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THE RIEMANN BOUNDARY VALUE PROBLEM IN
VARIABLE EXPONENT SMIRNOV CLASS OF
GENERALIZED ANALYTIC FUNCTIONS

V. KOKILASHVILI AND V. PAATASHVILI

Abstract. The present paper studies the Riemann boundary
value problem for generalized analytic in I. Vekua sense func-
tions. The problem is formulated as follows: on the plane,
cut along a simple, closed, rectifiable curve I', find the general-
ized analytic function W (z) which in the domains G* and G,
bounded by the curve I'; belongs to the Smirnov classes with a
variable exponent and W= (t) its boundary values almost for all
t € I satisfy the condition

W (t) = a(t)W ™ (1) + b(t),
where a(t) and b(t) are the given on I' functions.

Various conditions of solvability are revealed and solutions
(if any) are constructed.
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1. INTRODUCTION

In the boundary value problems appearing in various fields of mathemat-
ics it is frequently required of the solution that unknown functions would
belong to a certain Lebesque class (see, e.g., [2], [6], [7], [26], etc.)

Recently, the problems of pseudo-differential equations are being inten-
sively studied in nonstandard Banach functional spaces, in particular, in the
framework of variable exponent Lebesgue spaces. Such a statement of the
problem is motivated by the fact that the classes of functions in definition
of which the integration exponent is, generally speaking, a function, more
precisely take into account local singularities of the given functions. Such
spaces are natural ones in which we seek for solutions.

There is a vast literature devoted to the investigation of variable expo-
nent Lebesgue spaces. It suffices to mention monographs [1], [3], [12] and
references therein.

The works [3], [9], [11], [12], [22], [24], [25], etc. dealing with the boundary
value problems for analytic and harmonic functions and related singular
integral equations have been studied in the framework of variable exponent
Lebesgue spaces.

In these problems regarding p(t) it is more frequently assumed that p(t) €
P(T), i.e., the conditions:

(a) there exists the number M such that for any ¢, to € I we have

p(t1) = p(ta)| < M|In [ty — tof| 7 (1)
(b)
minp(t) =p > 1, (2)

are fulfilled.

Further, the generalized Cauchy type integral and the generalized sin-
gular integral have been investigated in [13], and Smirnov classes with a
variable exponent p(t) for generalized analytic functions have been intro-
duced and studied in [21]. The results obtained in these works give every
reason to investigate boundary value problems for generalized analytic func-
tions when boundary values of unknown functions and those prescribed in
the boundary conditions belong to LP®)(T).

The Riemann problem for continuous statement has been considered in
[17]. Smirnov classes for a constant p are studied in [18]. A number of
problems in these classes have been investigeted in [14], [5], [7], [8], [15],
[16], [18], [19].

In the present paper we investigate the Riemann problem which is for-
mulated as follows.

Let T" be a simple, closed, rectifiable curve dividing the plane C into two
domains G and G~. Find such a generalized analytic in I. Vekua sense
function W which
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1) is a regular solution of the class U%2(A, B,C) s > 2 of equation;
LW =W + A(2)W(z) + B(2)W (z) = 0; (3)

2) belongs to the class KP()(A; B;T'), i.e., is representable by the gener-
alized Cauchy type integral

W(z) = (Krg)(z) =

= %/Ql(z,r)go(r)dT — Qy(z,7)@(T)dT, e LPO(D), 2€l;  (4)
r

3) the boundary functions W*(¢) and W~ (¢) almost everywhere on I'
satisfy the condition

W) = a(t)W(t) + b(t), (5)

where b(t) € LPM(T).

Regarding I, p(t) and a(t), it is assumed that

(a) I' is a curve of the class I* containing, in particular, piece-wise smooth
and Radon’s curves without external peaks;

(b) p(t) is the function of the class P(T);

(¢) a(t) belongs to the A(p(t),T') class of measurable functions on I" which
is a natural generalization of I. Simonenko’s class (see [26]).

Under the adopted assumptions, the generalized Cauchy type integrals
(2) on the domains G and G~ belong to the Smirnov classes EPC)(A; B; G)
and EPC)(A; B; G™), respectively [21].

A set of generalized analytic functions in the plane, cut along the closed
curve I' such that in the domains G and G~ bounded by I they belong to
the classes EP()(A; B; G*), we denote by PEP()(A; B;T"). Such functions in
the conditions (1), (a) and (b) are representable by the generalized Cauchy
type integral in the domains G+ and G, and therefore are representable by
the Cauchy integral with density from LP()(T') [21]. By virtue of the above-
said, a picture of solvability of the Riemann problem in classes K?)(A; B;T)
and PEPC)(A; B;T) is the same.

2. PRELIMINARIES

2.1. The function of the class L*”(G). Let G be the domain in the
plane C, and f(z) be the function of the class L*(G), s > 0. We continue
it on C\G by zero and for the obtained function we preserve the notation

f(2). Assume f,(z) = z”f(%)

A set of functions f for which
feLC), fu(z)eL*U), U={z:]z] <1}. (6)
we denote by L% (C) [27, p. 29].
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2.2. Regular solutions of equation (3). We say that the function W =
W(z) is a regular solution in G of equation (3), if every point zp € G
possesses a neighbourhood Gy in which W has a generalized in Sobolev
sense derivative OzW = %(%—VZ +i%—V;>, (z = x +1y) and almost everywhere
in Go — LW = 0.
A set of regular solutions of equation (3), when A, B € L*?(G), we denote
by U*?(A; B; G).
For s > 2, every function W € U*?2(A; B; G) is representable in the form
W=twepor. ww() = [[(4+B5) S0 c=grim ()
/s WIi¢—=z

where @y is holomorphic in G, wy belongs to the Holder class Hs—2 (C),
and wyy (00) = 0 [27, pp. 160-162]. ‘

The function @y is called an analytic divisor and wyy is a logarithmic
difference of the generalized analytic function W (z).

2.3. The principal kernels. Let A, B € L*%(G), s > 2, ® be an ana-
lytic function in G and ¢ be a fixed point from C. It is proved in [27]
(p. 175-7) that there exists a regular solution W (z;t) of equation (3) such
that: 1) Wy = V;((ZZ’; ) is continuous in G and continuously extendable on C;
2) Wo(z) #0; 3) W(t) = 1; 4) Wy(z) is holomorphic outside of G.

The operator which assigns to each pair ® and ¢ the function W (z;t) we
denote by R (®(2)).

If 1(2) = 5055, P2(2) = 55y and X;(2,6) = R{P(®4(2)), j = 1,2

are regular solutions of equation (3) in C{¢}, then the functions

Ql(z,t) = Xl(Z,t) +’iX2(Z,t), QQ(Z,t) = Xl(Z,t) — ZXQ(Z,t)

are called the principal kernels of the class U*?(A; B; G).

2.4. Generalized polynomials. A generalized polynomial of order n of
the class U*2(A; B;C) is called that regular solution of equation (3) whose
analytic divisor is a classical polynomial of order n [27, p. 167].

Suppose

—A-B k _ p—A-B; k
Vo, = RSP (), vy (2) = RSP (i2Y).

2.5. The space LP()(T). For the measurable on T' function f(t) we put

b
o)) |p(E(@))
£l = inffr > 0+ [ LA g5 <,
0
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where t = t(0), 0 < o < is the equation of the curve I" with respect to the
arc abscissa 0. And let

L) = {f + £l < o0}
For p € P(I'), the set LP(?)(I") with the norm ||-||,,(.) is the Banach space.

3. THE VARIABLE EXPONENT SMIRNOV CLASS

3.1. Definition. We say that the generalized analytic function W belongs
to the class EP()(A; B;G), if W € U*%(A; B;G), s > 2 and

oitzgl/IW(Z(pew))lpw)Z’(pew)d9< oo, p(0) =p(=(e”)),  (8)
0

where 2z = z(pe?) is the comformal mapping of U onto G (for details on
those classes, see [21]).

If W e EPO(A; B;G), p € P(T') then almost for all ¢ € T, there exists
an angular boundary value W7 (¢), and the function ¢ — W™ (t) belongs to
LPO(T).

It follows from the representation (7) that the belonging of W to the
class EP)(A; B; G) is equivalent to the fact that the function ®y belongs
to the class E*()(@), i.e.,

27
sup [ [ (2(pe") PO (o) d6 < oc.
0

If G is an unbounded domain and there is the polynomial Q(z) such that
[®(2) — Q(2)] € E*V(@), we write & € EPV(G).

3.2. Classes of functions representable by the generalized Cauchy
type integral. Let I' be a simple rectifiable curve bounding the domains
GT and G, Q1 (2,t) and let Q5(z, ) be the kernels of the class U*?(A; B; C),
f € L(T'). The function

(Ref(e) = [ (e 0f@dt - 0a 00, 2T
r
is called the generalized Cauchy type integral [27, p. 198].
This function is a regular solution of (3) of the class U*2(4; B;C).
Assume
EPO(A; BiT) = {W : W(2) = (Kr f)(2), fe L’V (D)};
KPO(T) = KP1(0;0;T).
KPM(A; B;T) = {W : 3 polynomial p,, : W(z) = Wy(z) + p,, (2), Wy €
KP®(A; B;T)}.
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4. CLASSES OF CURVES

4.1. Lavrent’ev’s curves (of the class A). The curve I' belongs to the
class A, if sup,, ;e s(t1,t2)[[t1 — t2| 7!] < oo, where s(t1,2) is the length
of the least of two arcs lying on I' and joining ¢; and t5.

4.2. The class Iy. I is a set of curves I' with the equation ¢t = t(o),
0 < o < (with respect to the arc abscissa) for which there exists a smooth
curve with the equation p = (o), 0 < o < such that

(o)

do < 0.
M(UO)

l
#(0) "
‘éiii‘;‘?o/ \t(@ —t(o0)  plo)

4.3. The class I'*. The simple curve I" belongs to the class I*, if I' € A
and it can be represented as a finite union of arcs of the class Iy, having
tangents at the ends.

4.4. Examples. I* contains piecewis-smooth and piecewise-Radonean
curves without cusps (see [4], pp. 23-30, [1], pp. 146-7).

5. THE CLASS OF FUNCTIONS A(p(¢),T").

A measurable function a(t) belongs to the class A(p(¢),T), if
1) 0 < m = essinfla(t)| < esssup|a(t)| = M < oo;
tel tel

2) for every point 7 € I'; there exists the arc I'; C I' containing 7 on
which almost all values a(t) lie inside of the angle with vertex at the origin,
of size less than

ar = 27| sup max(p(t), q(t))| T = A
! tel', ’ ’ p(r) -1
For the function a(t) from A(p(¢),T), following [26], we define a branch of
the function arga(t). We select a finite covering of T" by the arcs T'y, =T, .
Let ¢ be the point on I';; at which there exists the tangent and the point
a(0) lies inside of the angle of size o, . We fix (arga(c))~ € [0,27). Moving
along 7, we define the value arga(t) so as for ¢, t9, lying on one of the arcs
I, to have |arga(t;) —arga(tz)| < a,,. Going around I', the point ¢ falls
into 'y, with a new value (arg(c))™.
The number .

%= 5| (arga(e)) " — (arga(e))] ©)
is the integer, independent of the covering of I' by the arcs I'y, and the
choice of ¢. We call this number an index of the function a(¢) and write
» = ind a(t).

For p = const, the class A(p,T") coincides with the known I. Simonenko’s
class [26].
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6. STATEMENT OF THE RIEMANN PROBLEM.

When I is the Carleson curve bounding the domains G™ and G—, and
A,BeL**(G*), s>2, peP(l), p=supp(t),
tel

—/ p S =/

-_r 2 10
P=s—1 5>7 (10)
then as is proved in [21], the equality

Kp(')(A;B;G+) :Ep(‘)(A;B;G+) (11)

holds.

In particular, inclusion (11) holds if

A, B e L=(GY), peP(). (12)

When
Lerl*, peP(), acAlp(t),T), be LPO(I) (13)

problem (5) in the class K?(Y)(T") has been investigated in [22].

Since when solving problem (5) in the class K?®)(A; B;T), of impor-
tance for us is equality (11) and knowledge of a picture of its solvability in
KP®(A; B;T), we will assume that the condition

Iel*, A BecLG), s>2, pecP®I), >7, (14)

N »

or
rel*, A, BeL>(G), peP{T), (15)
is fulfilled.

In the first case, the choice for A, B is wide, but the set of admissible
p(t) is bounded by the condition 5 > p’. In the second case, the set of A
and B contracts, but now p(t) is arbitrary from P(T").

Thus, let condition (14) or (15) be fulfilled and we are required to find a
generalized analytic function W which is a regular solution of equation (3),
representable by the generalized Cauchy type integral with density LP()(I")
and almost everywhere on I' equality (5) is valid.

When we say that W is a regular solution of problem (5), we regard that
all the conditions adopted in this section for W are satisfied.

7. SOLUTION OF THE PROBLEM
7.1. One necessary condition of solvability. If
rer*, acA(p@®),I) peP). (16)
then the function

X(2) exph(z), ze€GT,
Z) =
(z—z20) "exph(z), 20€GT, z€G~
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satisfies the following conditions: there exists § > 0 such that

X(z) € BP0 (GH), (18)
[X(2)] " € EYOT(GH) (19)
a(t) = XT ()X~ ()] (20)
(see [22]).
We write condition (5) in the form
WHXH) T =W (X)) =b(XH), (21)
and assume Vw0t .

Lemma 1. Let
_ X
LW =W + AW + BW, L1V=65V+AV+B§V.

If LW =0, then L1V = 0, where V is given by equality (22). Conversely,
if WV =0 and W =V X, then LW = 0.

Proof. Since X (z) and (X (z))~! are the functions, analytic in G, it can be
easily verified that

1
LV = LJV (&W+AW+BW) < LW

From the above equality follow two statements of the lemma. O
Corollary 1. If W € US2(A; B;G), s > 2 then V € US2(4; BX; G).

Corollary 2. If V is the function given by equality (22), then

V =dyexpuw,, (23)
where o
@Vfingvfww (24)
Proof. We have
W oy
V= y = TGXpra
_ W dédn _// XV dédn
“W‘//(A+BW)<—Z_ (A+BXV>< -
G
d&dn
A+ B—— =w,; 2
/ )t = s (25)

(We have used here the equality W = VX and Corollary 1).
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Thus,
Pw
V=%%yexpw, = ~ XPwy
and hence,
oy = 2w (26)
V=
Equalities (25) and (26) are just the provable by us equalities (24). O

Since @y, € EPO(G) and + € B+ (GE) (see (19)), it follows from
(26) that @y € E'™¢(G*), e > 0 and hence V € E'*¢ (A;B%;G*). Be-

havior of the function ¢, in the domain G~ depends on %
If  =inda > 0, then it is easily seen from (17) that lim, . V(z) =0
for 2 =0 and lim,_, o, V(2) = const for s = 1.
For ¢ > 1, the function V at the point z = oo admits the pole of order
s—1. Therefore there exist ® € E'7¢(G~), ¢ > 0 and the polynomial Q,,_;

of order s — 1 such that

Dy =B+ Q.
By virtue of (21)—(22), we have
b
+ -_
VvVt -V- = X7

Since ®, and ®y belong to E*(GF), then W belongs to the class
e(A-RX.
Bt (A,By,Gi)
Let Qq,1(2,t) and €Q21(2,t) be the principal kernels of the class
Us? (A;B%;Gi) s > 2. Then
W(z)
X(2)

— V(2) = Krs (%) Vil (2),

where

fgnl(%) _ F/Ql,l(z,t) ;f()t) — Qy1(2,1) (;Y()t))dt

where 17%_1(,2) is the generalized polynomial of order » — 1. This implies
that one possible solution of problem (5) will be

~

W(z) = X (2)Wy(2) + X (2)Vy-1(2), (27)
where
Wb(z) = I?F,l (%)
Since
b

=5 € L"), n>0
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we have
b

X+) — X®w, expwy, € E" (A;B?Gi). (28)

W=X (Kp )
Next,

0 = J X (), W5 = A b))

This implies that for the inclusion W;, € KP()(A; B;T) it is necessary
that

(TD)(1) = X+ (150 (55 ) (1) € L), (30)
Conversely, if (30) holds, then W € E7 (A;B%;Gi) and (W,)* €
LPM(T). According to the generalized Smirnov’s theorem (see [17]), we
will have W, € EP(®)(A; B; G), where p(t) = max(p(t),n) = p(1), i.e.,
Wy (z) € EPM(A; B; GF). (31)
Thus the following lemma is valid.

Lemma 2. For problem (5) to be solvable for s > 0, it is necerssary and
sufficient that inclusions (30) be fulfilled.

Let condition (30) be fulfilled. Find out under what additional conditions
W, is a particular solution of problem (5) and construct its general solution.
We consider separately the cases s > 0 and » < 0.

7.2. The case » > 0. By virtue of (31),
Wi(2)=Kr (W, =W,") = (Kraf)(2), f(t)= (W, (t)-W, (1)) € L"D(T).

Since I' € I'*; p€ H(T') and W;(c0) =0, we have W, (2) € KPC (A BX )
(see Corollary 1).

Therefore (f(plf)(z) e gr0) (A; B%; Gi), and hence, W}, is the solution
of problem (5). Now, to find its general solution, we have to solve the
problem

V-V =0 (32)
in the class of fungtions whose analytic divisor admits the representation
P, =D, +Q,,_1, € EPO(GF).

It follows from (32) that &} — &, = 0, and since W;, € K?() (A, BX, r)

therefore ®, = 0. Consequently, the solutions of (32) are the functions V/
for which analytic divisor is the polynomial @Q,,_1.

We denote such a function by V,,_;. Then if condition (30) is fulfilled, a
general solution of the problem is

W) = X()Era (o ) () + X (Vo (2) (33)
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7.3. The case s < 0. In this case the only one possible solution of the
problem may be only the function Wj(2); however, for this function to be
of the class EP(')(A; B;G7), it is necessary and sufficient that the function

Kr1 (X—}'Jr) (z) at the point z = co have zero of order |s|. For this to be so,

it is necessary and sufficient that

Im/uk(t)b(t)dtzo, F=0,1,...,2(1+|%) -3, (34)
I

where uy, are linearly independent solutions of the homogeneous problem

1
)= —=u (¢ 35
WD) = (0 (3)
(see [4], p. 53).
Let us show that uy, belongs to B4 (G*F).
Since ﬁ € A(q(t),T) and indﬁ = — > 0, according to the result
obtained in item 7.2, the solutions of problem (35) are given by the equality
1 _
U(Z) = X(Z)ul%‘_l’

where 2|,,_; is the generalized polynomial of order || — 1.

Consequently, the analytic divisor of the generalized analytic function
u(z) is Q‘;}‘%;)(z)

By virtue of the fact that we have inclusion (19) and ®,,(c0) = 0, we can
conclude that ®y () € B4 (GF), and hence, u(z) € E10)(A; B; GF). This
implies that the function W} under conditions (30) and (34) is the solution
of problem (5).

7.4. The main theorem. From the results obtained in items 6.2 and 6.3 it
follows that if condition (14) or (15) with respect to I', p(t), a(t), b(t) are ful-
filled, then for the Riemann problem considered in the class K?®)(A; B;T')
(or in PEP®)(A; B;T)), the theorem, analogous to that appearing in the
classical assumptions and in the class KP()(T), is valid.

Theorem. Let I' be the simple closed curve bounding the domains G+
and G~ and let the condition (14) or (15) be fulfilled. If, moreover, a(t) €
A(p(t),T), b(t) € LPO(T) and 5 = inda(t), then for problem (5) to be
solvable in the class Kp(t)(A;B;F), it is necessary and sufficient that the
condition

(Th)(t) = X (1) (%1%) (t) € LPO(T)

be fulfilled, where §1“,1 1s the generalized Cauchy singular integral with prin-

cipal kernels Q11 and Q1 2 of the class US2(4; B%;Gi), and X (z) is the
function given by equality (17).
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If this condition is fulfilled, then:
(i) when s = inda > 0, the problem is solvable and its general solution
is given by the equality

W) = X () () + XV (2)

where V,,_1(2) is an arbitrary generalized polynomial of order (V,_1(2)
= 0);

(ii) when s < 0, then for the solvability of the problem it is necessary
and sufficient that the condition Tb € LP®)(T') and

Im/uk(t)b(t)dt =0, k=0,1,....2(1+|z]) -3
T

be fulfilled, where uy, are linearly independent solutions of the class K P(t) (— A;
—BZ%;T) of the problem

Remark. If b e LPO+9(5), § > 0 then T, € LPM(I).
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