t |vt|dKt <∞.

The corollary is proved.

3.3.2. Corollary. Let �t(u) − �t = ωt(u), where, for each t ∈ [0,∞),
∣∣∣ωt(u)

u
− ωt

∣∣∣ → 0 as u→ 0 P -a.s.

Assume that the following condition is satisfied :
(ii′) there exists δ, 0 < δ < δ0, such that

1
〈L〉t

t∫

0

Γ2
sγ

−δ
s |ωs|2ds→ 0 as t→ ∞ P -a.s.

Then condition (ii) of Theorem 3.3.1 is satisfied.

Proof. For all δ, 0 < δ < δ0, we have

〈N〉t =

t∫

0

Γ2
s(�s(zs) − �s)2dKs =

t∫

0

Γ2
s

(�s(zs) − �s
zs

)2
z2
sdKs ≤ const(ω)

t∫

0

Γ2
sγ

−δ
s |ωs|2ds,

258



since γδ
t z

2
t → 0 as t→ ∞ P -a.s., and∣∣∣�t(zt) − �t

zt
− ωt

∣∣∣ =
∣∣∣ωt(zt)

(zt)
− ωt

∣∣∣ → 0 as t→ ∞.

Finally, we can conclude that the assertion of Theorem 3.3.1 holds if we replace conditions (i) and (ii)
by (i′) and (ii′), respectively.

3.3.1. Example. Averaging procedure for the RM stochastic approximation algorithm with slowly
varying gain.

Let Ht(u) = α
(1+Kt)rR(u), where 1

2 < r < 1, R(u) = −βu + v(u), and v(u) = 0(u2) as u → 0,
�t = σt

(1+Kt)r , σ2
t is deterministic, σ2

t → σ2 as t→ ∞, and K = (Kt) is a continuous increasing function
with K∞ = ∞. That is, we consider the following SDE:

zt = z0 +

t∫

0

α

(1 +Ks)r
R(zs) dKs +

t∫

0

σt

(1 +Kt)r
dmt

with d〈m〉t = dKt.
If r > 4

5 , then, according to Example 2.3.1,

(1 +Kt)r/2zt
d→
√
ασ2

2β
ξ as t→ ∞, ξ ∈ N(0, 1),

and, moreover, for all δ, 0 < δ < δ0
2 , δ0 = 2 − 1

r ,

(1 +Kt)δzt → 0 as t→ ∞ P -a.s.,

Thus, for the convergence

(1 +Kt)1/2zt
d→
√
σ2

β2
ξ as t→ ∞, ξ ∈ N(0, 1),

it suffices to verify condition (i′) of Theorem 3.3.1, since condition (ii) is trivially satisfied.

In this example, the object vt(u) defined in Corollary 3.3.1 is

vt(u) =
αv(u)

(1 +Kt)r
,

and for condition (i′) of Corollary 3.3.1 to be satisfied, it sufficed to require the following: there exists
δ, 0 < δ < δ0, δ0 = 2 − 1

r , such that
t∫

0

(1 +Kt)1/2(1 +Kt)−2δ(1 +Kt)−rdKt <∞,

or, equivalently, there exists δ, 0 < δ < δ0, δ0 = r − 1
r such that r(1 + δ) − 1

2 > 1.
It is not difficult to verify that if r > 5

6 , then such a δ exists.
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