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ABSTRACT. Generalizing the well-known I. Vekua’s integral representation of holomorphic functions, we
solve the Riemann-Hilbert-Poincaré problem in the classes of functions whose mth derivative is representable
by a Cauchy type integral with a density from a weighted Lebesgue space with a variable exponent in simply
connected domains with piecewise-smooth boundaries. © 2009 Bull. Georg. Natl. Acad. Sci.
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The Riemann-Hilbert-Poincaré problem (see, e.g., [1, p. 239]) 
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embraces many boundary value problems of function theory. I. Vekua was the first  mathematician who investigated 
this problem [2, 3]. For its investigation he used new original representations of holomorphic functions which N.
Muskhelishvili subsequently called I. Vekua's representations. These representations were later generalized in [4, 5].

At the present time various boundary value problems are intensively studied in formulations which take into
account the local properties of the integrability of given functions. These conditions are described by variable
Lebesgue or variable Sobolev spaces [6-12] and other works. The study of these spaces was stimulated by various 
problems of nonlinear elasticity, fluid mechanics, calculus of variations and differential equations with nonstandard
growth conditions. 

In [11-12], the particular cases of problem [1] are investigated in the framework of Lebesgue spaces with a
variable exponent.  In the present paper we propose a generalization of the results of [2-5] in two directions. Firstly, 
the set of domains in which problem (1) is investigated has been essentially widened. Secondly, as a class of sought
functions we consider the ( )( )ω;Γ⋅p

DK -set of functions whose mth derivative is representable by a Cauchy type 

integral with a density from the Lebesgue space ( ) ( )ω;Γ⋅pL  with a variable exponent (this set is essentially wider 

than the classes of functions considered in [2-5]). For this purpose, in the first place we establish I. Vekua's
representations in a general situation, namely, for functions whose mth derivative is a Cauchy type integral with a 
density from the space ( )( )ω;Γ⋅pL  in domains with piecewise smooth boundaries. 

Following [2] (see also [1: 115-116] we come to the definite Riemann-Hilbert problem in the class ( )( )ω;Γ⋅p
DK , 

having an arbitrary integer index (and not a non-negative one as in [2-5]). We have succeeded in showing that in the 
case of a negative index the conditions of solvability are fulfilled. This has enabled us, using the results from [9] and 
[12], to justify I. Vekua's representations under the considered assumptions. Having these representations, it becomes
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possible to formulate statements concerning problem (1) that are analogous to the results in [1]-[4]. It should be 
emphasized that the analogy concerns only the outward wording of the formulations. Relations between the
considered values are similar to the previous ones, but they essentially depend on the geometry of a boundary, on the
discontinuity points of a function ( )tam  and on the values of a function p(t) at these points. 

10. Let t=t(s), 0 ≤ s ≤ l, be the equation of a simple rectifiable curve Γ  with respect to the arc coordinate. 
Furthermore, let p be a positive measurable function on Γ , and ω  be an almost everywhere non-negative 

measurable function. We denote by ( )( )ω;Γ⋅pL  the set of measurable functions f on Γ  for which ( )( ) ( )( ) ( )( )stpststf ω

is summable. 
Definition 1. We say that a function p belongs to the class ( )ΓP~  if there exist positive constants A and ε  such 

that for every Γ∈21   , tt , 
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The set of functions p for which p_>1 and which satisfy (2) for 0=ε  is denoted by ( )ΓP . 

We denote by ( )iiD AAC υυ ,,   ;,, 11
1 KK  the set of simple closed piecewise smooth curves Γ  having angular 

points iAA ,,1 K  whose angle values with respect to the domain D with boundary Γ  are equal to kπυ , ik ,1= , 
20 ≤≤ kυ . 

The set of piecewise Lyapunov curves Γ  contained in that class is denoted by ( )ii
L

D AAC υυ ,,   ;,, 11
,1 KK . 

Definition 2. Let 0≥m  be an integer and let ( ) ( )ω;, Γ⋅p
mDK  be the set of holomorphic functions Φ  in D for which 

( )( )zmΦ  ( )( ) ( )( )zz Φ≡Φ 0  is representable in the form  
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(iii) z=z(w) be a conformal mapping of { }1   : <= wwV  onto +D , and w=w(z) be the inverse transformation; 

( )kk Awa = ,  ik ,1= ,  ( )kk tw=τ ,  υ,1=k ,  and put μμμ ττ ==== awaw ,,111 K ;  pp awaw ++++ == μμμμ ,,11 K ; 

== +++++ Mpp ww μμμ τ ,,11 K M+μτ ; 

(iv) 

( ) ( ) ( )( )

( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

++++=

++=−+
−

==−+
−

+

=

− ;,1                                 ,

,,1                   ,11

,     ,,1       ,11

Mppk

pk
wl

zplk
wl

pk

k
k

k

k
k

k
kk

k

μμα

μμυ
υ

ττμυυυα

δ  

(v) ( ) ( )ω;, Γ∈Φ ⋅
+

p
mDK . 

Then if 

 { } ( ) ,1

k
k wl ′
≠δ     ( ) ( )

( ) 1−
=′

τ
ττ

l
ll   (3)

(it is assumed that {a} denotes the fractional part of the number a) and the origin lies in +D , then there exist a real 

function ( )( )ωμ ;Γ∈ ⋅pL  and a real constant d such that 
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     for  1≥m . (5)

This theorem is a generalization of I. Vekua's theorem proved by him in the case where Γ  is a Lyapunov curve 
and ( )mΦ  belongs to the Hölder class in +D  [2]. When ( )mΦ ( )ω;Γ∈

+

p
DK , constp = >1, and Γ  is a Lyapunov 

curve, the theorem was established by B. Khvedelidze. When 1=ω , K. Aptsiauri showed the validity of 
representations (4), (5) for the definite subclass of smooth curves [5]. 

30. Let: a) ( )iiD AAC υυ ,,   ;,, 11
1 KK
+

∈Γ ,  20 ≤< kυ ; b) ( ) ( ) ( )ω;Γ∈ ⋅p
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be compact in ( ) ( )ω;Γ⋅pL . 

Let us consider the problem: find a function Φ ( ) ( )ω;
,
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p
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K  which satisfies condition (1) almost everywhere 

on Γ . 
By virtue of representations (4)-(5) the investigation of this problem reduces to the investigation, in the class

( ) ( )ω;Γ⋅pL , of the equation 
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Theorem 2. Let the conditions of Theorem 1 be fulfilled. Then for problem (1) to be solvable in the class
( ) ( )ω;, Γ⋅
+

p
mDK  it is necessary that for some real d the function ( )0

~
tf  should satisfy the conditions 

( ) ( ) 0
~

000 =∫
Γ

dssgtf k , nk ′= ,1 , 

where ngg ′,,1 K  are linearly independent solutions from the class ( ) ( )1; −⋅′ Γ ωpL  of the equation 0=′gN , where

N ′  is the adjoint operator to the operator N ([1: 164). 
In order that the problem be solvable for any right-hand part of f it is necessary and sufficient that 0=′n  or 
1=′n , and in the latter case the solution g of the equation 0=′gN  must satisfy the condition 

( ) ( ) ( ) 0, 000 ≠= ∫
Γ

dsttgg σσ . 

In both cases the homogeneous problem has æ 1+  linearly independent solutions (where æ 1−≥ ). 
Here the integer number æ is defined by means of ω  ,  , pΓ  and the jumps of the function ma  (see [9]; [12, 

Subsect.7]). 
If the conditions of Theorem 2 are not observed (for example, when æ 1−< ), in that case: if for any nk ′= ,1  we 

have ( ) 0, =kgσ , then the homogeneous problem has æ n′+  linearly independent solutions, and if among the 
numbers ( )kg,σ  there is at least one number different from zero, then it has æ 1+′+n  solutions. 
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Then the equation 0=′gN  is equivalent to the problem Re 0=−ψ  in the class ( ) ( )ω;, Γ⋅′
−

p
mDK . This problem has 

æ 1+  linearly independent solutions ( ) ,,0 Kzψ ψ æ(z), where 
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(see [12], Subsect. 7). Here N(E) is the number of elements of the set E. 
Let us assume 

( ) ( ) ( ) −−Ψ−Ω=Ω ∗ Lzztzt 000 ,,~
Ψæ(z), 

( ) ( ) ( )∞Ω−Ω=Ω ,~Im,~, 000 tiztzt . 

We prove that under the considered assumptions the function ( )zt ,0Ω  plays the role of the kernel for problem 
(1) (for details about the kernel see [2] and [1: 241-243]). Under the classical assumptions it is the function 

( ) ( )∞Ω−Ω ∗∗ ,Im, 00 tizt   that is the kernel ([1: 242]). 
50. In particular cases we obtain more complete information, for example, for the well-known problems of 

Poincaré and Neumann [1: 243, 247] considered in domains with piecewise-smooth boundaries. 
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maTematika

riman-hilbert-puankares amocanisa da analizur
funqciaTa i. vekuaseul warmodgenaTa Sesaxeb
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naSromSi ganzogadebulia analizur funqciaTa i. vekuaseuli warmodgena da amoxsnilia riman-
hilbert-puankares sasazRvro amocana uban-uban gluvi wirebiT SemosazRvruli caladbmuli
areebis SemTxvevaSi im funqciaTa klasSi, romelTa m rigis warmoebuli warmoidgineba koSis tipis
integraliT simkvriviT cvladmaCvenebliani lebegis sivrcidan.

REFERENCES

1. N. Muskhelishvili (1968), Singulyarnye integral’nye uravneniya, izd.3, M. (in Russian).
2. I.N. Vekua (1941), Soobshch. Akad. Nauk Gruz. SSR, 2, 6: 701-706 (in Russian).
3. I.N. Vekua (1942), Tr. Tbilissk. Mat. Inst. Razmadze, 11: 109-139 (in Russian).
4. B.V. Khvedelidze (1956), Tr. Tbilissk. Mat. Inst. Razmadze, 23: 3-158 (in Russian).
5. K. Aptsiauri (1997), Proc. A. Razmadze Math. Inst. 114: 3-26.
6. O. Kováčik and J. Rakosnik (1991), Czechoslovak Math. J., 41(116): 592-618.
7. V. Kokilashvili and S. Samko (2003), Proc. A. Razmadze Math. Inst., 131: 61-78.
8. L. Diening and M. Ružika (2003), Z. Reine Angew. Math., 563: 197-220.
9. V. Kokilashvili, V. Paatashvili and S. Samko (2005), Bound. Value Probl., 1: 43-71.
10. A.Yu. Karlovich (2006), Operator Theory. Advances and Applications, 171: 171-188.
11. V. Kokilashvili and V. Paatashvili (2007), Georgian Math. J., 14,  2: 289-299.
12. V. Kokilashvili and V. Paatashvili (2008), Complex Analysis and Appl. (Online First © 2008, Birkhäuser Verlag: Basel/

Switzerland DOI 10.1007/s 11785-008-0067-9).

Received July, 2008


