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Consider the difference equation

∆2u(k) +
m∑

j=1

pj(k)u(τj(k)) = 0, (1)

where m ≥ 1 is a natural number, pj : N → R+, τj : N → N , (j = 1, . . . , m)
are functions defined on the set of natural numbers N = {1, 2, . . .}, ∆u(k) =
u(k + 1) − u(k) and ∆2 = ∆ ◦ ∆. Everywhere below it is assumed that

lim
k→+∞

τj(k) = +∞ (j = 1, . . . , m),

sup
{
pj(i) : i ≥ k

}
> 0 for k ∈ N (j = 1, . . . , m).

For each n ∈ N denote Nn = {n, n + 1, . . . }.

Definition 1. For each n ∈ N denote n0 = min
{
k ≥ n :

m
∪

j=1
τj(Nk) ⊂

Nn

}
. We will call a function u : Nn → R a proper solution of the equation

(1) if it satisfies (1) on Nn0
and sup{|u(i)| : i ≥ k} > 0 for any k ∈ Nn.

Definition 2. We say that a proper solution u : Nn → R of the equa-
tion (1) is oscillatory if for any k ∈ Nn there are n1, n2 ∈ Nk such that
u(n1)u(n2) ≤ 0. Otherwise the solution is called nonoscillatory.

The problem of oscillation of solutions of the equation of the type (1) has
been studied by several authors, see e.g. [1–6] and the references therein.
Everywhere below it is assumed that the conditions

+∞∑

k=1

k

( m∑

j=1

pj(k)

)
= +∞, (2)

and
+∞∑

k=1

( m∑

j=1

τj(k) pj(k)

)
= +∞ (3)
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are fulfilled.
Using the fixed point principle, one can easily show that the conditions

(2) and (3) are necessary for oscillation of all solutions of the equation (1) [6].
The obtained results make those obtained in [6] more precise even in the

case considered there when the conditions

lim inf
k→+∞

τj(k)

k
> 0 (j = 1, . . . , m)

is fulfilled. Besides the paper covers also the cases where the latter inequality
does not hold.

Lemma 1. Let τj : N → N (j = 1, . . . , m) and (1) be fulfilled. Then

there exists a nondecreasing function σ : N → N such that

1) lim
k→+∞

σ(k) = +∞,

2) σ(k) ≤ min{k, τj(k) : j = 1, . . . , m},

3) σ(Nk) ⊃
m

U
j=1

τj(Nk) for any k ∈ N.

(4)

Let k0 ∈ N . Denote by Uk0
the set of all proper solutions of (1) satisfying

u(k) > 0 for k ∈ Nk0
.

Theorem 1. Let k0 ∈ N , Uk0
6= ∅ and σ be any nondecreasing function

satisfying (4) (such a function exists due to Lemma 1). Then there exists

λ ∈ [0, 1] such that

lim sup
ε→0+

(
lim inf
k→+∞

ρ(k, ε, λ)
)
≤ 1,

where

ρ(k, ε, λ) = k−λ−h2ε(λ)
k−1∑

i=1

(σ(i))h1ε(λ)+h2ε(λ)×

×

+∞∑

l=i

( m∑

j=1

pj(l)(τj(l))
λ−h1ε(λ)

)
, (5)

h1ε(λ) =

{
0 for λ = 0,

ε for λ∈(0, 1],
h2ε(λ) =

{
0 for λ = 1,

ε for λ∈ [0, 1).
(6)

Theorem 2. Let σ be any nondecreasing function satisfying (4) (such a

function exists due to Lemma 1), and for any λ ∈ [0, 1]

lim sup
ε→0+

(
lim inf
k→+∞

ρ(k, ε, λ)
)

> 1.

where the function ρ is defined by (5), (6). Then any proper solution of the

equation (1) is oscillatory.
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Theorem 3. Let αj ∈ (0, +∞) (j = 1, . . . , m) and

lim inf
k→+∞

τj(k)

kαj
> 0 (j = 1, . . . , m). (7)

Then for all proper solutions of (1) to be oscillatory it is sufficient that for

any λ ∈ [0, 1]

lim sup
ε→0+

(
lim inf
k→+∞

k−λ−h2ε(λ)
k−1∑

i=1

iα(h1ε(λ)+h2ε(λ))×

×

+∞∑

l=i

( m∑

j=1

pj(l) (τj(l))
λ−h1ε(λ)

))
> 1,

where

α = min{1, α1, . . . , αm}. (8)

Theorem 4. Let the conditions (7) be fulfilled and for any λ ∈ [0, 1]

lim sup
ε→0+

(
lim inf
k→+∞

k1−λ+αh1ε(λ)+(α−1)h2ε(λ)×

×

+∞∑

i=k

( m∑

j=1

pj(i) (τj(i))
λ−h1ε(λ)

))
> λ,

where the functions h1ε, h2ε and α are given by (6) and (8). Then any

proper solution of (1) is oscillatory.

Theorem 5. Let the conditions (7) hold and for any λ ∈ [0, 1]

lim sup
ε→0+

(
lim inf
k→+∞

k1+(α−1)(h2ε(λ)+h1ε(λ))×

×
+∞∑

i=k

( m∑

j=1

pj(i)
(τj(i)

i

)λ−h1ε(λ)
))

> λ(1 − λ).

Then any proper solution of (1) is oscillatory.

Theorem 5′. Let the condition (7) be fulfilled with αi ≥ 1 (i = 1, . . . , m).
Then for any proper solution of (1) to be oscillatory it is sufficient that for

any λ ∈ [0, 1]

lim sup
ε→0+

(
lim inf
k→+∞

k

+∞∑

i=k

( m∑

j=1

pj(i)
(τj(i)

i

)λ−h1ε(λ)
))

> λ(1 − λ).

Theorem 5′ makes Theorem 3.2 of [1] more precise.
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Corollary 1. Let there exist αj (j = 1, . . . , m) such that αj ∈ (0, +∞)
and

lim inf
i→+∞

τj(i)

i
= αj (j = 1, . . . , m). (9)

Then for any λ ∈ [0, 1] the condition

lim inf
k→+∞

k

+∞∑

i=k

( m∑

j=1

pj(i)αλ
j

)
> λ(1 − λ)

is sufficient for oscillation of all proper solution of (1).

Corollary 2. Let the condition (9) be fulfilled and there exist cj ∈ (0, +∞)
(j = 1, . . . , m) and a function p : N → [0, +∞) such that pj(k) ≥ cjp(k)
(j = 1, . . . , m). Then the condition

lim inf
k→+∞

k

+∞∑

i=k

p(i) >

> max

{
λ(1 − λ)

( m∑

j=1

cjα
λ
j

)
−1

: λ ∈ [0, 1]

}
(10)

is sufficient for oscillation of all proper solutions of (1).

It should be noted that for any m ∈ N the inequality (10) can not be
changed by the nonstrict one. Otherwise Corollary 2, in general, will not
be valid.

Corollary 3. Let the condition (7) be fulfilled, there exist a nonincreasing

function p̃ ∈ C(R+; R+) and a nondecreasing function τ̃ ∈ C(R+; R+) such

that lim
t→+∞

τ̃(k) = +∞ and

pj(k) ≥ cj p̃(k), τj(k) ≥ dj τ̃(k) (j = 1, . . . , m), (11)

where cj , dj ∈ (0, +∞). Let, moreover, for any λ ∈ [0, 1] the condition

lim sup
ε→0+

(
lim inf
k→+∞

k1+(α−1)(h1ε(λ)+h2ε(λ))

+∞∫

k−1

p̃(1+ξ)
(
τ̃ (ξ)

)λ−h1ε(λ)
dξ

)
>

> λ(1 − λ)

( m∑

j=1

cj dλ
j

)
−1

be fulfilled, where α is given by (8). Then any proper solution of (1) is

oscillatory.

Corollary 4. Let cj , dj , α ∈ (0, +∞) (j = 1, . . . , m) and

pj(i) ≥
cj

i 2 , τj(i) ≥ dj i1+α (j = 1, . . . , m).

Then any proper solution of (1) is oscillatory.
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Corollary 5. Let the conditions (7) be fulfilled and there exist nondecreas-

ing functions τ̃ , p̃ ∈ C(R+; R+) such that the conditions (11) are fulfilled,

where cj , dj ∈ (0, +∞) (j = 1, . . . , m). Let, moreover, for any λ ∈ [0, 1] the

condition

lim sup
ε→0+

(
lim inf
k→+∞

k1+(α−1)(h1ε(λ)+h2ε(λ))

+∞∫

k

p̃(s) τ̃ λ−h1ε(λ)(s)ds

)
>

> λ(1 − λ)

( m∑

j=1

cj dλ
j

)
−1

be fulfilled. Then any proper solution of (1) is oscillatory.

Corollary 6. Let cj , dj , α ∈ (0, +∞) (j = 1, . . . , m) and

pj(i) ≥
cj

iβ
, τj(i) ≥ dj i1−α (j = 1, . . . , m),

where β < 2 − α, α ∈ (0, 1). Then any proper solution of (1) is oscillatory.
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