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Abstract. The Wilsonian renormalisation group is applied to a system of two nonrelativistic particles
interacting via short-range forces and coupled to an external EM field. By demanding that a fully off-shell
one-particle-irreducible 5-point amplitude is independent of the cutoff, a renormalisation group equation
is derived for the interaction current density. This is solved to obtain the fixed point corresponding to the
unitary limit. The scaling behaviour of perturbations around this point is analysed. Some of these terms are
related by gauge invariance to terms in the effective-range expansion; others describe short-range physics
that is not included in the two-body potential. We construct observables including the bound-state form
factor and show how the scaling of the terms in the interaction current is reflected in the power counting
for their contributions to observables.

1 Introduction

Effective field theories (EFTs) now form a standard tool in
nuclear physics [1–3]. They rely on a separation between
the momentum scales of interest in low-energy nuclear
physics and those of the underlying physics of quantum
chromodynamics. When this separation of scales is large
enough, physical observables can be expanded as power
series in ratios of low-energy to high-energy scales. The
resulting theories then provide systematic frameworks for
building these expansions.

A key element of any EFT is the power counting that
quantifies the importance of the terms in the theory, both
as they appear in the Lagrangian or Hamiltonian and as
they contribute to observables. A general tool for deter-
mining the power counting is the renormalisation group
(RG) [4]. This introduces a cut-off or subtraction scale
to regulate the theory. This scale should lie between the
scales of interest and those of the underlying physics but
its exact value is a matter of choice and hence observ-
ables should be independent of it. By analysing the cut-
off dependence of terms in the theory, we can determine
their scaling behaviour. This can be mapped onto a power
counting for their contributions to observables.

The first applications of these ideas to nuclear
physics [5–8] showed how an EFT based on contact inter-
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actions could reproduce the effective-range expansion [9].
The extension to include pion-exchange forces remains a
subject of debate [10,11] but the “pionless EFT” is a well-
defined theory that can be applied to few-nucleon systems
with momenta well below the pion mass. It is based on
an expansion in powers of ratios of momenta to the pion
mass. The leading term in this expansion is a fixed point
of the RG that describes the unitary limit of two-body
scattering [12]. (Other, more unstable, fixed points also
exist, but it is not clear whether these have any physical
relevance [13].)

The pionless EFT was extended to describe electro-
magnetic (EM) couplings in refs. [14,15]. In the case of
the deuteron charge form factor, the first three terms in
the small-scale expansion follow from the effective-range
expansion, as has long been known [16–18]. The first new
low-energy constant (LEC) appears at third order. This
describes short-range physics that is not encoded in the
potential and so it must be fixed using an EM observ-
able. The orders at which new terms like this appear in
observables follow from the 1/r enhancement of the short-
distance wave function in the unitary limit [11,19].

In this work, we apply a Wilsonian RG to the EM
couplings of two particles interacting via S-wave contact
interactions. For simplicity, we focus on systems with a
total spin of zero. This extends the work of ref. [8] which
analysed the RG for the potential, identifying the fixed
point that governs the effective-range expansion and the
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scaling of perturbations around it. The approach relies on
the methods developed in refs. [20–22] for constructing
gauge-invariant currents by “gauging equations”. Origi-
nally developed for use in three-body systems, this method
was extended to equations with cutoffs in ref. [23].

The starting point is a one-particle-irreducible 5-point
amplitude [24], where the two particles are coupled to a
single EM field or photon. This can be thought of as a
bremsstrahlung amplitude, with couplings of the EM field
to the external legs omitted. Demanding that the fully off-
shell 5-point amplitude be independent of the cutoff leads
to a flow equation for the two-body interaction current
density. When rescaled to express all variables in units of
the cutoff, this becomes the RG equation. For any fixed-
point potential, this equation has a fixed-point solution
for the corresponding interaction current. The scaling with
the cutoff of perturbations around it can then be analysed
to determine the power counting. Previous studies of RG
equations for the interaction current [24,25] used a simpler
prescription for gauging the cutoff, which does not satisfy
the relevant Ward-Takahashi identity (WTI) [23], and did
not examine their scaling properties.

For the fixed-point potential describing the unitary
limit, we find the corresponding fixed point of the interac-
tion charge density. The perturbations around this are of
two types. The first consists of ones that can be generated
by gauging terms already present in the potential [26]. In
nuclear physics, such terms are often referred as arising
from Siegert’s theorem (see, for example, ref. [27]). In the
case of the pionless EFT, they have coefficients that are
determined by the effective-range expansion for the scat-
tering amplitude [16,18]. The second type consists of per-
turbations that satisfy a homogeneous version of the RG
equation. These describe short-range physics that is not
included in the potential. Their coefficients must therefore
be fixed using EM observables.

Our results for on-shell (energy-dependent) perturba-
tions agree with those found previously using other meth-
ods [14,15,19]. The use of the Wilsonian RG means that
they are obtained here in a general framework that can
be extended to other cases. For example, we also exam-
ine off-shell (momentum-dependent) perturbations, and
we show that these do not make independent contributions
to the on-shell bremsstrahlung amplitude. This reinforces
the principle that the off-shell form of any potential is not
observable. Also, the use of a momentum cutoff rather
than dimensional regularisation means that our approach
is closer to standard methods used in nuclear physics.

This paper is structured as follows. In sect. 2, we de-
rive a flow equation for the two-body interaction current
density by demanding cutoff independence of the off-shell
5-point amplitude. We then rescale this to put it in the
form of an RG equation. In sect. 3, we find the fixed-
point solution to this equation that corresponds to the
unitary limit. We then find the perturbations around this
that satisfy the linearised version of the RG equation. The
corresponding physical 5-point amplitude is constructed
in sect. 4, along with the form factor for the two-body
bound state. Off-shell perturbations are considered in the
appendix.

2 RG equation for the two-body interaction
current

2.1 Cutoff independence of amplitudes

We consider here scattering of two equal-mass particles
by an interaction that acts only in S waves and so does
not depend on the directions of the momenta. We assume
that the particles are either spinless or are in a state with
total spin zero, so the system has no magnetic couplings.
An RG equation for the potential is obtained by imposing
a cutoff on the Lippmann-Schwinger (LS) equation for the
off-shell K matrix,

K(k′, k; p) = VΛ(k′, k; p) + P
∫

d3uVΛ(k′, u; p)

× Mθ(Λ − u)
(2π)3(p2 − u2)

K(u, k; p), (1)

and demanding that K be independent of the cutoff Λ [8].
Here VΛ(k′, k; p) is the cut-off potential expressed as a
function of off-shell momenta, k and k′, and the on-shell
momentum p.

This condition leads to a differential equation for the
potential which can be written in the schematic form

∂VΛ

∂Λ
+ VΛG0

∂θ

∂Λ
VΛ = 0, (2)

where the standing-wave (principal-value) propagator is

G0(p, k) =
M

(2π)3(p2 − k2)
. (3)

The corresponding propagators with ±iε prescriptions will
be denoted below by G±

0 . With the momentum variables
written out explicitly, eq. (2) reads

∂VΛ(k′, k; p)
∂Λ

+ VΛ(k′, Λ; p)
M

2π2(p2 − Λ2)
VΛ(Λ, k; p) = 0,

(4)
after integrating over angles.

An analogous equation for the two-body interaction
current can be obtained by applying a similar procedure to
the one-particle-irreducible 5-point amplitude [24]. It can
be obtained from the K matrix by using the “gauging of
equations” method, as extended to equations with cutoffs
in ref. [23]. Applied to the K matrix above, it yields the
off-shell 5-point amplitude

Kμ = (1 + KG0θ)V
μ
Λ (1 + G0θK) + K(G0θ)μK, (5)

where μ is a Lorentz index and V μ
Λ (k′,k; q; p′, p) denotes

the interaction current. Note that in this work we write
Lorentz indices on amplitudes and interactions as super-
scripts. Other labels, including those for fixed points, or-
ders in momentum and RG eigenvalues, are all denoted
by subscripts. For simplicity, we work in the Breit frame,
where the initial and final total momenta are −q/2 and
+q/2 respectively, where q is the momentum transfer. In
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expressions like (5) we do not make explicit the on-shell
variables E and E′, or equivalently p and p′. Hence, for ex-
ample, an expression like BAμC should be interpreted as

BAμC → B(p′)Aμ(p′, p)C(p). (6)

Here (G0θ)μ is the gauged propagator, including the
cutoff used to regulate the loop integral in the LS equa-
tion (1). We define this using the symmetric prescription

(G0θ)μ =
1
2
(θGμ

0 + Gμ
0θ + θμG0 + G0θ

μ), (7)

where θμ is the gauged step function introduced in
ref. [23]. Here the gauged free propagators are

G+μ
0 = G+

0 ΓμG+
0 , Gμ

0 =
1
2

(
G+

0 ΓμG+
0 + G−

0 ΓμG−
0

)
,

(8)
where Γμ denotes the one-body current,

Γμ = −(G−1
0 )μ. (9)

We note that it is important to apply the gauging pre-
scription to the cutoff as well as the propagator in this
expression [23], as otherwise the interaction current fails
to satisfy the WTI,

qμV μ
Λ (k′,k; q; p′, p) = z1VΛ(|k′ − q/2|, k; p)

+z2VΛ(|k′ + q/2|, k; p)
−z1VΛ(k′, |k + q/2|; p′)
−z2VΛ(k′, |k − q/2|; p′), (10)

where z1,2 are the charges of the two particles. The pre-
scription used in earlier works [24,25], which corresponds
to (G0θ)μ = θGμ

0θ, does not satisfy this requirement.
Requiring Λ independence of the 5-point amplitude,

eq. (5) and using the LS equation (1), we obtain the evo-
lution equation for the interaction current V Λ

μ

∂V μ
Λ

∂Λ
+VΛG0

∂θ

∂Λ
V μ

Λ + V μ
Λ G0

∂θ

∂Λ
VΛ+VΛ

∂(G0θ)μ

∂Λ
VΛ =0.

(11)
Note that this equation can also be obtained formally by
applying the gauging prescription directly to the evolution
equation for the potential (2) and using (G0∂θ/∂Λ)μ =
∂(G0θ)μ/∂Λ.

Since we consider only spinless systems here, gauge in-
variance allows us to construct the space components of
the current VΛ from the interaction charge density V 0

Λ by
using the WTI, eq. (10). A further simplification follows
for energy-independent regulators since the time compo-
nent of (G0θ)μ does not contain a piece from gauging the
step function, as θ0 = 0. In this case and working in the
Breit frame, the gauged propagator takes the form

〈k′|(G0θ)0|k〉 = 〈k′|1
2
(θG0

0 + G0
0θ)|k〉

=
M2

2(2π)3
θ(Λ − k′) + θ(Λ − k)
(p′2 − k′2)(p2 − k2)

×[z1δ(k′ − k + q/2)
+z2δ(k′ − k − q/2)]. (12)

Since our interaction acts only in S wave, we need the
matrix element of this quantity in states with relative l=0,

〈k′|∂(G0θ)0

∂Λ
|k〉 =

ZM2

4(2π)4qk′k

[δ(Λ − k′) + δ(Λ − k)]
(p′2 − k′2)(p2 − k2)

×θ

[(
k +

q

2

)2

− k′2
]

×θ

[
k′2 −

(
k − q

2

)2
]

, (13)

where Z = z1 + z2 is the total charge of the system.

2.2 Rescaling and RG equations

The evolution equations in the previous section can be
put into the standard form of RG equations by rescal-
ing to express them in terms of dimensionless variables,
as described in ref. [8]. This makes it possible to iden-
tify the fixed-point solutions that describe scale-free phys-
ical systems. The dependence on the cutoff Λ of per-
turbations around these solutions can then be used to
determine the power counting that specifies the impor-
tance of their contributions to observables, such as the
scattering or bremsstrahlung amplitudes, or the EM form
factor.

We express all momentum variables in units of Λ,

k̂ = k/Λ,

k̂′ = k′/Λ,

p̂ = p/Λ, etc., (14)

and we define the rescaled potential

V̂Λ =
MΛ

2π2
VΛ. (15)

This satisfies the RG equation [8]
(

Λ
∂̂

∂Λ
− k̂′ ∂

∂k̂′
− k̂

∂

∂k̂
− p̂′

∂

∂p̂′
− 1

)
V̂Λ(k̂′, k̂; p̂)

+V̂Λ(k̂′, 1; p̂)
1

p̂2 − 1
V̂Λ(1, k̂; p̂) = 0, (16)

where the partial derivative with respect to Λ should now
be understood to be taken for fixed rescaled momentum
variables.

To obtain a similar equation for the interaction charge
density, we define the rescaled density

V̂ 0
Λ =

Λ3

2π2
V 0

Λ . (17)

The corresponding expression for the rescaled space com-
ponents of the interaction current is

V̂Λ =
MΛ2

2π2
VΛ. (18)
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The different rescalings needed to make these dimension-
less can be understood from the gauging procedure. To
obtain a density from an amplitude involves dividing it
by a factor of the energy (p2/M) whereas a current den-
sity involves dividing by a factor of momentum.

Using the expression (13) in the evolution equa-
tion (11) and rescaling all momentum variables, we arrive
at the RG equation for V̂ 0

Λ ,
(

Λ
∂̂

∂Λ
− k̂′ ∂

∂k̂′
− k̂

∂

∂k̂
− q̂

∂

∂q̂
− p̂′

∂

∂p̂′
− p̂

∂

∂p̂
− 3

)

×V̂ 0
Λ(k̂′, k̂; q̂; p̂′, p̂)

+V̂Λ(k̂′, 1; p̂′)
1

p̂′2 − 1
V̂ 0

Λ(1, k̂; q̂; p̂′, p̂)

+V̂ 0
Λ(k̂′, 1; q̂; p̂′, p̂)

1
p̂2 − 1

V̂Λ(1, k̂; p̂)

+
Z

2q̂

V̂Λ(k̂′, 1; p̂′)
p̂′2 − 1

∫ 1+ q̂
2

|1− q̂
2 |

û dû
V̂Λ(û, k̂; p̂)
p̂2 − û2

+
Z

2q̂

∫ 1+ q̂
2

|1− q̂
2 |

û dû
V̂Λ(k̂′, û; p̂′)

p̂′2 − û2

V̂Λ(1, k̂; p̂)
p̂2 − 1

= 0. (19)

3 Fixed points and their perturbations

3.1 Fixed points

Fixed points are solutions to these equations that are in-
dependent of Λ. In the case of the short-range potential,
these have been well studied using various approaches [5–
8]. There is, of course, the trivial solution, V̂ = 0. The
scaling behaviour of perturbations around this point is
governed by naive dimensional analysis. The same holds
for the terms in the interaction density and so we do
not consider the expansion around this fixed point further
here.

In addition, there are various nontrivial fixed points,
as discussed in ref. [13]. All of these are unstable, having
at least one relevant perturbation, and so they describe
fine-tuned systems. The RG equation (19) can be used
to find fixed points of the charge density corresponding
to each of these. However, in practice, only the one with
a single unstable direction is of physical relevance. This
is the fixed point that describes scattering in the unitary
limit [12], and which provides the starting point for the
effective-range expansion of the scattering amplitude [9].
For the sharp momentum cutoff used here, this depends
only on the energy, not the off-shell momenta, and it has
the form [8]

V̂F (p̂) =

[∫
θ(1 − k̂)

p̂2 − k̂2
k̂2dk̂

]−1

= −
[
1 − p̂

2
ln

1 + p̂

1 − p̂

]−1

,

(20)
This satisfies the boundary condition that it be analytic
in the energy, or p̂2, for small p̂.

By substituting VF into the RG equation (19) for the
interaction charge density, we get a differential equation
for a fixed-point solution, V̂ 0

F (q̂; p̂′, p̂), which is also inde-
pendent of the off-shell momenta,(

−q̂
∂

∂q̂
− p̂′

∂

∂p̂′
− p̂

∂

∂p̂
− 3

)
V̂ 0

F (q̂; p̂′, p̂)

+

(
V̂F (p̂′)
p̂′2 − 1

+
V̂F (p̂)
p̂2 − 1

)
V̂ 0

F (q̂; p̂′, p̂)

+
Z

2q̂

V̂F (p̂′)V̂F (p̂)
p̂′2 − 1

∫ 1+ q̂
2

|1− q̂
2 |

û dû

p̂2 − û2
+ (p′ ↔ p) = 0.

(21)

The solution to this equation that is analytic in p̂2 can be
written in the form

V̂ 0
F (q̂; p̂′, p̂) = −V̂F (p̂′)

〈(
Ĝ0θ

)0
〉

V̂F (p̂), (22)

where the integrated and rescaled gauged propagator is〈(
Ĝ0θ

)0
〉

=
2π2Λ

M2
〈(G0θ)0〉

=
ZΛ

8π

[∫
d3u

θ(Λ − u)
(p′2 − [u + q/2]2)(p2 − u2)

+ (p′ ↔ p)
]

.

(23)

Expressing the fixed-point charge density in this form
shows that it could also be obtained directly by gauging
the (energy-dependent) fixed-point potential.

The corresponding current density satisfies an RG
equation similar to eq. (19). However, as noted above, it
can also be found using the WTI, eq. (10). For the fixed
point, this takes the form

qμV μ
F (q; p′, p) = Z[VF (p) − VF (p′)]. (24)

Using the fact that the energy transfer in the Breit frame
is q0 = (p′2 − p2)/M , it is easy to see that the current
density

VF (q; p′, p)

=
[
p′2 − p2

M
V 0

F (q; p′, p) − Z[VF (p) − VF (p′)]
]

q

q2
. (25)

satisfies this WTI. After rescaling according to eq. (18),
this becomes

V̂F (q̂; p̂′, p̂)

=
[
(p̂′2 − p̂2)V̂ 0

F (q̂; p̂′, p̂) − Z(V̂F (p̂) − V̂F (p̂′))
] q̂

q̂2
. (26)

Although the factor of q̂−2 looks nonanalytic in q̂, this is
cancelled by factors of q̂ in the expression in brackets:

V̂ 0
F (q̂; p̂′, p̂) − Z

V̂F (p̂) − V̂F (p̂′)
p̂′2 − p̂2

= ZV̂F (p̂′)
q̂2

36
V̂F (p̂) + O(q̂2p̂2) (27)
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Finally, we should point out that the expression (25) for
the current density applies to the Breit frame. In a general
frame, Galilean invariance requires an additional term of
the form

δVF (P ′,P ; p′, p) =
P + P ′

4m
V 0

F (q; p′, p), (28)

where P and P ′ are the initial and final centre-of-mass
momenta.

3.2 Linearised perturbations and scaling

The fixed point constructed above for the interaction
charge density, like the potential it was obtained from, de-
scribes systems at the unitary limit. To describe more gen-
eral systems, we need to add perturbations around these
fixed points. It is convenient to expand these in terms
of the eigenfunctions of the linearised RG equation, since
these scale with definite powers of Λ [8].

We add a small perturbation ΦΛ to the fixed-point
potential,

V̂Λ(k̂′, k̂; p̂) = V̂F (p̂) + ΦΛ(k̂′, k̂; p̂), (29)

and we expand it in the form

ΦΛ(k̂′, k̂; p̂) =
∑

ν

CνΛνφν(k̂′, k̂; p̂), (30)

where the φν are eigenfunctions of the linearised RG equa-
tion obtained from eq. (16),

(
k̂′ ∂

∂k̂′
+ k̂

∂

∂k̂
+ p̂

∂

∂p̂
+ 1

)
φν(k̂′, k̂; p̂)

−V̂F (p̂′)
1

p̂′2 − 1
φν(1, k̂; p̂) − φν(k̂′, 1; p̂)

1
p̂2 − 1

V̂F (p̂)

= ν φν(k̂′, k̂; p̂), (31)

with eigenvalue ν [8]. Here we focus on the energy-
dependent eigenfunctions,

φ2n−1(p̂) = p̂2nV̂ 2
F (p̂), (32)

which have scaling eigenvalues ν = 2n − 1 = −1, 1, 3, . . ..
Terms that depend on off-shell momenta are discussed in
appendix A.

In the same way, we perturb the charge density,

V̂ 0
Λ(k̂′, k̂; q̂; p̂′, p̂) = V̂ 0

F (q̂; p̂′, p̂) + Φ0
Λ(k̂′, k̂; q̂; p̂′, p̂),

(33)
and expand it as

Φ0
Λ(k̂′, k̂; q̂; p̂′, p̂) =

∑
ν

DνΛνφ0
ν(k̂′, k̂; q̂; p̂′, p̂). (34)

The eigenfunctions here satisfy the linearised RG equa-
tion,

(
k̂′ ∂

∂k̂′
+ k̂

∂

∂k̂
+ q̂

∂

∂q̂
+ p̂′

∂

∂p̂′
+ p̂

∂

∂p̂
+ 3

)

×φ0
ν(k̂′, k̂; q̂; p̂′, p̂)

−V̂F (p̂′)
1

p̂′2 − 1
φ0

ν(1, k̂; q̂; p̂′, p̂) − φ0
ν(k̂′, 1; q̂; p̂′, p̂)

× 1
p̂2 − 1

V̂F (p̂)

−φν(k̂′, 1; p̂′)
1

p̂′2 − 1
V̂ 0

F (q̂; p̂′, p̂) − V̂ 0
F (q̂; p̂′, p̂)

× 1
p̂2 − 1

φν(1, k̂; p̂)

− Z

2q̂

V̂F (p̂′)
p̂′2 − 1

∫ 1+ q̂
2

|1− q̂
2 |

φν(û, k̂; p̂)
p̂2 − û2

û dû − Z

2q̂

φν(k̂′, 1; p̂′)
p̂′2 − 1

×
∫ 1+ q̂

2

|1− q̂
2 |

V̂F (p̂)
p̂2 − û2

û dû

− Z

2q̂

∫ 1+ q̂
2

|1− q̂
2 |

V̂F (p̂′)
p̂′2 − û2

û dû
φν(1, k̂; p̂)

p̂2 − 1
− Z

2q̂

×
∫ 1+ q̂

2

|1− q̂
2 |

φν(k̂′, û; p̂′)
p̂′2 − û2

û dû
V̂F (p̂)
p̂2 − 1

= νφ0
ν(k̂′, k̂; q̂; p̂′, p̂). (35)

This equation is coupled to eq. (31) by the terms in lines
3 to 5. It therefore has two kinds of solution. One consists
of solutions driven by ΦΛ through the terms that couple
eq. (35) to (31). Since these are driven by the φν , their
coefficients should match: Dν = Cν . The other comprises
solutions to the homogeneous version of eq. (35), where
φν is set to zero. These have independent coefficients Dν .

The solution driven by φ2n−1 is momentum-
independent and has the form

φ0
2n−1(q̂; p̂

′, p̂) = V̂ 0
F (q̂; p̂′, p̂)

(
p̂2nV̂F (p̂) + p̂′2nV̂F (p̂′)

)

−ZV̂F (p̂′)
p̂′2n − p̂2n

p̂′2 − p̂2
V̂F (p̂), (36)

where the final term is absent for n = 0. The corre-
sponding eigenvalue is, of course, the same as for φ2n−1:
ν = 2n−1. Like V̂ 0

F (q̂; p̂′, p̂), this contribution to the charge
density could also be obtained directly by gauging the cor-
responding term in the potential, in this case φ2n−1(p̂).
Note that, when gauging eq. (32), we need to write it in
the form V̂F (p̂)p̂2nV̂F (p̂) and to be careful to maintain the
ordering of the operators in this expression. The resulting
three terms in the density are the gauged versions of the
three factors in eq. (32).

Then we have the solutions to the homogeneous equa-
tion. The ones that do not depend on off-shell momenta
have the form

φ0
lmn(q̂; p̂′, p̂) = V̂F (p̂′)q̂2l+2 p̂′2m p̂2nV̂F (p̂), (37)



Page 6 of 11 Eur. Phys. J. A (2018) 54: 216

with eigenvalues ν = 2(l + m + n) + 3 for n, l,m =
0, 1, 2, . . . . The extra power of q̂2 is needed to make the
space components of the current regular as q̂ → 0, as
discussed below. For a Hermitian current operator, the
coefficients must satisfy Dlmn = Dlnm. These coefficients
are the LECs that describe short-range physics that is not
encoded in the potential and that must be fixed using EM
observables. Again we leave discussion of off-shell terms
to appendix A.

As described above, the space part of the current den-
sity can be constructed using the WTI, eq. (10). For
the terms that arise from gauging energy-dependent per-
turbations in the potential, the currents φ2n−1 have a
form similar to the fixed-point current, eq. (26). For the
potential-independent perturbations to the charge density
in eq. (37), the WTI leads to the Breit-frame current den-
sity,

φlmn(q̂; p̂′, p̂) = (p̂′2 − p̂2)φ0
lmn(q̂; p̂′, p̂)

q̂

q̂2
. (38)

We see that the additional factor of q̂2 in the charge den-
sity φ0

lmn cancels the factor of q̂−2 in this expression and
gives a current density that is analytic in q̂ for small q̂.

4 Observables

4.1 Scattering amplitudes

The scattering amplitude obtained from the fixed-point
potential eq. (20) has the form T (p) = 4π/iMp. This is
of order Q−1, where Q denotes a generic low-energy scale.
As pointed out in ref. [8], the power counting is directly
related to the scaling behaviour of terms in the rescaled
potential, with a term scaling as Λν contributing at order
Qν−1.

The interaction current density for this could be used
to find the corresponding 5-point amplitude. However, this
fixed point describes a system where a bound state has
just merged with the continuum and so its form factor
is ill-defined. Also, this fixed point is unstable, describ-
ing a highly fine-tuned system. It is therefore more use-
ful to start from a potential where the leading, energy-
independent perturbation is included to all orders. This
describes systems with a large but finite scattering length
a and, for a > 0, a low-energy bound state.

With C−1 included to all orders, the potential has the
form

V̂SΛ(p) =
[
V̂F (p)−1 − C−1Λ

−1
]−1

. (39)

It can be shown to satisfy the RG equation (16) most
easily by rewriting that equation in the form of a linear
equation for V −1 [28]. The resulting T matrix is, in un-
scaled form,

TS(p) =
4π

M

1
ip − 2C−1/π

=
4π

M

1
ip + 1/a

, (40)

showing that C−1 is related to the scattering length by
C−1 = −π/2a. If a > 0, this has a bound-state pole at
E = −EB = −1/Ma2.

One way to interpret this potential is to say that 1/a
has been added to the list of low-energy scales, which is
needed for momenta p � |1/a|. The term C−1 could then
be rescaled to make it part of the fixed point. The resulting
T matrix is of order Q−1 where Q in this case is either p
or 1/a.

The interaction charge density for the potential
eq. (39) is

V̂ 0
SΛ(q̂; p̂′, p̂) = −V̂SΛ(p̂′)

〈(
Ĝ0θ

)0
〉

V̂SΛ(p̂). (41)

Like eq. (22), this can be obtained either by solving the RG
equation or by simply gauging the potential V̂Λ(p). The
irreducible 5-point amplitude is given by the scattering-
wave analogue of eq. (5),

T 0 = (1 + TG+
0 θ)V 0

Λ(1 + G+
0 θT ) + T 〈(G+

0 θ)0〉T. (42)

Inserting V 0
SΛ(p) into this expression and using the LS

equation for T , we get

T 0
S(q; p′, p) = TS(p′)

[
〈(G+

0 θ)0〉 − 〈(G0θ)0〉
]
TS(p). (43)

Here we have taken advantage of the fact that, for
a momentum-independent potential, these are algebraic
rather than integral equations.

The angle-integrated gauged propagators can be eval-
uated with the help of eq. (8), giving

〈(G+
0 θ)0〉 − 〈(G0θ)0〉 =

1
2

(
〈G+

0 Γ 0G+
0 〉 − 〈G−

0 Γ 0G−
0 〉

)

= −i
ZM2

4πq
ln

p + p′ − q/2
p + p′ + q/2

. (44)

Note that if the argument of the logarithm is not real and
positive, the imaginary part should be defined such that it
vanishes as q → 0. The resulting expression for the 5-point
amplitude is

T 0
S(q; p′, p) = −TS(p′)

[
i
ZM2

4πq
ln

p + p′ − q/2
p + p′ + q/2

]
TS(p).

(45)
In terms of low-energy scales, this expression is of order
Q−3. This is as expected since the scattering amplitude
is of order Q−1 and gauging any quantity removes one
power of energy (p2), replacing it by a coupling to the EM
potential.

At higher orders, the charge density includes the per-
turbations in eqs. (36), (37). After resumming the contri-
butions of C−1 so that VF is replaced by VS , the current
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density has the form

V 0
Λ(q; , p′, p) = V 0

SΛ(q; , p′, p) +
ZM

2π2

∞∑
n=1

C2n−1

×
[
V 0

SΛ(q; , p′, p)
(
p2nVSΛ(p)+p′2nVSΛ(p′)

)

−M VSΛ(p′)
p′2n − p2n

p′2 − p2
VSΛ(p)

]

+
M2

2π2
VSΛ(p′)

×
∞∑

l,m,n=0

Dlmn q2l+2 p′2m p2n VSΛ(p). (46)

The 5-point amplitude to first order in the Cν can be ob-
tained by inserting this into eq. (42). The pieces arising
from the first two terms containing factors of V 0

SΛ can be
expressed in the form −δT 〈(G0θ)0〉TS − (p′ ↔ p), where
δT (p) denotes the contribution to the scattering ampli-
tude from the Cν terms in the potential,

δT (p) =
M

2π2
TS(p)

∞∑
n=1

C2n−1p
2n TS(p). (47)

Combining this with the first-order pieces of the final
term in eq. (42), we get a contribution of the form
δT [〈(G+

0 θ)0〉− 〈(G0θ)0〉]TS +(p′ ↔ p), which can be eval-
uated using eq. (44). The full 5-point amplitude at this
order is thus:

T 0(q; p′, p) = T 0
S(q; p′, p) − δT (p′) i

ZM2

4πq

× ln
p + p′ − q/2
p + p′ + q/2

TS(p) − (p′ ↔ p)

−M2

2π2
TS(p′)

∞∑
n=1

C2n−1
p′2n − p2n

(p′2 − p2)
TS(p)

+
M2

2π2
TS(p′)

∞∑
l,m,n=1

Dlmnq2l+2p′2mp2nTS(p).

(48)

Remembering that TS(p) is of order Q−1, we see
that the p2n term in the potential contributes to the 5-
point amplitude at order Q2n−4. Similarly the potential-
independent term in the charge density proportional to
q2l+2 p′2m p2n appears at order Q2(n+l+m). All of these are
shifted two orders lower in the power counting compared
to naive dimensional analysis. This behaviour can be un-
derstood more directly as a consequence of the 1/r form of
the short-distance wave functions in the unitary limit [11,
19], which enhances the contributions of all short-range
operators. The first contribution that is not just a result
of gauging the potential (D000 q2) appears at order Q0, as
noted in refs. [14,15]. (Since the leading amplitude is of
order Q−3, this term is of order N3LO in the notation of
those papers.)

The power counting for these contributions can be ob-
tained from the scaling with Λ of the corresponding terms
in the rescaled charge density. A term in the operator that
scales as Λν contributes to the amplitude at order Qν−3.
The difference of three orders between the scaling with
Λ and the power counting in low-energy scales Q follows
from the rescaling of the charge density in eq. (17). The
space components of the current density for an operator
scaling as Λν contribute at order Qν−2, reflecting the dif-
ferent rescaling required, eq. (18).

4.2 Effective-range expansion for EM amplitude

Sor far, we have considered perturbative expansions of op-
erators and amplitudes around the unitary limit. However,
particularly for calculations of bound-state properties, this
is not a convenient framework. Beyond leading order, the
perturbative expansion of T (p) in powers of the Cν con-
tains double and higher poles at the leading-order bound-
state energy. These just reflect the shift in that energy
that results from these perturbations. It is therefore more
convenient to work with the effective-range expansion of
T (p)−1,

T (p)−1 =
M

4π

[
ip +

1
a
− 2

π

∞∑
n=1

C2n−1 p2n

]
, (49)

where we have used the fact that the terms in this ex-
pansion are directly related to the energy-dependent pur-
turbations around the unitary fixed point [8]. For ex-
ample, C1 is given in terms of the effective range by
C1 = (π/4)re. The low-energy bound state is given by
the lowest-momentum zero of this expression, which we
denote by p = iγ.

In the case of the 5-point amplitude, we note that the
leading order expression, eq. (45), and the second line of
eq. (48) can both be obtained by applying the gauging-
of-equations method to the corresponding terms in the
effective-range expansion. Combining that method with
the additional terms from eq. (37) gives a complete expres-
sion for the 5-point amplitude based on the effective-range
expansion:

T 0(q; p′, p) = −T (p′)

[
i
ZM2

4πq
ln

p + p′ − q/2
p + p′ + q/2

+
ZM2

2π2

∞∑
n=1

C2n−1
p′2n − p2n

(p′2 − p2)

− M2

2π2

∑
m,n,l=0

Dlmn q2l+2 p′2m p2n

]
T (p),

(50)

where T (p) is the full T matrix from eq. (49). The space
components of this, T (q; p′, p), can be determined from
this with the aid of a WTI similar to eq. (10).

Finally, the full bremsstrahlung amplitude consists of
the irreducible amplitude plus terms where an EM field is
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coupled to one of the external legs:

Aμ = Tμ − Γμ G0 T − T G0 Γμ. (51)

4.3 Form factors

For a > 0, the T matrix has a pole at the bound state
energy. The charge form factor for this state can be de-
termined from T 0(q; p′, p) by extracting its residue at the
double pole, E′ = E = −EB .

We start by defining a vertex function χ for the bound
state by writing the T matrix in the form

T (p) =
χχ∗

E + EB
+ . . . , (52)

where the dots denote pieces that are regular at E = −EB .
For the momentum-independent contact interactions we
consider here, χ is simply a constant. The bound-state
form factor F (q) can then be defined from

T 0(q; p′, p) =
χ

E′ + EB
F (q)

χ∗

E − EB
+ · · · , (53)

where the dots denote pieces that are regular at either E =
−EB or E′ = −EB . This can be evaluated by rewriting it
in the form

F (q) = χ∗T (p′)−1T 0(q; p′, p)T (p)−1χ
∣∣
p=p′=iγ

. (54)

At leading order, we can find the normalisation simply
by comparing eqs. (40) and (52). This gives

χ∗χ =
8π

M2a
, (55)

since, at this order, γ = i/a. Using the corresponding ex-
pression, eq. (45), for the 5-point amplitude, we get the
form factor

F (q) = −i
2Z

qa
ln

p + p′ − q/2
p + p′ + q/2

∣∣∣∣
p=p′=i/a

=
4Z

qa
arctan

qa

4
. (56)

Expanded in powers of the momentum transfer q, this
becomes

F (q) = Z

(
1 − a2

48
q2 + · · ·

)
, (57)

with a charge radius given in terms of the scattering length
as in refs. [16–18]. The only scale in this form factor is the
scattering length and so, taking 1/a to be of order Q, all
terms are of order Q0.

Going beyond leading order, the normalisation of the
vertex function can be extracted from the effective-range
expansion using

(χ∗χ)−1 = M lim
p→iγ

T (p)−1

p2 + γ2
=

M

2p

d
dp

T (p)−1

∣∣∣∣
p=iγ

. (58)

This gives

(χ∗χ)−1 =
M2

8πγ

[
1 − 4

π

∞∑
n=1

(−1)n−1nC2n−1 γ2n−1

]
.

(59)
Inserting the complete 5-point amplitude, eq. (50), in

eq. (54) gives the form factor from the extended effective-
range expansion

F (q) = χ∗χ
M2

8πγ

[
4Zγ

q
arctan

q

4γ

−4Z

π

∞∑
n=1

(−1)n−1nC2n−1 γ2n−1

+
4
π

∞∑
l,m,n=0

(−1)m+nDlmn q2l+2 γ2(m+n)+1

]
. (60)

This expression extends to all orders the result from
ref. [14], where the pionless EFT was first applied to con-
structing the charge form factor from the effective-range
expansion. Expanding the arctangent in powers of q, we
see that the q-independent terms in the numerator can-
cel with χ∗χ to give a correctly normalised form factor:
F (0) = Z. As noted in ref. [15] and treated in more detail
in refs. [29,30], higher-order terms in the effective-range
expansion contibute only to the bound-state energy (and
hence γ) and the normalisation factor multiplying all the
q-dependence in the form factor. The first term in this
expression is the part of the form factor arising from the
tail of the relative wave function. The final term is the
contribution of short-distance physics that is not encoded
in that wave function.

5 Summary

In this work we have applied the Wilsonian RG to EM
current operators in the pionless EFT, a theory of nonrel-
ativistic particles interacting via short-range interactions.
A key ingredient in deriving the RG equation for the in-
teraction current density is the requirement that the one-
particle-irreducible 5-point amplitude be independent of
the cutoff [24]. It is also important to maintain gauge in-
variance for coulings of EM fields in a theory with a cutoff.
This can conveniently be done using the gauging of equa-
tions method [23].

We find fixed-point solutions to the RG equation, and
we study perturbations around these to determine how
they scale with the cutoff. As in the case of the poten-
tial [8], this scaling behaviour determines the power count-
ing for the contributions of these operators to observables.

We have studied in particular the nontrivial fixed point
describing unitary limit. Perturbations in the potential
around this point generate the effective-range expansion.
The power counting for the terms in the charge density
shows that these are enhanced by two orders compared
to naive dimensional analysis, matching what has been
found in previous work using different methods [14,15,19].
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Based on this, we present general expressions for the
bremsstrahlung amplitude and bound-state form factor.
These include terms that can be related to the effective-
range expansion by Siegert’s theorem as well as short-
distance contributions that are independent of the two-
body interaction. We also show that off-shell terms in the
potential make no contributions to observables such as the
on-shell bremsstrahlung amplitude.

This first application of the method demonstrates that
the Wilsonian RG can be applied not only to potentials
but also to other operators in nonrelativistic EFTs. We
have focussed here on the case of two particles in an
S wave with total spin zero but it should be straight-
forward to extend the approach to magnetic interactions
and higher partial waves. Both will introduce additional,
purely transverse interactions, which are not constrained
by gauge invariance. Further extensions to systems with
long-range interactions will involve combining the method
with the distorted-wave approach of ref. [28].

This work was supported by the UK STFC under grants
ST/L005794/1 and ST/P004423/1, and by the Georgian Shota
Rustaveli National Science Foundation (Grant No. FR17-354).
MCB is grateful to the Institute for Nuclear Theory, Seattle
for its hospitality during the program INT-18-2a “Fundamen-
tal Physics with Electroweak Probes of Light Nuclei”, where
part of this work was completed.

Appendix A. Off-shell perturbations

In the body of this paper, we have concentrated on
perturbations that depend only on energy. This is be-
cause, in the expansion around the unitary fixed point,
the energy-dependent ones appear at lower orders [8].
In addition, there is a direct correspondence between
energy-dependent terms in the potenital and terms in
the effective-range expansion. In contrast, the momentum-
dependent perturbations affect only the off-shell be-
haviour of the T matrix, making no contribution to
observables. In this appendix, we examine momentum-
dependent terms in the interaction current. In particular
we check that the bremsstrahlung amplitude is indepen-
dent of the off-shell form of the porential in the pionless
EFT, as required by general principles [31].

For simplicity, we focus on the leading off-shell term
in the potential. This has the (rescaled) form

φ2(k̂′, k̂; p̂) =
(

k̂′2 + k̂2 − 2p̂2 +
2
3

V̂F (p̂)
)

V̂F (p̂), (A.1)

and an RG eigenvalue ν = +2 [8]. Note that purely
momentum-dependent perturbations, as considered in
ref. [5] for example, can be expressed as sums of terms
like this and energy-dependent ones. The contributions to
observables come from the energy-dependent terms, not
the higher-order off-shell pieces, and so it is the former
that govern the power counting.

The corresponding term in the interaction charge den-
sity is

φ0
2(k̂

′, k̂; q̂; p̂′, p̂) = V̂ 0
F (q̂; p̂′, p̂)

[
k̂′2 + k̂2 − p̂′2 − p̂2

+
2
3

(
V̂F (p̂′) + V̂F (p̂)

) ]

+Z
(
V̂F (p̂′) + V̂F (p̂)

)
+ N̂0(q̂; p̂′, p̂),

(A.2)

where

N̂0(q̂; p̂′, p̂) = − Z

8π
V̂F (p̂′)

∫
d3û

×
[

θ(1 − û)
p̂2 − (û − q̂/2)2

− θ(1 − û)
p̂2 − û2

]
V̂F (p̂)

+(p′ ↔ p). (A.3)

This has same eigenvalue, ν = +2, as the term in the po-
tential that generates it. The corresponding contributions
to the space components of the current can be found using
the WTI, eq. (10), as before.

A convenient “trick” for calculating the contributions
of these perturbations to observables is to express them
in terms of anticommutators with the inverse propagator.
This takes advantage of the fact that these are “equation-
of-motion” terms that vanish on-shell. For the potential,
we can rewrite the perturbation as

φ2 = −
{

Ĝ−1
0 , V̂F

}
+ 2V̂F θ V̂F

= −
{

Ĝ−1
0 , V̂F

}
+ V̂F

{
Ĝ−1

0 , Ĝ0θ
}

V̂F , (A.4)

where we have used
∫

û2 dû θ(1 − û) = 1/3.
The perturbation in the charge density can be obtained

by gauging this expression, being careful to maintain the
ordering of the operators in the anticommutators. This
gives

φ0
2 = −

{
Ĝ−1

0 , V̂ 0
F

}
+ 2V̂ 0

F θ V̂F + 2V̂F θ V̂ 0
F +

{
Γ 0, V̂ 0

F

}

+V̂F

{
Ĝ−1

0 , Ĝ0θ
}0

V̂F . (A.5)

The first four terms can be easily recognised as forming
the first two terms of eq. (A.2). With some effort, the final
term of eq. (A.2) can be expressed in a form that shows
that it is N̂0. This term can be expanded using

{
Ĝ−1

0 , Ĝ0θ
}0

= −
{

Γ 0, Ĝ0θ
}

+
{

Ĝ−1
0 ,

(
Ĝ0θ

)0
}

(A.6)

and V̂ −1
F = 〈Ĝ0θ〉, to get φ0

2 in the form

φ0
2 = −

{
Ĝ−1

0 , V̂ 0
F

}
+ 2V̂ 0

F θ V̂F + 2V̂F θ V̂ 0
F

+V̂F

{
Ĝ−1

0 ,
(
Ĝ0θ

)0
}

V̂F . (A.7)
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The contribution of φ2 to the rescaled T matrix is

δT̂ = C2

(
1 + T̂F Ĝ+

0 θ
)

φ2

(
1 + Ĝ+

0 θ T̂F

)

= −C2

{
Ĝ−1

0 , T̂F

}
− C2T̂F

{
Ĝ−1

0 , Ĝ+
0 θ − Ĝ0θ

}
TF .

(A.8)

Since the factor of G−1
0 in the final term cancels their

poles, the two propagators cancel there. This leaves only
terms with external factors of G−1

0 , which vanish when
they act on on-shell states:

δT̂ = −C2

{
Ĝ−1

0 , T̂F

}
. (A.9)

Similarly, the contribution of this perturbation to the
5-point amplitude is

δT̂ 0 = δT̂ Ĝ+
0 θ V 0

F

(
1 + Ĝ+

0 θ T̂F

)

+
(
1 + T̂F Ĝ+

0 θ
)

V 0
F Ĝ+

0 θ δT̂

+δT̂
(
Ĝ+

0 θ
)0

T̂F + T̂F

(
Ĝ+

0 θ
)0

δT̂

+C2

(
1 + T̂F Ĝ+

0 θ
)

φ0
2

(
1 + Ĝ+

0 θ T̂F

)
. (A.10)

Inserting the forms of φ0 and δT̂ from eqs. (A.7), (A.9),
this reduces to

δT̂ 0 = −C2

{
Ĝ−1

0 , T̂ 0
F

}

−C2 TF

{
Ĝ−1

0 ,
(
Ĝ+

0 θ
)0

−
(
Ĝ0θ

)0
}

TF . (A.11)

To simplify this, we use the symmetric prescription for
the gauged regulated propagators in eq. (7) to get

{
Ĝ−1

0 ,
(
Ĝ0θ

)0
}

=
{

Γ 0, Ĝ0θ
}

+
1
2

{[
θ̂, Γ 0

]
, Ĝ0

}
.

(A.12)
This applies for both boundary conditions and so we can
write
{

Ĝ−1
0 ,

(
Ĝ+

0 θ
)0

−
(
Ĝ0θ

)0
}

=
{

Γ 0, Ĝ+
0 θ − Ĝ0θ

}

+
1
2

{[
θ̂, Γ 0

]
, Ĝ+

0 − Ĝ0

}
.

(A.13)

Inserted between (momentum-independent) factors of TF

to get the contribution to Tμ, both terms contain loop
integrals over G+

0 θ−G0θ. Since the two propagators differ
only by the contribution of the pole, these integrals just
pick up the residue at that pole. For the integral in the
first term, the LS equation can be used to show that it is
just −T̂−1

F . In the second term, we need to be sure that
the pole is in the momentum range covered by both θ

functions in the commutator [θ̂, Γ 0] (or, in other words,
the momentum transfer from the EM field does not take

the system outside the cutoff). Provided it is, we pick up
the same residue from both pieces of the commutator, and
these cancel.

Putting all these pieces together, we get the 5-point
amplitude in the form

δT̂ 0 = −C2

{
Ĝ−1

0 , T̂ 0
F

}
+ C2

{
Γμ, T̂F

}
. (A.14)

Substituting this and the T matrix, eq. (A.9), into eq. (51)
gives the contribution from this perturbation to the full
bremsstrahlung amplitude. In that amplitude, the off-shell
factors of G−1

0 in δT cancel the propagators on the exter-
nal legs. The final terms of eq. (51) give −C2{Γμ, T̂F },
which cancels against the second term of eq. (A.14). This
leaves just

δA0 = −C2

{
Ĝ−1

0 , T̂ 0
F

}
, (A.15)

which vanishes between on-shell states. Other off-shell per-
turbations with higher powes of momenta [8] can be han-
dled similarly. As expected from general principles [31],
we see that the off-shell behaviour of the potential has no
observable consequences.

Finally, there can be independent off-shell contri-
butions to the charge density. These are momentum-
dependent solutions to the homogeneous version of the
RG equation, eq. (19). Again, for simplicity, we show here
the explicit form of only the leading ones of these. These
contain terms of second order in the off-shell momenta, k
and k′, and have the form

φ0
2 lmn(k̂′, k̂; q̂; p̂′, p̂) =

[ (
k̂′2 − p̂′2 +

1
3

V̂F (p̂′)
)

V̂F (p̂)

+
(
k̂′, p̂′ ↔ k̂, p̂

)]
q̂2l+2 p̂′2m p̂2n.

(A.16)

As in the momentum-independent perturbations, eq. (37),
the extra factor of q̂2 ensures that the corresponding cur-
rent density is regular as q̂ → 0. Their RG eigenvalues are
ν = 2(l + m + n) + 4 and so, as in the case of the po-
tential, the off-shell perturbations are less relevant than
similar on-shell ones. The momentum-dependent factors
have a similar structure to those in the off-shell terms in
the potential eq. (A.1) and, in a similar manner, they do
not contribute to observables.

Open Access This is an open access article distributed
under the terms of the Creative Commons Attribution
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