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Abstract

In the paper the general linear functional differential equation with several distributed devi
is considered. Sufficient conditions for the equation to have Property A (see Definition 1.2 b
are established. The obtained results are new even for Eq. (1.4).
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the differential equation

u(n)(t)+
m∑
i=1

σi(t)∫
τi (t)

u(s) ds ri (s, t) = 0, (1.1)

wheren � 2, σi, τi ∈ C(R+; (0,∞)), τi(t) � σi(t) for t ∈ R+, and limt→+∞ τi(t) = +∞
(i = 1, . . . ,m), while the functionsri :R+ × R+ → R are nondecreasing in the first a
gument and Lebesgue integrable in the second argument on any finite subsegm
[0,+∞).
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Definition 1.1. Let t0 ∈ R+. A function u ∈ C(R+;R) is called a proper solution o
Eq. (1.1) on[t0,+∞), if it is locally absolutely continuous on[t0,+∞) along with its
derivatives up to the ordern− 1 inclusively, almost everywhere on[t0,+∞) satisfies (1.1)
and sup{|u(s)|: s � t} > 0 for t � t0. A proper solution is called oscillatory, if it has
sequence of zeros tending to+∞. Otherwise, it is called nonoscillatory.

Definition 1.2 [1]. We say that Eq. (1.1) has Property A, if any of its solutions is oscilla
whenn is even, and either is oscillatory or satisfies∣∣u(i)(t)

∣∣ ↓ 0 for t ↑ +∞ (i = 0, . . . , n− 1) (1.2)

whenn is odd.

Oscillatory properties of ordinary differential equations have been studied since
As early as in 1893, Kneser [2] obtained sufficient conditions for the equation

u(n)(t)+ p(t)u(t) = 0 (1.3)

with p ∈ Lloc(R+;R+) to have Property A. Essential results in this direction were obta
by Kondrat’ev, Kiguradze, and Chanturia [1,3]. For the differential equation with devi
arguments

u(n)(t)+
m∑
i=1

pi(t)u
(
δi(t)

)= 0 (1.4)

with

pi ∈ Lloc(R+;R+), δi ∈ C(R+;R+),

lim
t→+∞ δi(t) = +∞ (i = 1, . . . ,m), (1.5)

which is a special case of (1.1), similar problems were considered in [4] (see also refe
therein). As to functional differential equations, both in linear and nonlinear cases th
studied well enough in [5]. In the present paper we give sufficient conditions for Eq. (1
have Property A. The obtained results make more precise those obtained in [6] for Eq
with m = 1.

Remark 1.1. Equation (1.1) can obviously be written as

u(n)(t)+
σ(t)∫

τ (t)

u(s) ds r̃(s, t) = 0, (1.6)

whereτ (t) = min{τi(t): 1 � i � m}, σ(t) = max{σi(t): 1 � i � m}, andr̃(·, t) is the sum
of ri(·, t) appropriately extended to[τ (t), σ (t)]. For this reason, it may seem at the fi
sight that in (1.1) it suffices to consider only the casem = 1. However, doing so we woul
misconsider the specific character of (1.1). Writing (1.1) as (1.6) and applying the
obtained results withm = 1, we would obtain the results worse than those obtaine
considering (1.1) directly.
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2. Some auxiliary lemmas

In this section we give some auxiliary statements concerning some propert
monotone functions. In the sequel we denote byC̃n−1

loc ([t0,+∞)) the set of those function
u : [t0,+∞) → R which are absolutely continuous on any finite subsegment of[t0,+∞)

along with their derivatives up to the ordern − 1 inclusively.
First we formulate the following well-known lemma due to Kiguradze.

Lemma 2.1 [3]. Letu ∈ C̃n−1
loc ([t0,+∞)), u(t) > 0, u(n)(t) � 0 for t � t0, andu(n)(t) �≡ 0

in any neighborhood of+∞. Then there existt1 � t0 andl ∈ {0, . . . , n− 1} such thatl + n

is odd and

u(i)(t) > 0 for t � t1 (i = 0, . . . , l − 1),

(−1)i+lu(i)(t) > 0 for t � t1 (i = l, . . . , n − 1),

u(n)(t) � 0 for t � t1. (2.1l)

Remark 2.1. If n is odd andl = 0, then in(2.10) it is meant that only the second and t
third inequalities are fulfilled.

Now we prove the following lemma describing the behavior of nonoscillatory funct

Lemma 2.2. Let u ∈ C̃n−1
loc ([t0,+∞)) and (2.1l) be fulfilled for somel ∈ {1, . . . , n − 1}

with l + n odd. Then

+∞∫
tn−l−1

∣∣u(n)(t)
∣∣dt < +∞. (2.2)

If, moreover,

+∞∫
tn−l

∣∣u(n)(t)
∣∣dt = +∞, (2.3)

then there existst∗ � t0 such that

u(i)(t)

t l−i
↓, u(i)(t)

t l−i−1 ↑ (i = 0, . . . , l − 1), (2.4i)

u(t) � t l−1

l! u(l−1)(t) for t � t∗, (2.5)

and

u(l−1)(t) � t

(n − l)!
+∞∫
t

sn−l−1
∣∣u(n)(s)

∣∣ds + 1

(n − l)!
t∫

t∗

sn−l
∣∣u(n)(s)

∣∣ds
for t � t∗. (2.6)
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Proof. Taking into account(2.1l), we deduce (2.2) from the identity

k−1∑
j=i

(−1)j tj−iu(j)(t)

(j − i)! =
k−1∑
j=i

(−1)j tj−i

0 u(j)(t0)

(j − i)!

+ (−1)k−1

(k − i − 1)!
t∫

t0

sk−i−1u(k)(s) ds (2.7i,k)

with i = l andk = n. The same equality implies

n−1∑
j=l

tj−l |uj (t)|
(j − l)! � 1

(n− l − 1)!
+∞∫
t

sn−l−1
∣∣u(n)(s)

∣∣ds for t � t0. (2.8)

Now assume that (2.3) holds. Then, using(2.1l), from (2.7l−1,n) we obtain

u(l−1)(t)− tu(l)(t) =
n−1∑

j=l+1

tj−l+1|u(j)(t)|
(j − l + 1)! +

n−1∑
j=l−1

(−1)j+l−1t
j−l+1
0 u(j)(t0)

(j − l + 1)!

+ 1

(n− l)!
t∫

t0

sn−l
∣∣u(n)(s)

∣∣ds for t � t0. (2.9)

Hence by (2.3) we have

lim
t→+∞

(
u(l−1)(t) − tu(l)(t)

)= +∞. (2.10)

For anyt � t0 andi ∈ {1, . . . , l} denote

γi(t) = iu(l−i)(t)− tu(l−i+1)(t) = −t i+1(t−iu(l−i)(t)
)′
, (2.11)

ri (t) = tu(l−i+1)(t) − (i − 1)u(l−i)(t) = t i
(
t1−iu(l−i)(t)

)′
. (2.12)

According to (2.10) and by L’Hôpital’s rule we obtain

lim
t→+iy

u(l−i)(t)

t i−1 = +∞ (i = 1, . . . , l).

Therefore, in view of (2.12), there existαl � · · · � α1 such thatri(αi) > 0 (i = 1, . . . , l).
Sincer1(t) = tu(l)(t) > 0 andr ′

i+1(t) = ri (t) for t � t0 (i = 1, . . . , l − 1), we see tha
ri (t) > 0 for t � αi . Analogously, by (2.10) we haveγ1(t) → +∞ for t → +∞ and
γ ′
i+1(t) = γi(t). Thereforeγi(t) → +∞ as t → +∞ (i = 1, . . . , l). So, by (2.11) and

(2.12), we obtain(2.4i). On the other hand, by (2.11) we have

iu(l−i)(t) � tu(l−i+1)(t) for sufficiently larget (i = 1, . . . , l),

whence (2.5) follows.



298 M.K. Grammatikopulos et al. / J. Math. Anal. Appl. 284 (2003) 294–314

for

ng
Now we show that (2.6) is true. By (2.3) there ist∗ > t0 such that

1

(n− l)!
t∗∫

t0

sn−l
∣∣u(n)(s)

∣∣ds �
n−1∑

j=l−1

(−1)j+l t
j−l+1
0 u(j)(t0)

(j − l + 1)! .

Therefore (2.8) and (2.9) imply (2.6). The proof of the lemma is complete.✷

3. Main results

Let j ∈ {0,1, . . . , n − 1} andϕ,σ ∈ C([t0,+∞); (0,+∞)). Denote

ηϕ,σ (t) =
{

1 for ϕ(t) � σ(t),
σ (t)
ϕ(t)

for ϕ(t) > σ(t),
(3.1)

ρji(t) =
σi(t)∫

τi (t)

sj ds ri (s, t) (i = 1, . . . ,m). (3.2j )

The following four propositions are crucial in obtaining efficient sufficient conditions
Property A.

Proposition 3.1. Let l ∈ {1, . . . , n − 1} with l + n odd and there exist a nondecreasi
functionϕ ∈ C(R+;R+) such that

lim
t→+∞ϕ(t) = +∞, ϕ(t) � t for t � 0, (3.3)

lim sup
t→+∞

{
m∑
i=1

(
ϕ(t)

+∞∫
t

sn−l−1

σi(s)
ηϕ,σi (s)ρli (s) ds +

t∫
ϕ(t)

sn−l−1

σi(s)
ϕ(s)ηϕ,σi (s)ρli(s) ds

+ 1

ϕ(t)

ϕ(t)∫
0

sn−l

σi (s)
ϕ(s)ηϕ,σi (s)ρli (s) ds

)}
> l!(n− l)!, (3.4l)

where the functionsηϕ,σi andρli (i = 1, . . . ,m) are defined by(3.1) and (3.2l), respec-
tively. Then Eq.(1.1) has no solution of the type(2.1l).

Proof. First of all we will show that (3.3) and(3.4l) imply

+∞∫
tn−l

m∑
i=1

σi (t)∫
τi(t)

sl−1 dsri(s, t) dt = +∞. (3.5l)

Indeed, otherwise by (3.3) and

ηϕ,σi (t)ρli (t) � σi(t)

σi (t)∫
sl−1 ds ri (s, t) (i = 1, . . . ,m)
τi (t)
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ϕ(t)

+∞∫
t

sn−l−1
m∑
i=1

σ−1
i (s)ηϕ,σi (s)ρli (s) ds

�
+∞∫
t

sn−l
m∑
i=1

σi(s)∫
τi (s)

ξ l−1 dξ ri(ξ, s) ds → 0 ast → +∞, (3.6)

t∫
ϕ(t)

sn−l−1ϕ(s)

m∑
i=1

σ−1
i (s)ηϕ,σi (s)ρli(s) ds

�
t∫

ϕ(t)

sn−l
m∑
i=1

σi(s)∫
τi (s)

ξ l−1 dξ ri(ξ, s) ds → 0 ast → +∞,

1

t

t∫
0

sn−lϕ(s)

m∑
i=1

σ−1
i (s)ηϕ,σi (s)ρli (s) ds

= 1

t

t∗∫
0

sn−lϕ(s)

m∑
i=1

σ−1
i (s)ηϕ,σi (s)ρli (s) ds

+ 1

t

t∫
t∗

sn−lϕ(s)

m∑
i=1

σ−1
i (s)ηϕ,σi (s)ρli (s) ds

� 1

t

t∗∫
0

sn−lϕ(s)

m∑
i=1

σ−1
i (s)ηϕ,σi (s)ρli(s) ds

+
t∫

t∗

sn−l
m∑
i=1

σi (s)∫
τi(s)

ξ l−1dξ ri(ξ, s) ds ds

<
1

t

t∗∫
0

sn−lϕ(s)

m∑
i=1

σ−1
i (s)ηϕ,σi (s)ρli (s) ds + ε for t � t∗, (3.7)

where, givenε > 0, t∗ is chosen so that

+∞∫
t

sn−l
m∑
i=1

σi(s)∫
ξ l−1 dξ ri(ξ, s) ds < ε.
∗ τi (s)
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In view of arbitrariness ofε, the latter implies

1

t

t∫
0

sn−lϕ(s)

m∑
i=1

σ−1
i (s)ηϕ,σi (s)ρli (s) ds → 0 ast → +∞. (3.8)

Obviously, (3.6)–(3.8) contradict(3.4l). This contradiction proves that(3.5l) is fulfilled.
Now suppose that Eq. (1.1) has a proper nonoscillatory solutionu : [t0,+∞) →

(0,+∞) satisfying(2.1l) with l ∈ {1, . . . , n − 1} and l + n odd. In view of (2.1l) and
(3.5l), the functionu satisfies the conditions of Lemma 2.2. Therefore conditions(2.4l−1)

are fulfilled and there existst∗ � t0 such that

u(l−1)(ϕ(t))� ϕ(t)

(n− l)!
+∞∫

ϕ(t)

sn−l−1
∣∣u(n)(s)

∣∣ds

+ 1

(n − l)!

ϕ(t)∫
t∗

sn−l
∣∣u(n)(s)

∣∣ds for t � t∗. (3.9)

Hence from (1.1), in view of (2.5) and the first condition of(2.4l−1), we have

u(l−1)(ϕ(t))� ϕ(t)

l!(n − l)!
+∞∫

ϕ(t)

sn−l−1
m∑
i=1

u(l−1)(σi(s))σ−1
i (s)

σi(s)∫
τi (s)

ξ l dξ ri(ξ, s) ds

+ 1

l!(n− l)!

ϕ(t)∫
t∗

sn−l
m∑
i=1

u(l−1)(σi(s))σ−1
i (s)

σi(s)∫
τi (s)

ξ l dξ ri (ξ, s) ds

for larget . (3.10)

On the other hand, by(2.1l) and the first condition of(2.4l−1) it is obvious that the
inequalities

u(l−1)(σi(t))� ηϕ,σi (t)u
(l−1)(ϕ(t)) (i = 1, . . . ,m)

hold for larget , where the functionsηϕ,σi are defined by (3.1). So (3.10) and (3.3) impl

u(l−1)(ϕ(t))� 1

l!(n − l)!
m∑
i=1

(
ϕ(t)

+∞∫
t

sn−l−1

σi(s)
ηϕ,σi (s)ρli(s)u

(l−1)(ϕ(s))ds

+ ϕ(t)

t∫
ϕ(t)

sn−l−1

σi(s)
ηϕ,σi (s)ρli(s)u

(l−1)(ϕ(s))ds

+
ϕ(t)∫

sn−l

σi(s)
ηϕ,σi (s)ρli (s)u

(l−1)(ϕ(s))ds
)

for t � t1, (3.11)
t1
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wheret1 > t∗ is sufficiently large and the functionsηϕ,σi andρli (i = 1, . . . ,m) are defined
by (3.1) and(3.2l), respectively. According to the second condition of(2.4l−1) we have

ϕ(t)

+∞∫
t

sn−l−1

σi(s)
ηϕ,σi (s)ρli(s)u

(l−1)(ϕ(s))ds

� ϕ(t)u(l−1)(ϕ(t))
+∞∫
t

sn−l−1

σi(s)
ηϕ,σi (s)ρli (s) ds

for t � t1 (i = 1, . . . ,m). (3.12)

On the other hand, the first condition of(2.4l−1) and (3.3) imply

ϕ(t)

t∫
ϕ(t)

sn−l−1

σi(s)
ηϕ,σi (s)ρli(s)u

(l−1)(ϕ(s))ds

+
ϕ(t)∫
t1

sn−l−1

σi(s)
ηϕ,σi (s)ρli (s)u

(l−1)(ϕ(s))ds

� u(l−1)(ϕ(t))
( t∫

ϕ(t)

sn−l−1

σi(s)
ϕ(s)ηϕ,σi (s)ρli(s) ds

+ 1

ϕ(t)

ϕ(t)∫
t1

sn−l−1

σi(s)
ηϕ,σi (s)ρli(s)ϕ(s) ds

)

for t � t1 (i = 1, . . . ,m). (3.13)

By (3.12) and (3.13), from (3.11) we obtain

l!(n − l)! �
m∑
i=1

(
ϕ(t)

+∞∫
t

sn−l−1

σi(s)
ηϕ,σi (s)ρli (s) ds

+
t∫

ϕ(t)

sn−l−1

σi(s)
ϕ(s)ηϕ,σi (s)ρli(s) ds

+ 1

ϕ(t)

ϕ(t)∫
t1

sn−l−1

σi(s)
ηϕ,σi (s)ρli(s)ϕ(s) ds

)
for t � t1.

But this contradicts(3.4l). The obtained contradiction proves the proposition.✷
Proposition 3.2. Let l ∈ {1, . . . , n − 1} with l + n is odd and there exist a nondecreasi
functionϕ ∈ C(R+; (0,+∞)) such that(3.3) is fulfilled and
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lim sup
t→+∞

{
m∑
i=1

(
ϕ(t)

+∞∫
t

sn−l−1ηϕ,τi (s)ρl−1i (s) ds

+
t∫

ϕ(t)

sn−l−1ϕ(s)ηϕ,τi (s)ρl−1i (s) ds

+ 1

ϕ(t)

ϕ(t)∫
0

sn−lϕ(s)ηϕ,τi (s)ρl−1i (s) ds

)}
> l!(n− l)!, (3.14l)

where the functionsηϕ,τi andρl−1i (i = 1, . . . ,m) are defined by(3.1) and (3.2l−1), re-
spectively. Then Eq.(1.1) has no solution of the type(2.1l).

Proof. As in the proof of Proposition 3.1, by(3.14l) we can show that(3.5l) is fulfilled.
Therefore, if we suppose that Eq. (1.1) has a proper nonoscillatory solution satisfying(2.1l)

with l ∈ {1, . . . , n − 1} andl + n odd, as in Proposition 3.1 we will conclude that (3.9
fulfilled with t∗ sufficiently large. On the other hand, (3.9) along with (1.1), (2.5), and
second condition of(2.4l−1) implies

u(l−1)(ϕ(t))� ϕ(t)

l!(n − l)!
+∞∫

ϕ(t)

sn−l−1
m∑
i=1

u(l−1)(τi(s))
σi(s)∫

τi (s)

ξ l−1 dξ ri(ξ, s) ds

+ 1

l!(n− l)!

ϕ(t)∫
t∗

sn−l
m∑
i=1

u(l−1)(τi(s))
σi(s)∫

τi (s)

ξ l−1 dξ ri(ξ, s) ds

for larget .

If we follow the arguments similar to those used in the proof of Proposition 3.1 witσi
replaced byτi , we will see that the above inequality implies

l!(n − l)! �
m∑
i=1

(
ϕ(t)

+∞∫
t

sn−l−1ηϕ,τi (s)ρl−1i (s) ds

+
t∫

ϕ(t)

sn−l−1ϕ(s)ηϕ,τi (s)ρl−1i (s) ds

+ 1

ϕ(t)

ϕ(t)∫
t∗

sn−lϕ(s)ηϕ,τi (s)ρl−1i (s)ϕ(s) ds

)
for larget .

But this contradicts(3.14l). The obtained contradiction proves the proposition.✷
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Proposition 3.3. Let l ∈ {1, . . . , n − 1} with l + n odd and there exist a nondecreasi
functionϕ ∈ C(R+; (0,+∞)) such that

ϕ(t) � t for t ∈ R+ (3.15)

and

lim sup
t→+∞

{
m∑
i=1

(
ϕ(t)

+∞∫
ϕ(t)

sn−l−1

σi(s)
ηϕ,σi (s)ρli (s) ds +

ϕ(t)∫
t

sn−l

σi (s)
ηϕ,σi (s)ρli (s) ds

+ 1

ϕ(t)

t∫
0

sn−l

σi (s)
ϕ(s)ηϕ,σi (s)ρli (s) ds

)}
> l!(n− l)!, (3.16l)

where the functionsηϕ,σi andρli (i = 1, . . . ,m) are defined by(3.1) and (3.2l), respec-
tively. Then Eq.(1.1) has no solution of the type(2.1l).

Proof. As in the proof of Proposition 3.1, from(3.16l) it follows (3.5l). Therefore, if
we suppose that Eq. (1.1) has a proper nonoscillatory solution satisfying(2.1l) with
l ∈ {1, . . . , n − 1} and l + n odd, as in the proof of Proposition 3.1 we see that (3.9
fulfilled with t∗ sufficiently large. On the other hand, (3.9) along with (1.1), (2.5), (3.
and(2.4l−1) implies

u(l−1)(ϕ(t))� ϕ(t)

l!(n − l)!
+∞∫

ϕ(t)

sn−l−1
m∑
i=1

ηϕ,σi (s)ρli (s)
u(l−1)(ϕ(s))

σi(s)
ds

+
m∑
i=1

( ϕ(t)∫
t

sn−l

σi(s)
ηϕ,σi (s)ρli (s)u

(l−1)(ϕ(s))ds

+
t∫

t∗

sn−l

σi(s)
ϕ(s)ηϕ,σi (s)ρli (s)

u(l−1)(ϕ(s))

ϕ(s)
ds

)
for larget . (3.17)

By using the second condition of(2.4l−1) in the first two addends of (3.17) and the fi
condition in the third one, we easily get the inequality opposite to(3.16l). The obtained
contradiction proves the proposition.✷

In the same manner as in the cases of Propositions 3.1–3.3, we prove the followi

Proposition 3.4. Let l ∈ {1, . . . , n − 1} with l + n odd and there exist a nondecreasi
functionϕ ∈ C(R+; (0,+∞)) such that(3.15) is fulfilled and

lim sup
t→+∞

{
m∑
i=1

(
ϕ(t)

+∞∫
sn−l−1ηϕ,τi (s)ρl−1i (s) ds +

ϕ(t)∫
t

sn−lηϕ,τi (s)ρl−1i (s) ds
ϕ(t)
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hich

,
)

. (1.1)

e [5,
+ 1

ϕ(t)

t∫
0

sn−lϕ(s)ηϕ,τi (s)ρl−1i (s) ds

)}
> l!(n− l)!, (3.18l)

where the functionsηϕ,τi andρl−1i (i = 1, . . . ,m) are defined by(3.1) and (3.2l−1), re-
spectively. Then Eq.(1.1) has no solution of the type(2.1l).

4. Functional differential equations with Property A

In this section, using the previous results, we derive sufficient conditions under w
the functional differential equation (1.1) has Property A.

Theorem 4.1. Let there exist a nondecreasing functionϕ ∈ C(R+; (0,+∞)) satisfying
(3.3) and such that for anyl ∈ {1, . . . , n − 1} with l + n odd the condition(3.4l) holds.
Let, moreover, in the case of the oddn the condition

+∞∫
tn−1

m∑
i=1

(
ri
(
σi(t), t

)− ri
(
τi(t), t

))
dt = +∞ (4.1)

be fulfilled. Then Eq.(1.1) has PropertyA.

Proof. Suppose that Eq. (1.1) has a proper nonoscillatory solutionu : [t0,+∞) →
(0,+∞). Then by (1.1) and Lemma 2.1 there existsl ∈ {0, . . . , n − 1} such thatl + n

is odd and conditions(2.1l) are fulfilled. According to (3.3),(3.4l), and Proposition 3.1
we havel /∈ {1, . . . , n − 1}. Hencen is odd andl = 0. We will show that in this case (1.2
holds. If this is not the case, then by(2.10) we have limt→+∞ u(t) = c > 0. Therefore
there ist∗ ∈ R such thatu(t) � c/2 for t � t∗ and τi(t) � t∗ for t � t1 (i = 1, . . . ,m),
wheret1 � t∗ is sufficiently large. Thus, in view of(2.10) from (1.1) we obtain

n−1∑
i=0

(n− i − 1)!t i1
∣∣u(i)(t1)

∣∣

� c

2

t∫
t1

sn−1
m∑
i=1

(
ri
(
σi(s), s

)− ri
(
τi(s), s

))
ds for t � t1.

But this contradicts (4.1). The obtained contradiction proves (1.2). Consequently, Eq
has Property A. ✷
Remark 4.1. Note that condition (4.1) is necessary for Eq. (1.1) to have Property A (se
Lemma 4.1]).

Corollary 4.1. Let αi,βi ∈ (0,+∞), αi < βi , βi � 1, pi ∈ Lloc(R+;R+) (i = 1, . . . ,m),
and for anyl ∈ {1, . . . , n− 1} with l + n odd,
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4.1

t

e

gously
lim sup
t→+∞

m∑
i=1

(βl+1
i − αl+1

i )

βi

(
t

+∞∫
t

sn−1pi(s) ds + 1

t

t∫
0

sn+1pi(s) ds

)

> (l + 1)!(n− l)!. (4.2)

Then the equation

u(n)(t)+
m∑
i=1

pi(t)

βi t∫
αi t

u(s) ds = 0 (4.3)

has PropertyA.

Proof. It suffices to note that for Eq. (4.3), in view of (4.2), the conditions of Theorem
are fulfilled withϕ(t) ≡ t . ✷

Corollary 4.1′ below shows that if a functioñp ∈ Lloc(R+;R+) is a common minoran
of pi , or all pi are close top̃ in the sense that “lim inf ” in (4.4) is zero, than the[n/2]
conditions in (4.2) can be written in a compact form in terms ofp̃. Analogous remarks ar
true for Corollaries 4.2′–4.4′.

Corollary 4.1′. Let αi,βi ∈ (0,+∞), αi < βi , βi � 1, pi, p̃ ∈ Lloc(R+;R+) (i =
1, . . . ,m), and for anyl ∈ {1, . . . , n − 1} with l + n odd,

lim inf
t→+∞

m∑
i=1

βl+1
i − αl+1

i

βi

(
t

+∞∫
t

sn−1(pi(s)− p̃(s)
)
ds

+ 1

t

t∫
0

sn+1(pi(s) − p̃(s)
)
ds

)
� 0. (4.4)

Then for Eq.(4.3) to have PropertyA, it is sufficient that

lim sup
t→+∞

(
t

+∞∫
t

sn−1p̃(s) ds + 1

t

t∫
0

sn+1p̃(s) ds

)

> max

{
(l + 1)!(n− l)!

(
m∑
i=1

βl+1
i − αl+1

i

βi

)−1

: l ∈ {1, . . . , n− 1},

l + n is odd

}
. (4.5)

To prove Corollary 4.1′, it suffices to note that (4.4) and (4.5) imply (4.2).
By means of Propositions 3.2–3.4, Theorems 4.2–4.4 below can be proved analo

to Theorem 4.1.
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ndi-
Theorem 4.2. Let there exist a nondecreasing functionϕ ∈ C(R+; (0,+∞)) satisfying
(3.3) and such that for anyl ∈ {1, . . . , n − 1} with l + n odd condition(3.14l) holds. Let,
moreover, in the case of the oddn the condition(4.1) be fulfilled. Then Eq.(1.1) has
PropertyA.

Corollary 4.2. Letαi,βi ∈ (0,+∞), αi � 1 � βi , pi ∈ Lloc(R+;R+) (i = 1, . . . ,m), and
for anyl ∈ {1, . . . , n − 1} with l + n odd,

lim sup
t→+∞

m∑
i=1

αi

(
βl
i − αl

i

)(
t

+∞∫
t

sn−1pi(s) ds + 1

t

t∫
0

sn+1pi(s) ds

)
> ll!(n − l)!.

(4.6)

Then Eq.(4.3) has PropertyA.

To prove the corollary, it suffices to note that for Eq. (4.3), in view of (4.6), the co
tions of Theorem 4.2 are fulfilled withϕ(t) ≡ t .

Corollary 4.2′. Let αi,βi ∈ (0,+∞), αi � 1 � βi , pi, p̃ ∈ Lloc(R+;R+) (i = 1, . . . ,m),
and for anyl ∈ {1, . . . , n− 1} with l + n odd,

lim inf
t→+∞

m∑
i=1

αi

(
βl
i − αl

i

)(
t

+∞∫
t

sn−1(pi(s) − p̃(s)
)
ds

+ 1

t

t∫
0

sn+1(pi(s) − p̃(s)
)
ds

)
� 0. (4.7)

Then for Eq.(4.3) to have PropertyA, it is sufficient that

lim sup
t→+∞

(
t

+∞∫
t

sn−1p̃(s) ds + 1

t

t∫
0

sn+1p̃(s) ds

)

> max

{
ll!(n − l)!∑m

i=1αi(β
l
i − αl

i )
: l ∈ {1, . . . , n − 1}, l + n is odd

}
. (4.8)

Since (4.7) and (4.8) imply (4.6), Corollary 4.2′ follows from Corollary 4.2.

Theorem 4.3. Let there exist a nondecreasing functionϕ ∈ C(R+; (0,+∞)) satisfying
(3.15) and such that for anyl ∈ {1, . . . , n − 1} with l + n odd condition(3.16l) holds.
Let, moreover, in the case of the oddn the condition(4.1) be fulfilled. Then Eq.(1.1) has
PropertyA.

Corollary 4.3. Let αi,βi ∈ (0,+∞), αi < βi , pi ∈ Lloc(R+;R+) (i = 1, . . . ,m), and for
anyl ∈ {1, . . . , n− 1} with l + n odd,
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-

lim sup
t→+∞

m∑
i=1

(
βl+1
i − αl+1

i

)(
β∗t

+∞∫
β∗t

sn−1pi(s) ds

+
β∗t∫
t

snpi(s) ds + 1

t

t∫
0

sn+1pi(s) ds

)

> β∗(l + 1)!(n− l)!, (4.9l)

whereβ∗ = max{1, βi : i = 1, . . . ,m}. Then Eq.(4.3) has PropertyA.

To prove the corollary, it suffices to note that in view of (4.9l) the conditions of Theo
rem 4.3 are fulfilled for Eq. (4.3) withϕ(t) ≡ β∗t .

Corollary 4.3′. Let αi,βi ∈ (0,+∞), αi < βi , pi, p̃ ∈ Lloc(R+;R+) (i = 1, . . . ,m), and
for anyl ∈ {1, . . . , n − 1} with l + n odd,

lim inf
t→+∞

m∑
i=1

(
βl+1
i − αl+1

i

)(
β∗t

+∞∫
β∗t

sn−1(pi(s) − p̃(s)
)
ds

+
β∗t∫
t

sn
(
pi(s)− p̃(s)

)
ds + 1

t

t∫
0

sn+1(pi(s)− p̃(s)
)
ds

)
� 0. (4.10l)

Then for Eq.(4.3) to have PropertyA, it is sufficient that

lim sup
t→+∞

(
β∗t

+∞∫
β∗t

sn−1p̃(s) ds +
β∗t∫
t

snp̃(s) ds + 1

t

t∫
0

sn+1p̃(s) ds

)

> max

{
β∗(l + 1)!(n− l)!∑m
i=1(β

l+1
i − αl+1

i )
: l ∈ {1, . . . , n− 1}, l + n is odd

}
, (4.11)

whereβ∗ = max{1, βi : i = 1, . . . ,m}.

Since (4.10l) and (4.11) imply (4.9l), Corollary 4.3′ follows from Corollary 4.3.

Theorem 4.4. Let there exist a nondecreasing functionϕ ∈ C(R+; (0,+∞)) satisfying
(3.15) and such that for anyl ∈ {1, . . . , n − 1} with l + n odd condition(3.18l) holds.
Let, moreover, in the case of the oddn the condition(4.1) be fulfilled. Then Eq.(1.1) has
PropertyA.

Corollary 4.4. Let αi,βi ∈ (0,+∞), αi < βi , pi ∈ Lloc(R+;R+) (i = 1, . . . ,m), and for
anyl ∈ {1, . . . , n− 1} with l + n odd,
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n be
ion is
lim sup
t→+∞

m∑
i=1

αi

(
βl
i − αl

i

)(
β∗t

+∞∫
β∗t

sn−1pi(s) ds +
β∗t∫
t

snpi(s) ds + 1

t

t∫
0

sn+1pi(s) ds

)

> ll!(n− l)!β∗,

whereβ∗ = max{1, βi : i = 1, . . . ,m}. Then Eq.(4.3) has PropertyA.

Corollary 4.4′. Let αi,βi ∈ (0,+∞), αi < βi , pi, p̃ ∈ Lloc(R+;R+) (i = 1, . . . ,m), and
for anyl ∈ {1, . . . , n − 1} with l + n odd,

lim inf
t→+∞

m∑
i=1

αi

(
βl
i − αl

i

)(
β∗t

+∞∫
β∗t

sn−1(pi(s)− p̃(s)
)
ds

+
β∗t∫
t

sn
(
pi(s)− p̃(s)

)
ds + 1

t

t∫
0

sn+1(pi(s)− p̃(s)
)
ds

)
� 0.

Then for Eq.(4.3) to have PropertyA, it is sufficient that

lim sup
t→+∞

(
β∗t

+∞∫
β∗t

sn−1p̃(s) ds +
β∗t∫
t

snp̃(s) ds + 1

t

t∫
0

sn+1p̃(s) ds

)

> max

{
β∗ll!(n − l)!∑m
i=1αi(β

l
i − αl

i )
: l ∈ {1, . . . , n − 1}, l + n is odd

}
,

whereβ∗ = max{1, βi : i = 1, . . . ,m}.

Remark 4.2. In all the theorems of this section the expression “there existsϕ such that for
anyl . . .” can be replaced by “for anyl there existsϕl such that. . .” without affecting their
validity.

Remark 4.3. Corollaries 4.1 and 4.2 show that the conditions of Theorem 4.1 ca
fulfilled without those of Theorem 4.2 being satisfied, and vice versa. The situat
analogous for Theorems 4.3 and 4.4.

5. Volterra type equations with Property A

In the case where either

σi(t) � t for t ∈ R+ (i = 1, . . . ,m) (5.1)

or

τi(t) � t for t ∈ R+ (i = 1, . . . ,m) (5.2)

hold, the[n/2] conditions in Theorems 4.1–4.4 can be replaced by one or two.
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ion

s the

4.3)

4.3)
Theorem 5.1. Let inequalities(5.1) be fulfilled and there exist a nondecreasing funct
ϕ ∈ C(R+; (0,+∞)) satisfying conditions(3.3) such that either(3.4n−1) or (3.14n−1) is
fulfilled. Then Eq.(1.1) has PropertyA.

Proof. To prove the theorem, it suffices to note that, in view of (5.1), (3.3), and(3.4n−1)

((5.1), (3.3), and(3.14n−1)), conditions (4.1) and(3.4l) ((3.14l)) are fulfilled for anyl.
Therefore all the conditions of Theorem 4.1 (Theorem 4.2) are fulfilled. This prove
theorem. ✷
Corollary 5.1. Let 0 < αi < βi � 1, pi ∈ Lloc(R+;R+) (i = 1, . . . ,m), and inequality
(4.9n−1) be fulfilled withβ∗ = 1. Then Eq.(4.3) has PropertyA.

The validity of the corollary follows from Theorem 5.1 since in the case of Eq. (
condition(4.9n−1) implies(3.4n−1) with ϕ(t) ≡ t .

Corollary 5.2. Let 0< αi < βi � 1, pi ∈ Lloc(R+;R+) (i = 1, . . . ,m), and

lim sup
t→+∞

m∑
i=1

(
βn−1
i − αn−1

i

)(
t

+∞∫
t

sn−1pi(s) ds

+ α∗
t∫

α∗t

snpi(s) ds + 1

t

α∗t∫
0

sn+1pi(s) ds

)
> (n− 1)!, (5.3)

whereα∗ = min{αi : i = 1, . . . ,m}. Then Eq.(4.3) has PropertyA.

The validity of the corollary follows from Theorem 5.1 since in the case of Eq. (
condition(5.3) implies(3.14n−1) with ϕ(t) ≡ α∗t .

Corollary 5.1′. Let 0< αi < βi � 1, pi, p̃ ∈ Lloc(R+;R+) (i = 1, . . . ,m), and inequali-
ties(4.10n−1) and(4.11n−1) be fulfilled withβ∗ = 1. Then Eq.(4.3) has PropertyA.

To prove the corollary, it suffices to note that(4.10n−1) and(4.11n−1) imply the condi-
tions of Corollary 5.1.

Similarly, from Corollary 5.2 we can get

Corollary 5.2′. Let 0< αi < βi � 1, pi, p̃ ∈ Lloc(R+;R+) (i = 1, . . . ,m), and

lim inf
t→+∞

m∑
i=1

(
βn−1
i − αn−1

i

)(
t

+∞∫
t

sn−1(pi(s)− p̃(s)
)
ds

+ α∗
t∫

α∗t

sn
(
pi(s)− p̃(s)

)
ds + 1

t

α∗t∫
0

sn+1(pi(s) − p̃(s)
)
ds

)
� 0.

Then for Eq.(4.3) to have PropertyA, it is sufficient that
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ion

ion

s

.2

ion

red in

and
s of

give
s of
lim sup
t→+∞

(
t

+∞∫
t

sn−1p̃(s) ds + α∗
t∫

α∗t

snp̃(s) ds + 1

t

α∗t∫
0

sn+1p̃(s) ds

)

>
(n− 1)!∑m

i=1(β
n−1
i − αn−1

i )
,

whereα∗ = min{αi : i = 1, . . . ,m}.

Using Theorems 4.3 and 4.4, we can prove similarly to Theorem 5.1 the following

Theorem 5.2. Let inequalities(5.1) be fulfilled and there exist a nondecreasing funct
ϕ ∈ C(R+; (0,+∞)) satisfying(3.15) such that either(3.16n−1) or (3.18n−1) is fulfilled.
Then Eq.(1.1) has PropertyA.

Theorem 5.3. Let inequalities(5.2) be fulfilled and there exist a nondecreasing funct
ϕ ∈ C(R+; (0,+∞)) satisfying(3.3) such that either(3.41) or (3.141) holds ifn is even
and either(3.42), (3.4n−1) or (3.142), (3.14n−1) hold if n is odd. Let, moreover,(4.1) hold
in the case wheren is odd. Then Eq.(1.1) has PropertyA.

Proof. It can be easily checked that, in view of (1.2) and (3.3), if(3.41) holds in the case
wheren is even and(3.42), (3.4n−1) hold in the case wheren is odd, then all the condition
of Theorem 4.1 are fulfilled. On the other hand, if(3.141) holds in the case wheren is even
and(3.142), (3.14n−1) hold in the case wheren is odd, all the conditions of Theorem 4
are fulfilled. This proves the theorem.✷

Analogously can be proved the following

Theorem 5.4. Let inequalities(5.2) be fulfilled and there exist a nondecreasing funct
ϕ ∈ C(R+; (0,+∞)) satisfying(3.15) such that either(3.161) or (3.181) holds ifn is even
and either(3.162), (3.16n−1) or (3.182), (3.18n−1) hold if n is odd. Let, moreover,(4.1)
hold in the case wheren is odd. Then Eq.(1.1) has PropertyA.

Remark 5.1. In Theorems 5.3 and 5.4 one cannot ignore any of the conditions requi
the case wheren is odd. Otherwise the theorems will not be true.

Remark 5.2. It is clear from Corollaries 5.1 and 5.2 that, using the above theorems
choosing a functionϕ, one can obtain quite simple effective criteria for various type
Eq. (1.1) to have Property A.

6. Differential equations with deviating arguments

In this section we consider Eq. (1.4) with the functionspi andδi (i = 1, . . . ,m) satis-
fying (1.5). It is obvious that this equation is a particular case of (1.1). Below we will
some sufficient conditions for Eq. (1.4) to have Property A. The validity of the theorem
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m 6.1

y The-

ns of
ained
this section follows from the theorems of the previous section. Specifically, Theore
is implied by Theorem 5.1, while Theorem 6.2 follows from Theorem 5.3.

Theorem 6.1. Let

δi(t) � t for t ∈ R+ (i = 1, . . . ,m) (6.1)

and the inequality

lim sup
t→+∞

m∑
i=1

(
δ∗(t)

+∞∫
t

pi(s)δ
n−2
i (s) ds +

t∫
δ∗(t)

δ∗(s)δn−2
i (s)pi(s) ds

+ 1

δ∗(t)

δ∗(t)∫
0

sδ∗(s)δn−2
i (s)pi(s) ds

)
> (n− 1)!

holds, where

δ∗(t) = inf
s�t

(
min

{
δi(s): i = 1, . . . ,m

})
. (6.2)

Then Eq.(1.4) has PropertyA.

Corollary 6.1. Let δi(t) � αi t for t ∈ R+, αi ∈ (0,1] (i = 1, . . . ,m), and

lim sup
t→+∞

m∑
i=1

αn−2
i

(
t

+∞∫
t

sn−2pi(s) ds +
t∫

α∗t

sn−1pi(s) ds + 1

α∗t

α∗t∫
0

snpi(s) ds

)

>
(n − 1)!

α∗
(6.3)

with α∗ = min{αi : i = 1, . . . ,m}. Then Eq.(1.4) has PropertyA.

Proof. Suppose on the contrary that the equation does not have Property A. Then b
orem 2.1 of [5] the equation

u(n)(t)+
m∑
i=1

pi(t)u(αi t) = 0 (6.4)

does not have Property A. On the other hand, according to (6.3) all the conditio
Theorem 6.1 are fulfilled for Eq. (6.4). Therefore Eq. (6.4) has Property A. The obt
contradiction proves the theorem.✷
Corollary 6.1′. Let δi(t) � αi t for t ∈ R+ with αi ∈ (0,1], pi, p̃ ∈ Lloc(R+;R+) (i =
1, . . . ,m), and

lim sup
t→+∞

m∑
i=2

αn−2
i

(
t

+∞∫
sn−2(pi(s)− p̃(s)

)
ds +

t∫
sn−1(pi(s) − p̃(s)

)
ds
t α∗t
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.1.
+ 1

α∗t

α∗t∫
0

sn
(
pi(s)− p̃(s)

)
ds

)
� 0, (6.5)

whereα∗ = min{αi : i = 1, . . . ,m}. Let, moreover,

lim sup
t→+∞

m∑
i=1

(
t

+∞∫
t

sn−2p̃(s) ds +
t∫

α∗t

snp̃(s) ds + 1

α∗t

α∗t∫
0

snp̃(s) ds

)

>
(n− 1)!

α∗
∑m

i=1α
n−2
i

. (6.6)

Then Eq.(1.4) has PropertyA.

Since conditions (6.5) and (6.6) imply (6.3), this corollary follows from Corollary 6

Remark 6.1. Inequality (6.5) is obviously fulfilled ifpi(t) ≡ p̃(t)+o(t−n) (i = 1, . . . ,m).
Even in this case the result obtained in Corollary 6.1′ is new.

Theorem 6.2. Let

δi(t) � t for t ∈ R+ (i = 1, . . . ,m). (6.7)

Suppose, moreover, that in the case wheren is even the inequality

lim sup
t→+∞

m∑
i=1

(
δ∗(t)

+∞∫
δ∗(t)

sn−2pi(s) ds +
δ∗(t)∫
t

sn−1pi(s) ds

+ 1

δ∗(t)

t∫
0

sn−1δ∗(s)pi(s) ds

)
> (n− 1)!

holds, while in the case wheren is odd the following three conditions are fulfilled:

lim sup
t→+∞

m∑
i=1

(
δ∗(t)

+∞∫
δ∗(t)

sn−3δi(s)pi(s) ds +
δ∗(t)∫
t

sn−2δi(s)pi(s) ds

+ 1

δ∗(t)

t∫
0

sn−2δ∗(s)δi(s)pi(s) ds

)
> 2(n− 2)!,

lim sup
t→+∞

m∑
i=1

(
δ∗(t)

+∞∫
δ∗(t)

δn−2
i (s)pi(s) ds +

δ∗(t)∫
t

sδn−2
i (s)pi(s) ds

+ 1

δ∗(t)

t∫
sδ∗(s)δn−2

i (s)pi(s) ds

)
> (n − 1)!,
0
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three
and
+∞∫

tn−1
m∑
i=1

pi(t) dt = +∞,

whereδ∗(t) is defined by(6.2). Then Eq.(1.4) has PropertyA.

Remark 6.2. As it has been noted above (Remark 5.1), in this case too, none of the
conditions of Theorem 6.2 can be ignored whenn is odd.

Similarly to Corollary 6.1 one can prove

Corollary 6.2. Let δi(t) � αit for t ∈ R+ with αi ∈ [1,+∞), pi ∈ Lloc(R+;R+) (i =
1, . . . ,m). Let for evenn,

lim sup
t→+∞

m∑
i=1

(
α∗t

+∞∫
α∗t

sn−2pi(s) ds +
α∗t∫
t

sn−1pi(s) ds + 1

t

t∫
0

snpi(s) ds

)

> (n − 1)!,
while for oddn,

lim sup
t→+∞

m∑
i=1

αi

(
α∗t

+∞∫
α∗t

sn−2pi(s) ds +
α∗t∫
t

sn−1pi(s) ds + 1

t

t∫
0

snpi(s) ds

)

> 2(n− 2)!
and

lim sup
t→+∞

m∑
i=1

αn−2
i

(
α∗t

+∞∫
α∗t

sn−2pi(s) ds +
α∗t∫
t

sn−1pi(s) ds + 1

t

t∫
0

snpi(s) ds

)

> (n − 1)!,
whereα∗ = min{αi : i = 1, . . . ,m}. Then Eq.(1.4) has PropertyA.

Corollary 6.2′. Let αi ∈ [1,+∞), τi(t) � αi t for t ∈ R+, pi, p̃ ∈ Lloc(R+;R+) (i =
1, . . . ,m), and

lim inf
t→+∞

+∞∫
t

sn−2(pi(s)− p̃(s)
)
ds � 0,

lim inf
t→+∞

α∗t∫
t

sn−1(pi(s)− p̃(s)
)
ds � 0,

lim inf
t→+∞

1

t

t∫
sn
(
pi(s) − p̃(s)

)
ds � 0 (i = 1, . . . ,m),
0
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whereα∗ = min{αi : i = 1, . . . ,m}. Let, moreover, for evenn,

lim sup
t→+∞

(
α∗t

+∞∫
α∗t

sn−2p̃(s) ds +
α∗t∫
t

sn−1p̃(s) ds + 1

t

t∫
0

snp̃(s) ds

)

>
(n − 1)!

m
,

while for oddn,

lim sup
t→+∞

(
α∗t

+∞∫
α∗t

sn−2p̃(s) ds +
α∗t∫
t

sn−1p̃(s) ds + 1

t

t∫
0

snp̃(s) ds

)

> max

{
2(n− 2)!∑m

i=1αi

,
(n− 1)!∑m
i=1α

n−2
i

}
.

Then Eq.(1.4) has PropertyA.

This corollary can be proved similarly to Corollary 6.1′.
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