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Abstract

In the paper the general linear functional differential equation with several distributed deviations
is considered. Sufficient conditions for the equation to have Property A (see Definition 1.2 below)
are established. The obtained results are new even for Eq. (1.4).
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1. Introduction

Consider the differential equation
m i)
u(”)(t)—i—z / u(s)dsri(s,t) =0, (1.1)
i=1 7i (1)
wheren > 2,07, t; € C(Ry; (0,00)), 7i(t) < 0i(t) fort € Ry, and lim_, 1o 7; (t) = 00
(i =1,...,m), while the functions;: R+ x Ry — R are nondecreasing in the first ar-

gument and Lebesgue integrable in the second argument on any finite subsegment of
[0, +00).
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Definition 1.1. Let 1o € Ry. A function u € C(R4; R) is called a proper solution of
Eqg. (1.1) on[ro, +00), if it is locally absolutely continuous ofrg, +00) along with its
derivatives up to the order— 1 inclusively, almost everywhere ¢ny, +o00) satisfies (1.1)
and suplu(s)|: s >t} > 0 for t > ro. A proper solution is called oscillatory, if it has a
sequence of zeros tending+teo. Otherwise, it is called nonoscillatory.

Definition 1.2 [1]. We say that Eq. (1.1) has Property A, if any of its solutions is oscillatory
whenn is even, and either is oscillatory or satisfies

‘u(i)(t)\¢0 fort 4t +oo(i=0,...,n—1) (1.2

whenn is odd.

Oscillatory properties of ordinary differential equations have been studied since long.
As early as in 1893, Kneser [2] obtained sufficient conditions for the equation

u™ (@) + p(Hu(®) =0 (1.3)

with p € Lioc(R+; R+) to have Property A. Essential results in this direction were obtained
by Kondrat'ev, Kiguradze, and Chanturia [1,3]. For the differential equation with deviating
arguments

u @+ pitu(si1) =0 (1.4)

i=1
with

Pi € Lioc(Ry; Ry), d; € C(R4; Ry),
lim 8:(t) =400 (=1,...,m), (1.5)
t— 400

which is a special case of (1.1), similar problems were considered in [4] (see also references
therein). As to functional differential equations, both in linear and nonlinear cases they are
studied well enoughin [5]. In the present paper we give sufficient conditions for Eq. (1.1) to
have Property A. The obtained results make more precise those obtained in [6] for Eq. (1.4)
with m = 1.

Remark 1.1. Equation (1.1) can obviously be written as
a(t)
u™ @) + / u(s)ds7(s, t) =0, (1.6)
(1)

wheret (1) = min{z; (¢): 1<i <m}, o) =maXo;(t): 1<i <m}, andr(-,r) is the sum

of r; (-, ) appropriately extended ta (¢), o (t)]. For this reason, it may seem at the first
sight that in (1.1) it suffices to consider only the case- 1. However, doing so we would
misconsider the specific character of (1.1). Writing (1.1) as (1.6) and applying the below
obtained results witlw: = 1, we would obtain the results worse than those obtained by
considering (1.1) directly.
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2. Someauxiliary lemmas

In this section we give some auxiliary statements concerning some properties of
monotone functions. In the sequel we denoté@zl([to, +00)) the set of those functions
u:[to, +00) — R which are absolutely continuous on any finite subsegmefrofoo)
along with their derivatives up to the order 1 inclusively.

First we formulate the following well-known lemma due to Kiguradze.

Lemma2.1[3]. Letu € Cl'5 (10, +00)), u(t) > 0, u®™ (1) < O for 1 > 1o, andu™ (1) # 0
in any neighborhood ofco. Then there exist > g andl € {0, ...,n — 1} suchthat +n
is odd and

uD@)>0 fort>n(G=0,...,1—1),

~)*Hu Dy >0 forr>nG=1I...,n—1)

u™ () <0 fort>1q. (2.1)

Remark 2.1. If n is odd and = 0, then in(2.1p) it is meant that only the second and the
third inequalities are fulfilled.

Now we prove the following lemma describing the behavior of nonoscillatory functions.

Lemma 2.2. Letu € C‘l’f)gl([to, +00)) and (2.1;) be fulfilled for somd € {1,...,n — 1}
with [ +n odd. Then

+00

/ " Hu W ()| di < +o0. (2.2)
If, moreover,
+00
/ ™ (1) | di = +oo, (2.3)
then there exists, > rg such that
u (1) u (1) .
= b ot (=0...0-D), (2.4)
[A-1
u(t) > Tu(l_l)(t) fort > 1., (2.5)
and
+oo 1 t
(-1 ! n—i-1]. (n) n—l|, (n)
u (t)>7(n—l)! /s ‘u (s)|ds+(n_l)!/s |u (s)|ds

13 s
fort > t,. (2.6)
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Proof. Taking into accoung€2.1;), we deduce (2.2) from the identity

SV S DI o)
R =]
Jj=i j=i
t
k=1 _
+7(k(—1i)— o /sk”flu(k)(S)ds (2.7:x)

fo

with i =1 andk = n. The same equality implies

n—1 ljilluj(t)l 1 +00
Gt ey | el oz (2.8)
J : o

j=l

Now assume that (2.3) holds. Then, usi@dL), from (2.7;_1,,) we obtain

W=y — D r) = S WD @) i (=)L) (1g)
_j:l+l G-l+Dt 4 (J—1+D)!

1 t

—l—( l)'/s"71|u(”)(s)‘ds fort > 1. (2.9)
n—1t):
fo
Hence by (2.3) we have

lim (D) - tu® (1)) = +o0. (2.10)

t—400

For anyr > tp andi € {1, ...,1} denote

yi) = iu" () — =D () = (w0 @) (2.11)
ri(t) =t =@ — (= Du @) = (T u D (0)) (2.12)
According to (2.10) and by L'Hbpital’s rule we obtain
(1—i)
im oo =1,
t—+iy '

Therefore, in view of (2.12), there exigt > - -- > a1 such that;(«;) >0 (G =1,...,1).
Sincery(t) = tu (1) > 0 andr/ (1) =ri(®) fort > 10 (i = 1,...,1 — 1), we see that
ri(t) > 0 for t > «;. Analogously, by (2.10) we have;(t) — +oo for t - +o0 and
¥i1(t) = vi(t). Thereforey;(t) - +oo ast — +oo (i = 1,...,1). So, by (2.11) and
(2.12), we obtain(2.4;). On the other hand, by (2.11) we have

iu=D @) = "V () for sufficiently larger (i =1, ...,1),

whence (2.5) follows.
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Now we show that (2.6) is true. By (2.3) there s> 1g such that

[ _ . i .
1 n—1 (—1)]+lté l+1u(1)(to)

(n_l)!/snfz|u(n>(s)|ds> > =170

b j=1-1
Therefore (2.8) and (2.9) imply (2.6). The proof of the lemma is complete.

3. Main results

Letje{0,1,...,n—1}andg, o € C([t9, +20); (0, +00)). Denote
1 foro(t) <o (),
Ne,o ) =

- 3.1
% for (1) > o (1), (3.1)

oi (1)
pji(t)zfsjdsr,'(s,t) (i=1,....,m). (3.2)

7 (1)

The following four propositions are crucial in obtaining efficient sufficient conditions for
Property A.

Proposition 3.1. Let/ € {1,...,n — 1} with [ + n odd and there exist a nondecreasing
functiony € C(R+; R+) such that

r“T p(t)=4o00, @) <t fort>0, (3.3)
. m RO -1 ron—i-1
|:ngop:;(<p(t)/ o) n‘p,a,(S)pzi(S)ds+£ ) @ ($)Ng,0; () p1i (s) ds
— o
@)
+ " / " ()Ng,0; () pri (s)ds | ¢ > 11(n—1D)! (3.4)
o) ] o (s) V1 Mo PN e '

where the functiong, ,; and p;; (i =1,...,m) are defined by3.1) and (3.2)), respec-
tively. Then Eq(1.1) has no solution of the typ@.1,).

Proof. First of all we will show that (3.3) an@3.4;) imply

+o0 m i)
/t”‘lz /sl_ldsr,'(s,t)dt=+oo. (3.5)
=150

Indeed, otherwise by (3.3) and
o (t)
Ng.0; ) p1i (1) < 07 (1) / s dgrison (i=1,....m)
7 (1)
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we obtain

+OO m
@(1) / st Z Gfl(S)nw,a, ($)pii(s)ds
t

i=1
~+o0 m 0i(s)
g/s"_lz /El_ldgri(é,s)dsao ast — +oo,
t i=1

Ti ()
t

m
/ S”*l*lcp(S)Zcr,-_l(S)nw,o,- ($)p1i (s)ds
o(0) i=1
t m 9
g/s”‘lz /él_ldgri(é,s)dsao ast — +oo,
o(t) =lu(s)
t

SR

i=1

f ") Y 07 M S0 (5)p1i (5) ds
0

Iy

1 —

=2 f ()Y 0775 ng.0, ()11 (5) ds

0 i=1
1 <

1 57106 Y 07 O ()51 ds

te i=1

1y

< %/snfl(P(S) Zﬁiil(s)rhp,ﬂi ($)pri(s) ds

0 i=1
t m o (s)
+/s”_lz /él_ldgri(é,s)dsds
I =15

Iy

m
< ;/S"*lw(S)Zafl(S)nw,m ®)pii(s)ds+¢e fort>t,,
0 i=1

=

where, givere > 0, ¢, is chosen so that

+o0 oi(s)

/s”_lz /Sl_ldgri(é,s)ds<s.
i=1

L 7i (s)

299

(3.6)

(3.7)
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In view of arbitrariness of, the latter implies
13

1 m
—/sn_l(p(s)ZG;l(s)n%gi (s)pi(s)ds — 0 ast — +oo. (3.8)
! 0 i=1
Obviously, (3.6)—(3.8) contradi¢B.4;). This contradiction proves th&B.5)) is fulfilled.
Now suppose that Eq. (1.1) has a proper nonoscillatory solutigg, +o00) —
(0, +00) satisfying(2.1;) with [ € {1,...,n — 1} andl + n odd. In view of (2.1;) and

(3.5y), the functioru satisfies the conditions of Lemma 2.2. Therefore conditi@i%_1)
are fulfilled and there exists > 19 such that

+00

u(l_l)((p(t)) > (n(pit;)' / s”_l_l‘u(")(s)|ds
@(1)

@)
/ s"u™(s)|ds fort > 1. (3.9)

Iy

+ (n—1D!

Hence from (1.1), in view of (2.5) and the first condition(@f4;_1), we have

+o0 i (s)

u(lfl)((p(t))>.l'(:(i)l)' / n—Il— 12 = 1) a(s)) —1(5) / Eldgri(é,s)ds
o(t) i=1 7 (s)
o(t) o (s)
+7['(n D1 / n— lz (- l) O’(S) ( ) / Eldgr,'(é,s)ds
Ti (s)
for larger. (3.10)

On the other hand, by2.1;) and the first condition of2.4;_1) it is obvious that the
inequalities

WD (0i (1) = g O P(p0) (=1,...,m)
hold for larger, where the functions, ,; are defined by (3.1). So (3.10) and (3.3) imply

+00

1 m gn—1-1
Do) 2 l),2<go() / ooy Mo @i eu (e () ds

n—[-1
+ (1) / SU[(S) N0 () p1i (9 )u =D (p(5)) ds
@)
ORI
+/ s()mpa,(s)pz,(s)u(l D)) d ) forr >, (3.11)

n
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wherer; > 1, is sufficiently large and the functiomg ., andp; (i =1,...,m) are defined
by (3.1) and(3.2;), respectively. According to the second condition2#;_1) we have

+oosnflfl
(1) / m—(s)nw,a,-(s)m(s)u“*”(go(s))ds
t

oo n—I[—-1

> eOu' "V (p)) / ;vnw,a,(S)pzi(S)ds
t

fort>n (i=1,...,m). (3.12)
On the other hand, the first condition @4;_1) and (3.3) imply

! n—I[-1
(1) / ;T)nw,a,-(s)pn(s)u”*”(go(s))ds
(1)
(1)

snflfl
+ / ——1g.o; () pii (Hu P (p(9)) ds

i (s)
41
t
(-1 snflfl
Z>u (o) /m_—(s)w(S)nw,o,-(S)pn(S)ds
@)
1 i1
+mt/m_—(s)ﬁw,oi(S)Pli(S)fp(S)dS)
1
fortr>n(=1,...,m). (3.13)
By (3.12) and (3.13), from (3.11) we obtain
m +°°sn—1—1
l!(n—l)!>;<¢(t) ,/ mnw,o,-(S)pn(S)ds
sn—l—l
+/ p ©($)Ng,o; ($)p1i (s) ds
@)
1 w(t)sn_l_l
+mt/Cﬂ'—@)nw’ai(S)p“(S)(p(S)ds> fort > 1.
1

But this contradict$3.4;). The obtained contradiction proves the propositiom.

Proposition 3.2. Letl € {1, ...,n — 1} with [ + n is odd and there exist a nondecreasing
functiong € C(R; (0, +00)) such that(3.3) is fulfilled and
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+00

lim SUp: Z ((p([) / Snililﬂw’fi (s)p1—1i(s)ds

t——+00 i=1 p
t

+ / "L () g5 (8) P11 () ds
o(t)

@)
1
+ 0 / " o).z, (S)Plli(s)ds)} >(n—1D), (3.14)

0

where the functionsg, ., andp;_1; (i =1,...,m) are defined by3.1) and (3.2,_7), re-
spectively. Then Eq1.1) has no solution of the typ@.1).

Proof. As in the proof of Proposition 3.1, b§8.14;) we can show that3.5)) is fulfilled.
Therefore, if we suppose that Eq. (1.1) has a proper nonoscillatory solution satigying
withl € {1,...,n — 1} andl! + n odd, as in Proposition 3.1 we will conclude that (3.9) is
fulfilled with #, sufficiently large. On the other hand, (3.9) along with (1.1), (2.5), and the
second condition of2.4;_1) implies

+oo - 10
t
u(hl)((p(t))}l'(w( )l)' /snfzflzu(lfn(n(s)) / £ d ri(e, 5) ds
@(t) i=1 7i (s)
1 o(t) m o (s)
N n—I =1 -1
MY /S ;” (4 () /5 dgri(§,5)ds

Ty = T; (S)

for larger.

If we follow the arguments similar to those used in the proof of Proposition 3.1 ayith
replaced byt;, we will see that the above inequality implies

m +0o0
1!(n—1)!>2(¢(t) f " g () pi-1i () ds

i=1 y

13
* / " (9) g5 () P11 (5) dis
@)
@(1)
+m/5nlrp(S)mp,rl-(s)pz-u(ﬂw(s)ds) for larger.
i

But this contradict$3.14;). The obtained contradiction proves the propositiom.
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Proposition 3.3. Let/ € {1,...,n — 1} with [ + n odd and there exist a nondecreasing
functiong € C(R; (0, +00)) such that

p@)>t forte R, (3.15)
and

m o n-i-1 S
limsupt > ( () / oy ()11 () ds + f g ($)p1i(5) ds
t—+00 i—1 1( ) l( )

o(t) t
+i/ - (Ng,0: (i () ds | ¢ > 11(n —1)! (3.16)
o0 ) P M R '

where the functiong, ,; and p;; (i =1,...,m) are defined by3.1) and (3.2)), respec-
tively. Then Eq(1.1) has no solution of the typ@.1,).

Proof. As in the proof of Proposition 3.1, fronB.16,) it follows (3.5;). Therefore, if

we suppose that Eq. (1.1) has a proper nonoscillatory solution satisfgifg with
le{l,...,n—1} andl + n odd, as in the proof of Proposition 3.1 we see that (3.9) is
fulfilled with z, sufficiently large. On the other hand, (3.9) along with (1.1), (2.5), (3.15),
and(2.4;,_1) implies

+00

u?-D
W 0p0) > 72 [ 1Y D g,

o = oi (s)

@(1)
m n—l
+Z(/ i) Moo ()1 ($)u""P(p(5)) ds

n—l (-1
+/ a (p(s)r](p,oi(s)pli(s)uiwds for larget. (3.17)
0i (s) o(s)

L

By using the second condition ¢2.4;,_1) in the first two addends of (3.17) and the first
condition in the third one, we easily get the inequality opposité3th6,). The obtained
contradiction proves the propositionO

In the same manner as in the cases of Propositions 3.1-3.3, we prove the following

Proposition 3.4. Letl € {1,...,n — 1} with [ + n odd and there exist a nondecreasing
functiong € C(R; (0, 400)) such that(3.15) is fulfilled and
+oo @)

Iimsup{Z(w(r) / " g5 ($)pr-vi(s) ds + / " g, () p1-1i (s) ds

=+ iz
- @) !
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t

+— | s"oIng.q (pr—1i(s)ds | ¢ > 1N — D1, (3.18)
w(t)o

where the functionsg, ., andp;_1; (i =1,...,m) are defined by3.1) and (3.2,_7), re-
spectively. Then Eq1.1) has no solution of the typ@.1).

4. Functional differential equationswith Property A

In this section, using the previous results, we derive sufficient conditions under which
the functional differential equation (1.1) has Property A.

Theorem 4.1. Let there exist a nondecreasing functipne C(R; (0, +00)) satisfying
(3.3) and such that for any € {1, ...,n — 1} with / + n odd the condition3.4;) holds.
Let, moreover, in the case of the oddhe condition

+o00 m
f 7Y (ri(oi(0). 1) = ri(w(0). 1)) di = oo (4.1)
i=1
be fulfilled. Then Eq(1.1) has PropertyA.

Proof. Suppose that Eg. (1.1) has a proper nonoscillatory solutioftg, +00) —
(0, +00). Then by (1.1) and Lemma 2.1 there exists {0, ...,n — 1} such thatl + n

is odd and conditiong2.1;) are fulfilled. According to (3.3)(3.4;), and Proposition 3.1,
we havel ¢ {1,...,n — 1}. Hencen is odd and = 0. We will show that in this case (1.2)
holds. If this is not the case, then §%2.19) we have lim_, ;- u(t) = ¢ > 0. Therefore
there ist, € R such thatu(¢) > c/2 fort > t, andr;(¢t) >t fort >n (i =1,...,m),
wherer; > t, is sufficiently large. Thus, in view af2.1p) from (1.1) we obtain

n—1

D =i =Dl |u® )|

i=0

! m
> %/3”*1 ;(r,' (0i(s),s) —ri(ti(s),s))ds fore>1.

n

But this contradicts (4.1). The obtained contradiction proves (1.2). Consequently, Eq. (1.1)
has Property A. O

Remark 4.1. Note that condition (4.1) is necessary for Eq. (1.1) to have Property A (see [5,
Lemma 4.1)).

Corollary 4.1. Leto;, Bi € (0, 400), i < Bi, Bi = 1, pi € Lioc(R+; Ry) (i =1,...,m),
and foranyl € {1,...,n — 1} with! + n odd,



M.K. Grammatikopulos et al. / J. Math. Anal. Appl. 284 (2003) 294-314 305

mooal+l 41y [ 0 !
lim SupZ M t / s”ilp,' (s)ds + } / s"+lpi (s)ds
t——+00 1 ,Bi t
1= t 0
>(I+Dn—-D. 4.2)
Then the equation
. Bit
u™ (1) + Zp,- () / u(s)ds =0 (4.3)
i=1 a;t

has PropertyA.

Proof. It suffices to note that for Eq. (4.3), in view of (4.2), the conditions of Theorem 4.1
are fulfilled withp(r) =¢. O

Corollary 4.1 below shows that if a functiofpt € Lioc(R+; R+) is @ common minorant
of p;, or all p; are close top in the sense that “liminf” in (4.4) is zero, than tifwe/2]
conditions in (4.2) can be written in a compact form in termg ofAnalogous remarks are
true for Corollaries 4.24.4.

Corollary 4.1'. Let o;,8; € (0,400), a; < Bi, Bi = 1, pi, P € Lioc(R+; Ry) (i =
1,...,m),andforanyl € {1,...,n — 1} with! + n odd,

+00
ilfl‘lilgi - T t t/ s (p,' (s) — p(s)) ds
1 t
+ ;/s'”'l(pi (s) — ﬁ(s)) ds) >0. (4.4)
0

Then for Eq.(4.3) to have PropertyA, it is sufficient that

“+o00 1 t
lim supl t/snflﬁ(s)dw—/s"“ﬁ(s)ds
t——+00 t

t 0

m ,B.Hl—afﬂ —1.
le{l,...n—1),

> max:(l +D)(n —l)!( Z T

i=1 !
[+nis odd,. (4.5)
To prove Corollary 4.4 it suffices to note that (4.4) and (4.5) imply (4.2).

By means of Propositions 3.2—-3.4, Theorems 4.2—-4.4 below can be proved analogously
to Theorem 4.1.
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Theorem 4.2. Let there exist a nondecreasing functipre C(R; (0, +00)) satisfying
(3.3) and such that for any e {1, ...,n — 1} with/ + n odd condition(3.14;) holds. Let,
moreover, in the case of the oddthe condition(4.1) be fulfilled. Then Eq(1.1) has
PropertyA.

Corollary 4.2. Leta;, B; € (0, +00), o; <1< Bi, pi € Lioc(R+; Ry) (i=1,...,m),and
foranyl/ e{1,...,n — 1} with/ +n odd,

+00 t

lim SupZai (,3,1 — ozf») (t / s"Lpi(s)ds + %/S”J“lpi(s) ds) >(n—1).
=1

t—+o0 T
l t 0
(4.6)
Then Eq(4.3) has PropertyA.

To prove the corollary, it suffices to note that for Eq. (4.3), in view of (4.6), the condi-
tions of Theorem 4.2 are fulfilled with(z) =¢.

Corollary 4.2'. Leta;, Bi € (0,400), a; <1< Bi, pi, p € Lioc(R+; Ry) (i =1,...,m),
and foranyl € {1,...,n — 1} with/ + n odd,

+00

ymg X;a,» (B! —af)(t / s""H(pi(s) — p(s))ds
= t
t
+ %/S"Jrl(pi (s) — p(s)) ds) >0. 4.7)
0

Then for Eq.(4.3) to have PropertyA, it is sufficient that

“+o00 1 t
|jmiup<t / s'l_lﬁ(s)ds—l—;/s"+lﬁ(s)ds>
—+00

t 0
MNn—-DNn!

S e (B —al)

>max{ :le{l,...,n—l},l+nisodd}. (4.8)

Since (4.7) and (4.8) imply (4.6), Corollary 4llows from Corollary 4.2.

Theorem 4.3. Let there exist a nondecreasing functipne C(R; (0, +00)) satisfying
(3.15) and such that for any € {1, ...,n — 1} with [ + n odd condition(3.16;) holds.
Let, moreover, in the case of the oddhe condition(4.1) be fulfilled. Then Eq¢1.1) has
PropertyA.

Corollary 4.3. Leto;, B; € (0, +00), i < Bi, pi € Lioc(R+; Ry+) (i =1,...,m), and for
anyle{l,...,n— 1} with/ +n odd,
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m +o0
IimsupZ(ﬂl.Hl—af.H)(ﬁ*t / s"Lpi(s)ds

t——+00 i—1 fr1
B*t t
n 1 n+1
+/s pi(s)ds+;/s pi(s)ds)
t 0
> B+ Dl(n — D), (4.9)

whereg* =max1, 8;: i =1, ..., m}. Then Eq(4.3) has PropertyA.

To prove the corollary, it suffices to note that in view of (4.the conditions of Theo-
rem 4.3 are fulfilled for Eq. (4.3) with(¢) = g*¢.

Corollary 4.3. Leta;, Bi € (0, +00), @i < Bi, pi, P € Lioc(R+; Ry) (i =1,...,m), and
foranyl/ e{1,...,n — 1} with/ 4+ n odd,

+00

liminf > (87 —e; ™) (ﬁ*t / " H(pi(s) = p(9)) ds
i=1 Bt
B*t 1 t
+ / S (pr) = () ds + 7 / S (pi(s) — p(s)) ds) >0, (4.10)
t 0

Then for Eq.(4.3) to have PropertyA, it is sufficient that

+o0 B*t 1 t
Iimsup(ﬁ*t / s"1ﬁ(s)ds+/s"ﬁ(s)ds—i—;/s”“ﬁ(s)ds)

t——+400
Bt 1 0

B+ Dl —1)
2{71_1(’3!4-1 _ O[l»+1) '

whereg*=max1, 8;: i =1,...,m}.

>max{ le{l,....n—1}, l+nis odd}, (4.12)

Since (4.1¢) and (4.11) imply (4.9, Corollary 4.3 follows from Corollary 4.3.

Theorem 4.4. Let there exist a nondecreasing functiprne C(R; (0, +00)) satisfying
(3.15) and such that for any € {1, ...,n — 1} with [ + n odd condition(3.18,) holds.
Let, moreover, in the case of the oddhe condition(4.1) be fulfilled. Then Eq¢1.1) has
PropertyA.

Corollary 4.4. Leto;, B; € (0, +00), i < Bi, pi € Lioc(R+; Ry) (i =1,...,m), and for
anyle{l,...,n— 1} with/ +n odd,



308 M.K. Grammatikopulos et al. / J. Math. Anal. Appl. 284 (2003) 294-314

m 400 B*t t
"msupZm(ﬁf—aE)<ﬂ*r f s"pi(s)ds + / s"pi(s>ds+% f S”+1pi(S)dS>
1

t—>+00
1= ﬁ*t t 0
> (n —1)!B*,
whereg* =max1, 8;: i =1, ..., m}. Then Eq(4.3) has PropertyA.
Corollary 4.4, Leta;, B;i € (0, +00), o < Bi, pi» P € Lioc(R+; Ry) (i=1,...,m), and
foranyl/ e{1,...,n — 1} with/ +n odd,
m +00
fan i . {_ l * n—=1(_. _ =
liminf ;a, (B; a,)(ﬂ t / "7 (pis) = p(s)) ds
1= ﬁ*t

B*t t
1
+ / $"(pi(s) = P(s))ds + f " (pi(s) = p(s)) ds) >0,
t 0
Then for Eq.(4.3) to have PropertyA, it is sufficient that

+00 B*t 1 t
Iimsup(,B*t / s"_lﬁ(s)ds—l—/s"ﬁ(s)ds—i—;/s”“ﬁ(s)ds)

t——+00
Bt t 0
B*ll(n —1)!
S (Bl—al)
whereg* =max1, 8;: i =1,...,m}.

>max{ :le{l,...,n—l},l+nisodd},

Remark 4.2. In all the theorems of this section the expression “there eyistsch that for
any!...” can be replaced by “for anithere existg; such that..” without affecting their
validity.

Remark 4.3. Corollaries 4.1 and 4.2 show that the conditions of Theorem 4.1 can be
fulfilled without those of Theorem 4.2 being satisfied, and vice versa. The situation is
analogous for Theorems 4.3 and 4.4.

5. Volterratype equationswith Property A

In the case where either
o)<t forteRyL (i=1,...,m) (5.1)
or
ti(t) >t forteRy (i=1,...,m) (5.2)

hold, the[r/2] conditions in Theorems 4.1-4.4 can be replaced by one or two.
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Theorem 5.1. Let inequalities(5.1) be fulfilled and there exist a nondecreasing function
¢ € C(R4+; (0, +00)) satisfying conditiong3.3) such that eithe3.4,_1) or (3.14,_1) is
fulfilled. Then Eq(1.1) has PropertyA.

Proof. To prove the theorem, it suffices to note that, in view of (5.1), (3.3),@",_1)
((5.1), (3.3), and3.14,_1)), conditions (4.1) and3.4;) ((3.14;)) are fulfilled for anyi.
Therefore all the conditions of Theorem 4.1 (Theorem 4.2) are fulfilled. This proves the
theorem. O

Corollary 5.1. Let0 < o; < B; <1, p; € Lioc(R+; Ry) (i =1,...,m), and inequality
(4.9,_1) be fulfilled withg* = 1. Then Eq(4.3) has PropertyA.

The validity of the corollary follows from Theorem 5.1 since in the case of Eq. (4.3)
condition(4.9,—1) implies (3.4,—1) with ¢(t) =t.

Corollary5.2. LetO < «a; < 8; <1, pi € Lioc(R+; Ry) (i=1,...,m), and

m +00
limsup) (8t — o)™ (r / s"Lpi(s)ds
1

t—4o00
1= t
t L at
+ oy / s"pi(s)ds + A /S"Jrlp,'(s) ds) > (n—21!, (5.3)
oyt 0

wherea, = min{e;: i =1,..., m}. Then Eq(4.3) has PropertyA.

The validity of the corollary follows from Theorem 5.1 since in the case of Eq. (4.3)
condition(5.3) implies (3.14,_1) with ¢(f) = a,t.

Corollary 5.1’. LetO < a; < B; <1, pi, p € Lioc(R+; Ry) (i =1,...,m), and inequali-
ties(4.10,-1) and(4.11,,_1) be fulfilled withg* = 1. Then Eq(4.3) has PropertyA.

To prove the corollary, it suffices to note th@t10,_1) and(4.11,_1) imply the condi-
tions of Corollary 5.1.
Similarly, from Corollary 5.2 we can get

Corollary5.2". LetO<o; < 8i <1, pi, p € Lioc(R+; Ry) (i=1,...,m), and

m +00

liminf 1(;3;1*1 —ao' (r / s""H(pi(s) — p(s))ds
= t
t 1 Qyt
+a f $"(pi(s) = ) ds + - / " (pi(s) = p(s)) ds) >0.
oyt 0

Then for Eq.(4.3) to have PropertyA, it is sufficient that
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“+o00 t 1 sl
Iimsup(t / s”lﬁ(s)ds+a*/s"ﬁ(s)ds+;/S"Jrlﬁ(s)ds)
t

t—+00
oyt 0
(n—1)!
>
m n—1 n—1\"
Zi:l(ﬁ,’ —Q; )

wherea, =min{e;: i =1, ..., m}.

Using Theorems 4.3 and 4.4, we can prove similarly to Theorem 5.1 the following

Theorem 5.2. Let inequalities(5.1) be fulfilled and there exist a nondecreasing function
¢ € C(R4+; (0, +00)) satisfying(3.15) such that eithe(3.16,_1) or (3.18,_1) is fulfilled.
Then Eq(1.1) has PropertyA.

Theorem 5.3. Let inequalities(5.2) be fulfilled and there exist a nondecreasing function
¢ € C(R4; (0, 400)) satisfying(3.3) such that eithex3.41) or (3.141) holds ifn is even
and either(3.42), (3.4,,_1) or (3.14y), (3.14,,_1) hold if n is odd. Let, moreove(4.1) hold

in the case where is odd. Then Eq(1.1) has PropertyA.

Proof. It can be easily checked that, in view of (1.2) and (3.3)3if}1) holds in the case
wheren is even and3.4»), (3.4,,_1) hold in the case whereis odd, then all the conditions
of Theorem 4.1 are fulfilled. On the other hand3f14,) holds in the case whereis even
and(3.14y), (3.14,_1) hold in the case where is odd, all the conditions of Theorem 4.2
are fulfilled. This proves the theoremno

Analogously can be proved the following

Theorem 5.4. Let inequalities(5.2) be fulfilled and there exist a nondecreasing function
¢ € C(R4+; (0, +00)) satisfying(3.15) such that eithe3.16;) or (3.18;) holds ifxn is even
and either(3.16), (3.16,_1) or (3.18y), (3.18,_1) hold if n is odd. Let, moreover4.1)
hold in the case where is odd. Then Eq(1.1) has PropertyA.

Remark 5.1. In Theorems 5.3 and 5.4 one cannot ignore any of the conditions required in
the case where is odd. Otherwise the theorems will not be true.

Remark 5.2. It is clear from Corollaries 5.1 and 5.2 that, using the above theorems and
choosing a functiorp, one can obtain quite simple effective criteria for various types of
Eqg. (1.1) to have Property A.

6. Differential equationswith deviating arguments
In this section we consider Eq. (1.4) with the functignsands; (i =1, ..., m) satis-

fying (1.5). It is obvious that this equation is a particular case of (1.1). Below we will give
some sufficient conditions for Eq. (1.4) to have Property A. The validity of the theorems of
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this section follows from the theorems of the previous section. Specifically, Theorem 6.1
is implied by Theorem 5.1, while Theorem 6.2 follows from Theorem 5.3.
Theorem 6.1. Let

Si(t)y <t forteRy (i=1,...,m) (6.1)

and the inequality

“+o00 t
I|msupz<5*(t)/p,-(s)5;’Z(S)ds+ / 5*(5)5?*2(s)pi(s)ds

t—+o00
! t 84 (1)

8x (1)
1 n—2 . _
ti [ s (s)p,(s)ds)>(n !

0

holds, where
8:(t) = ir;f (min{8i(s): i=1,...,m}). (6.2)
s>t

Then Eq.(1.4) has PropertyA.

Corollary 6.1. Lets;(t) > ajt fort e Ry, ; € (0,1] i =1,...,m), and

+00 t 1 [
IlmsupZa” 2( /s”_zp,-(s)ds—i—/s"_lp,-(s)ds—i-—/s”p,'(s)ds)
st
0

t—+00 i—1
i=1 t oyl

(n—1)!
>
Ol

with o, = min{e;: i =1, ..., m}. Then Eq(1.4) has PropertyA.

(6.3)

Proof. Suppose on the contrary that the equation does not have Property A. Then by The-
orem 2.1 of [5] the equation

w0+ piuleit) =0 (6.4)
i=1
does not have Property A. On the other hand, according to (6.3) all the conditions of
Theorem 6.1 are fulfilled for Eq. (6.4). Therefore Eq. (6.4) has Property A. The obtained
contradiction proves the theorem

Corollary 6.1. Let §;(¢t) > «;t for r € R+ with o; € (0,1], pi, p € Lioc(R+; Ry) (i =
1,...,m),and

+o00 !
hmsupZa" 2( f "2 (pis) = o) ds + f " H(pi(s) = p()) ds

t—4o00
i=2 t Oyl
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st
+ a—lt $"(pi(s) = () ds) >0, (6.5)
0

wherea, =min{e;: i =1, ..., m}. Let, moreover,
m +oo t 1 sl
IimsupZ t / s”_zﬁ(s)ds+/s”ﬁ(s)ds+—/s”ﬁ(s)ds
t—>+o0 i} oyt
= t st 0
(n—1)!
= m n—-2"
W) iy &

Then Eq(1.4) has PropertyA.

(6.6)

Since conditions (6.5) and (6.6) imply (6.3), this corollary follows from Corollary 6.1.

Remark 6.1. Inequality (6.5) is obviously fulfilled ip; (1) = p(t) +0(t™) (i =1, ..., m).
Even in this case the result obtained in Corollary Ghew.
Theorem 6.2. Let

Si(t)y =2t forteRy (i=1,...,m). (6.7)
Suppose, moreover, that in the case wheig even the inequality

8 (1)

m +o00
IimsupZ(é*(t) / s"?pi(s)ds + / s"pi(s)ds

t—+00 1
= 8x() !

1 n=1s (s)d 1)!
“)O/S ($)pi(s)ds | > (n - 1!

+5*

holds, while in the case whereis odd the following three conditions are fulfilled
m +00 84 (1)
lim Supz (5* (1) / s"738;(s) pi(s) ds + / s"728;(s) pi (s) ds

t—+o00
i=1 8(1) 1

1

t
+ ) /s"_28*(s)8i(s)pi(s) ds) > 2(n —2)!,
0

S

m 400 85 (1)
IimsupZ(a*(t) / af—z(s)p,»(s)der / sal'?—Z(s)p,»(s)ds

t—+00 1
= 8() 4

t
1 n—2 . _
t e / 584(5)3. (S)pz(S)dS> -~ (-1,
0
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and

+00 m

/ L Zpi(t)dt = +00,

i=1
whereé, (t) is defined by(6.2). Then Eq(1.4) has PropertyA.

Remark 6.2. As it has been noted above (Remark 5.1), in this case too, none of the three
conditions of Theorem 6.2 can be ignored wieis odd.

Similarly to Corollary 6.1 one can prove

Corollary 6.2. Let §;(t) > «;t for t € Ry with o; € [1, +00), p; € Lioc(R+; Ry) (i =
1,...,m). Let for evem,

m +o00 el 1 t
limSUDZ(a*t / Snzpi(s)ds+/snlpi(s)ds—i-;/s”pi(s)ds)
1 0

t——+00 ie ot p
> (n—1),
while for oddn,
m +o00 oyt 1 t
Iimsupz(xi Qxl / S"_zp,-(s)ds-i—/Sn_lp,'(s)ds—F —/s”p,-(s)ds
t—400 i—1 t
= st t 0
>2(n —2)!
and

m +oo sl 1 t
IimsupZa?2<a*t / s"zpi(s)ds—i-/s"1p,'(s)ds+;/s”pi(s)ds)
i= 0

at t

> (n—1)!,
wherea, = min{e;: i =1, ..., m}. Then Eq(1.4) has PropertyA.

Corollary 6.2'. Let a; € [1, +00), 1;(t) > oyt for t € Ry, pi, p € Lioc(R+; Ry) (i =
1,...,m),and

+00
L. n—2(. =
lim inf f s""“(pi(s) — p(s))ds >0,
t
axt
i i n=1(_. _ = >
llinirg!/s (p, (s) p(s)) ds >0,

t
t

Iiminf}/s”(p,-(s)—ﬁ(s))ds}O i=1,...,m),

t—-+4oo t
0
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wherea, = min{e;: i =1, ..., m}. Let, moreover, for evem,

+00 [ 1 t
limsup| ot / s"_zﬁ(s)ds—i—/s"_lﬁ(s)ds—i——/s"ﬁ(s)ds
t—400 t
oyt t 0
(n—1)!
> —,
m
while for oddn,
+oo oyl 1 t
lim sup| ot / s”_zﬁ(s)ds+/s”_lﬁ(s)ds+—/s"ﬁ(s)ds
t—400 t
oyt t 0
2(n —2)! - D!
maf20-2 =31 )
s Yo

Then Eq.(1.4) has PropertyA.

This corollary can be proved similarly to Corollaryl6
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