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ABSTRACT. Generalizing the well-known 1. Vekua's integr al representation of holomor phic functions, we
solve the Riemann-Hilbert-Poincar é problem in the classes of functions whose mth derivative isrepresentable
by a Cauchy type integral with a density from a weighted L ebesgue space with a variable exponent in simply
connected domains with piecewise-smooth boundaries. © 2009 Bull. Georg. Natl. Acad. Sci.
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The Riemann-Hilbert-Poincaré problem (see, e.g., [1, p. 239])

R{i[aka)@(”(m wt,r)dk)(r)ds]] ) ®

k=0

embraces many boundary value problems of function theory. |. Vekua was the first mathematician who investigated
this problem [2, 3]. For its investigation he used new origina representations of holomorphic functions which N.
Muskhelishvili subsequently called I. Vekua's representations. These representations were later generalized in [4, 5].

At the present time various boundary value problems are intensively studied in formulations which take into
account the local properties of the integrability of given functions. These conditions are described by variable
Lebesgue or variable Sobolev spaces [6-12] and other works. The study of these spaces was stimulated by various
problems of nonlinear elasticity, fluid mechanics, calculus of variations and differential egquations with nonstandard
growth conditions.

In [11-12], the particular cases of problem [1] are investigated in the framework of Lebesgue spaces with a
variable exponent. In the present paper we propose a generalization of the results of [2-5] in two directions. Firstly,
the set of domains in which problem (1) is investigated has been essentially widened. Secondly, as a class of sought

functions we consider the KS(')(F;a)) -set of functions whose mth derivative is representable by a Cauchy type
integral with a density from the Lebesgue space Lp(')(l"; a)) with a variable exponent (this set is essentialy wider

than the classes of functions considered in [2-5]). For this purpose, in the first place we establish I. Vekua's
representations in a general situation, namely, for functions whose mth derivative is a Cauchy type integral with a

density from the space Lp(')(l“; a)) in domains with piecewise smooth boundaries.

Following [2] (see also [1: 115-116] we come to the definite Riemann-Hilbert problem in the class KS(')(F; a)) ,

having an arbitrary integer index (and not a non-negative one as in [2-5]). We have succeeded in showing that in the
case of a negative index the conditions of solvahility are fulfilled. This has enabled us, using the results from [9] and
[12], to justify I. Vekua's representations under the considered assumptions. Having these representations, it becomes
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possible to formulate statements concerning problem (1) that are analogous to the results in [1]-[4]. It should be
emphasized that the analogy concerns only the outward wording of the formulations. Relations between the
considered values are similar to the previous ones, but they essentially depend on the geometry of a boundary, on the
discontinuity points of afunction a,, (t) and on the values of afunction p(t) at these points.

1°. Let t=t(s), 0 < s < |, be the equation of a simple rectifiable curve I' with respect to the arc coordinate.
Furthermore, let p be a positive measurable function on T", and » be an almost everywhere non-negative

measurable function. We denote by LPY(I; ) the set of measurable functions f on T for which | (t(s))w(t(s)) Plts)

is summable.
Definition 1. We say that a function p belongs to the class P(F) if there exist positive constants A and ¢ such
that for every t;, t, eI,

Iplty)- plty) < —2—— @
||n|t1 1)

and p_=min p(t)>1.
te
The set of functions p for which p_>1 and which satisfy (2) for ¢ =0 isdenoted by P(T").

We denote by C3(A,...,A; vy,...,v;) the set of simple closed piecewise smooth curves T’ having angular

points A,...,A whose angle values with respect to the domain D with boundary I' are equal to zv,, k =1i,
0<p, 2.

The set of piecewise Lyapunov curves I contained in that classis denoted by C],5L(A1,...,A; ul,...,ui).
Definition 2. Let m> 0 be an integer and let KS%(F;a)) be the set of holomorphic functions @ in D for which
2™(z) (CD(O)(Z)E(D(Z)) is representable in the form

(D(m)(z):%].%, zeD, ¢pe Lp(‘)(l“;a)).
r

2°. Theorem 1. Let:
(i) TeCL, (A.....A; vy,....), O<p, <2 and peP(T) or TeCE(A,....,A; vy,....v), O<p, <2,and
peP(r);

. v a 1
ii a)t=||t—t o t.ell, - <ay <
() () k=1| k| k p(tk) k

1
p(t
(iif) z=z(w) be a conformal mapping of V = {WZ |V\,1 <1} onto D, , and w=w(2) be the inverse transformation;

a =WA), k=1i, r,=wt), k=Lo, andput wy=a =75,....W, =8, =7,,; W, =81,.., W, p =8 p;

Worpit = Tt Wogpim = Tpam s

v —1 —
=7\ - k: ] I = y
U+ (Wk)+Uk 1 Lu, I(z)=p(zr))
. v, -1 _
O, =4k < - k= ,
(iv) ok I(Wk)‘H)k 1 u+Lu+p

v) @ ek (To).
Then if

be e 10)- 19 @

(it is assumed that {a} denotes the fractional part of the number a) and the origin liesin D, , then there exist a real
function 4 Lp(')(r;w) and a real constant d such that
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cD(z):'[ﬂ(t)dSHd for m=0 4
r 1—E
t
and
m-1
(2)= y(t{l—?zj |n[1-?zjds+j plt)ds+id  for m>1. 5)
r r

This theorem is a generalization of |. Vekua's theorem proved by him in the case where T" is a Lyapunov curve
and ®™ belongs to the Holder class in D, [2]. When o™ ¢ KP ([;w), p=const>1, and T is a Lyapunov

curve, the theorem was established by B. Khvedelidze. When o =1, K. Aptsiauri showed the validity of
representations (4), (5) for the definite subclass of smooth curves[5].

3% Let: @ T'eCh (A.... A v,..p), 0<p<2; b) aft)e LP(Mw), k=0,m-1; ¢) a,(t) be

piecewi se-continuous; d) the operators

Hk¢:Ihk(t,r)¢(T)dr, tel’,

r

be compact in LP(I; o).

Let us consider the problem: find a function @ e Kg(‘) (F;w) which satisfies condition (1) amost everywhere

onT.
By virtue of representations (4)-(5) the investigation of this problem reduces to the investigation, in the class

LPY(T; @), of the equation

Nu= Aol o)+ 2 20 ) T,

Ao t-tg
where

Adlto)=2 (1) (m-1) A ™ an(to )+ (0“8 Mhanlo)], k0

fto)=flty)-dolty), olty)= R{iao(to)ﬂj.h(to,t)dt].
r
Theorem 2. Let the conditions of Theorem 1 be fulfilled. Then for problem (1) to be solvable in the class

K8Y.(T; @) it is necessary that for some real d the function f (t,) should satisfy the conditions

[ fto)a(soddso =0, k=1n’,

r
where g;,...,0,y are linearly independent solutions from the class Lp'(‘)(l";afl) of the equation N'g=0, where
N’ isthe adjoint operator to the operator N ([1: 164).

In order that the problem be solvable for any right-hand part of f it is necessary and sufficient that n'=0 or
n’'=1, and in the latter case the solution g of the equation N'g =0 must satisfy the condition

(g,o):jg(to)a(to)dso #0.
r
In both cases the homogeneous problem has ae+1 linearly independent solutions (where ee> -1).

Here the integer number eeis defined by means of I', p, @ and the jumps of the function a,, (see [9]; [12,
Subsect.7]).

If the conditions of Theorem 2 are not observed (for example, when se<—1), in that case: if for any k =1n" we
have (a,gk)zo, then the homogeneous problem has se+n’ linearly independent solutions, and if among the
numbers (o, g ) thereis at least one number different from zero, then it has se+n’ + 1 solutions.

Bull. Georg. Natl. Acad. Sci., vol. 3, no. 1, 2009



28 Vakhtang Kokilashvili

, Vakhtang Paatashvili

4° Let

T(z)zjg(t)gl*(t, z)}ds, zeD_,
where

r

Q*(ty,2)= Zm:{ak (to )N (to, z)+_[ hy (to, TN (¢, Z)ds} ,
N, (to,2)= (1) M(l_t_qx

Z z

x Inl—t—°+ 1 4t 1 . [=L,m-1,
z) m-1 m-|

No(to. 2)= (1—t—§jm1 In(l—t—sj +1, Non(to, 2)= (3)"(m-1)

Zm+l(z_to) ’

Then the equation N'g=0 is equivaent to the problem Rey~ =0 in the class K,’D’pm(l“

ae+1 linearly independent solutions y/o(z),..., v {2), where
= N{Ak eU{tj }: p'(A)< uk}+
. P(A) 2p'(A)
' N{Ak <Ult} 1o (A) " "1 ap(A, )}

(see[12], Subsect. 7). Here N(E) is the number of elements of the set E.
Let us assume

ﬁ(tm 2)=Q"(to, 2)- ¥o(2) -+ - Y(2),
Qlty, 2)=Qty, 2)— i IMQty, ).

;). This problem has

We prove that under the considered assumptions the function Q(to, z) plays the role of the kernel for problem
(1) (for details about the kernel see [2] and [1: 241-243]). Under the classica assumptions it is the function

Q*(ty,2)-iImQ*(ty,) that isthe kernel ([1: 242]).

5°. In particular cases we obtain more complete information, for example, for the well-known problems of
Poincaré and Neumann [1: 243, 247] considered in domains with piecewise-smooth boundaries.
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