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THE RIEMANN BOUNDARY VALUE PROBLEM IN
VARIABLE EXPONENT SMIRNOV CLASS OF

GENERALIZED ANALYTIC FUNCTIONS

V. KOKILASHVILI AND V. PAATASHVILI

Abstract. The present paper studies the Riemann boundary
value problem for generalized analytic in I. Vekua sense func-
tions. The problem is formulated as follows: on the plane,
cut along a simple, closed, rectifiable curve Γ, find the general-
ized analytic function W (z) which in the domains G+ and G−,
bounded by the curve Γ, belongs to the Smirnov classes with a
variable exponent and W±(t) its boundary values almost for all
t ∈ Γ satisfy the condition

W+(t) = a(t)W−(t) + b(t),

where a(t) and b(t) are the given on Γ functions.
Various conditions of solvability are revealed and solutions

(if any) are constructed.

ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ É. ÅÄÊÖÀÓ ÀÆÒÉÈ ÂÀÍÆÏÂÀÃÄÁÖËÉ ÀÍÀ-
ËÉÆÖÒÉ ×ÖÍØÝÉÄÁÉÓÀÈÅÉÓ ÂÀÌÏÊÅËÄÖËÉÀ ÒÉÌÀÍÉÓ ÓÀÓÀÆ-
ÙÅÒÏ ÀÌÏÝÀÍÀ ÌÀÒÔÉÅ ÛÄÊÒÖË Γ ßÉÒÆÄ ÂÀàÒÉË ÓÉÁÒÔÚÄÛÉ.
ÅÉÐÏÅÏÈ ÉÓÄÈÉ ÂÀÍÆÏÂÀÃÄÁÖËÉ ÀÍÀËÉÆÖÒÉ ×ÖÍØÝÉÀ W (z),
ÒÏÌÄËÉÝ Γ-ÈÉ ÛÄÌÏÓÀÆÙÅÒÖË ÀÒÄÄÁÛÉ ÌÉÄÊÖÈÅÍÄÁÀ ÓÌÉÒ-
ÍÏÅÉÓ ÝÅËÀÃ p(t) ÌÀÜÅÄÍÄÁËÉÀÍ ÊËÀÓÄÁÓ ÃÀ ÒÏÌËÉÓ ÓÀÓÀÆ-
ÙÅÒÏ ÌÍÉÛÅÍÄËÏÁÄÁÉ ÃÀ W±(t) Γ ßÉÒÉÓ ÈÉÈØÌÉÓ ÚÅÄËÀ
ßÄÒÔÉËÛÉ ÀÊÌÀÚÏ×ÉËÄÁÄÍ ÔÏËÏÁÀÓ

W+(t) = a(t)W−(t) + b(t),

ÓÀÃÀÝ a(t) ÃÀ b(t)-ÆÄ ÌÏÝÄÌÖËÉ ×ÖÍØÝÉÄÁÉÀ.
ÌÏÞÄÁÍÉËÉÀ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÀÃÏÁÉÓ ÓáÅÀÃÀÓáÅÀ ÐÉÒÏÁÄ-

ÁÉ, ÀÌÏÍÀáÓÍÄÁÉ ÀÂÄÁÖËÉÀ ÝáÀÃÉ ÓÀáÉÈ.
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1. Introduction

In the boundary value problems appearing in various fields of mathemat-
ics it is frequently required of the solution that unknown functions would
belong to a certain Lebesque class (see, e.g., [2], [6], [7], [26], etc.)

Recently, the problems of pseudo-differential equations are being inten-
sively studied in nonstandard Banach functional spaces, in particular, in the
framework of variable exponent Lebesgue spaces. Such a statement of the
problem is motivated by the fact that the classes of functions in definition
of which the integration exponent is, generally speaking, a function, more
precisely take into account local singularities of the given functions. Such
spaces are natural ones in which we seek for solutions.

There is a vast literature devoted to the investigation of variable expo-
nent Lebesgue spaces. It suffices to mention monographs [1], [3], [12] and
references therein.

The works [3], [9], [11], [12], [22], [24], [25], etc. dealing with the boundary
value problems for analytic and harmonic functions and related singular
integral equations have been studied in the framework of variable exponent
Lebesgue spaces.

In these problems regarding p(t) it is more frequently assumed that p(t) ∈
P (Γ), i.e., the conditions:

(a) there exists the number M such that for any t1, t2 ∈ Γ we have
|p(t1)− p(t2)| < M | ln |t1 − t2||−1; (1)

(b)
min
t∈Γ

p(t) = p > 1, (2)

are fulfilled.
Further, the generalized Cauchy type integral and the generalized sin-

gular integral have been investigated in [13], and Smirnov classes with a
variable exponent p(t) for generalized analytic functions have been intro-
duced and studied in [21]. The results obtained in these works give every
reason to investigate boundary value problems for generalized analytic func-
tions when boundary values of unknown functions and those prescribed in
the boundary conditions belong to Lp(t)(Γ).

The Riemann problem for continuous statement has been considered in
[17]. Smirnov classes for a constant p are studied in [18]. A number of
problems in these classes have been investigeted in [14], [5], [7], [8], [15],
[16], [18], [19].

In the present paper we investigate the Riemann problem which is for-
mulated as follows.

Let Γ be a simple, closed, rectifiable curve dividing the plane C into two
domains G+ and G−. Find such a generalized analytic in I. Vekua sense
function W which
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1) is a regular solution of the class Us,2(A,B,C) s > 2 of equation;

LW = ∂zW +A(z)W (z) +B(z)W (z) = 0; (3)

2) belongs to the class Kp(t)(A;B; Γ), i.e., is representable by the gener-
alized Cauchy type integral

W (z) = (K̃Γφ)(z) =

=
1

2π

∫
Γ

Ω1(z, τ)φ(τ)dτ − Ω2(z, τ)φ(τ)dτ, φ ∈ Lp(·)(Γ), z∈Γ; (4)

3) the boundary functions W+(t) and W−(t) almost everywhere on Γ
satisfy the condition

W+(t) = a(t)W−(t) + b(t), (5)

where b(t) ∈ Lp(t)(Γ).
Regarding Γ, p(t) and a(t), it is assumed that
(a) Γ is a curve of the class I∗ containing, in particular, piece-wise smooth

and Radon’s curves without external peaks;
(b) p(t) is the function of the class P(Γ);
(c) a(t) belongs to the A(p(t),Γ) class of measurable functions on Γ which

is a natural generalization of I. Simonenko’s class (see [26]).
Under the adopted assumptions, the generalized Cauchy type integrals

(2) on the domains G+ and G− belong to the Smirnov classes Ep(·)(A;B;G+)
and Ep(·)(A;B;G−), respectively [21].

A set of generalized analytic functions in the plane, cut along the closed
curve Γ such that in the domains G+ and G− bounded by Γ they belong to
the classes Ep(·)(A;B;G±), we denote by PEp(·)(A;B; Γ). Such functions in
the conditions (1), (a) and (b) are representable by the generalized Cauchy
type integral in the domains G+ and G−, and therefore are representable by
the Cauchy integral with density from Lp(·)(Γ) [21]. By virtue of the above-
said, a picture of solvability of the Riemann problem in classes Kp(·)(A;B; Γ)
and PEp(·)(A;B; Γ) is the same.

2. Preliminaries

2.1. The function of the class Ls,ν(G). Let G be the domain in the
plane C, and f(z) be the function of the class Ls(G), s > 0. We continue
it on C\G by zero and for the obtained function we preserve the notation
f(z). Assume fν(z) = zνf

(
1
z

)
.

A set of functions f for which

f ∈ Ls(C), fν(z) ∈ Ls(U), U = {z : |z| < 1}. (6)

we denote by Ls,ν(C) [27, p. 29].
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2.2. Regular solutions of equation (3). We say that the function W =
W (z) is a regular solution in G of equation (3), if every point z0 ∈ G
possesses a neighbourhood G0 in which W has a generalized in Sobolev
sense derivative ∂zW = 1

2

(
∂W
∂x + i∂W∂y

)
, (z = x+ iy) and almost everywhere

in G0 − LW = 0.
A set of regular solutions of equation (3), when A,B ∈ Ls,2(G), we denote

by Us,2(A;B;G).
For s > 2, every function W ∈ Us,2(A;B;G) is representable in the form

W = ΦW expωW , ωW (z) =

∫∫
G

(
A+B

W

W

) dζdη

ζ − z
, ζ = ξ + iη, (7)

where ΦW is holomorphic in G, ωW belongs to the Hölder class H s−2
s
(C),

and ωW (∞) = 0 [27, pp. 160–162].
The function ΦW is called an analytic divisor and ωW is a logarithmic

difference of the generalized analytic function W (z).

2.3. The principal kernels. Let A,B ∈ Ls,2(G), s > 2, Φ be an ana-
lytic function in G and t be a fixed point from C. It is proved in [27]
(p. 175-7) that there exists a regular solution W (z; t) of equation (3) such
that: 1) W0 = W (z,t)

Φ(z) is continuous in G and continuously extendable on C;
2) W0(z) ̸= 0; 3) W (t) = 1; 4) W0(z) is holomorphic outside of G.

The operator which assigns to each pair Φ and t the function W (z; t) we
denote by RA;B

t (Φ(z)).
If Φ1(z) =

1
2(t−z) , Φ2(z) =

1
2i(t−z) and Xj(z, t) = RA,B

t (Φj(z)), j = 1, 2

are regular solutions of equation (3) in C{t}, then the functions

Ω1(z, t) = X1(z, t) + iX2(z, t), Ω2(z, t) = X1(z, t)− iX2(z, t)

are called the principal kernels of the class Us,2(A;B;G).

2.4. Generalized polynomials. A generalized polynomial of order n of
the class Us,2(A;B;C) is called that regular solution of equation (3) whose
analytic divisor is a classical polynomial of order n [27, p. 167].

Suppose

ν′2k = R−A,−B
∞ (zk), ν′2k+1(z) = R−A,−B

∞ (izk).

2.5. The space Lp(·)(Γ). For the measurable on Γ function f(t) we put

∥f∥p(·) = inf{λ > 0 :

b∫
0

∣∣∣f(t(σ))
λ

∣∣∣p(t(σ))dσ ≤ 1},
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where t = t(σ), 0 ≤ σ ≤ l is the equation of the curve Γ with respect to the
arc abscissa σ. And let

Lp(·)(Γ) = {f : ∥f∥p(·) < ∞}.

For p ∈ P (Γ), the set Lp(σ)(Γ) with the norm ∥·∥p(·) is the Banach space.

3. The Variable Exponent Smirnov Class

3.1. Definition. We say that the generalized analytic function W belongs
to the class Ep(·)(A;B;G), if W ∈ Us,2(A;B;G), s > 2 and

sup
0<ρ<1

2π∫
0

|W (z(ρeiθ))|p(θ)|z′(ρeiθ)|dθ < ∞, p(θ) ≡ p(z(eiθ)), (8)

where z = z(ρeiθ) is the comformal mapping of U onto G (for details on
those classes, see [21]).

If W ∈ Ep(·)(A;B;G), p ∈ P (Γ) then almost for all t ∈ Γ, there exists
an angular boundary value W+(t), and the function t → W+(t) belongs to
Lp(·)(Γ).

It follows from the representation (7) that the belonging of W to the
class Ep(·)(A;B;G) is equivalent to the fact that the function ΦW belongs
to the class Ep(·)(G), i.e.,

sup
2π∫
0

|ΦW (z(ρeiθ))|p(θ)|z′(ρeiθ)|dθ < ∞.

If G is an unbounded domain and there is the polynomial Q(z) such that
[Φ(z)−Q(z)] ∈ Ep(·)(G), we write Φ ∈ Ẽp(t)(G).

3.2. Classes of functions representable by the generalized Cauchy
type integral. Let Γ be a simple rectifiable curve bounding the domains
G+ and G−, Ω1(z, t) and let Ω2(z, t) be the kernels of the class Us,2(A;B;C),
f ∈ L(Γ). The function

(K̃Γf)(z) =

∫
Γ

Ω1(z, t)f(t)dt− Ω2(z, t)f(t)dt, z∈Γ

is called the generalized Cauchy type integral [27, p. 198].
This function is a regular solution of (3) of the class Us,2(A;B;C).
Assume

Kp(t)(A;B; Γ) = {W : W (z) = (K̃Γf)(z), f ∈ Lp(·)(Γ)};

Kp(t)(Γ) = Kp(t)(0; 0; Γ).

K̃p(t)(A;B; Γ) = {W : ∃ polynomial p
W

: W (z) = W0(z) + p
W
(z), W0 ∈

Kp(t)(A;B; Γ)}.
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4. Classes of Curves

4.1. Lavrent’ev’s curves (of the class Λ). The curve Γ belongs to the
class Λ, if supt1,t2∈Γ s(t1, t2)[|t1 − t2|−1] < ∞, where s(t1, t2) is the length
of the least of two arcs lying on Γ and joining t1 and t2.

4.2. The class I0. I0 is a set of curves Γ with the equation t = t(σ),
0 ≤ σ ≤ l (with respect to the arc abscissa) for which there exists a smooth
curve with the equation µ = µ(σ), 0 ≤ σ ≤ l such that

ess sup
0≤σ0≤l

l∫
0

∣∣∣ t′(σ)

t(σ)− t(σ0)
− µ′(σ)

µ(σ)− µ(σ0)

∣∣∣dσ < ∞.

4.3. The class I∗. The simple curve Γ belongs to the class I∗, if Γ ∈ Λ
and it can be represented as a finite union of arcs of the class I0, having
tangents at the ends.

4.4. Examples. I∗ contains piecewis-smooth and piecewise-Radonean
curves without cusps (see [4], pp. 23-30, [1], pp. 146-7).

5. The class of functions A(p(t),Γ).

A measurable function a(t) belongs to the class A(p(t),Γ), if
1) 0 < m = ess inf

t∈Γ
|a(t)| ≤ ess sup

t∈Γ
|a(t)| = M < ∞;

2) for every point τ ∈ Γ, there exists the arc Γτ ⊂ Γ containing τ on
which almost all values a(t) lie inside of the angle with vertex at the origin,
of size less than

ατ = 2π
[

sup
t∈Γτ

max(p(t), q(t))
]−1

, q(τ) =
p(τ)

p(τ)− 1
.

For the function a(t) from A(p(t),Γ), following [26], we define a branch of
the function arg a(t). We select a finite covering of Γ by the arcs Γk = Γτk .

Let c be the point on Γτ1 at which there exists the tangent and the point
a(σ) lies inside of the angle of size αr1 . We fix (arg a(c))− ∈ [0, 2π). Moving
along γ, we define the value arg a(t) so as for t1, t2, lying on one of the arcs
Γτk , to have | arg a(t1)− arg a(t2)| < ατk . Going around Γ, the point c falls
into Γτ1 with a new value (arg(c))+.

The number
κ =

1

2π

[
(arg a(c))+ − (arg a(c))−

]
(9)

is the integer, independent of the covering of Γ by the arcs Γk, and the
choice of c. We call this number an index of the function a(t) and write
κ = ind a(t).

For p = const, the class A(p,Γ) coincides with the known I. Simonenko’s
class [26].
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6. Statement of the Riemann problem.

When Γ is the Carleson curve bounding the domains G+ and G−, and
A,B ∈ Ls,2(G+), s > 2, p ∈ P (Γ), p = sup

t∈Γ
p(t),

p′ =
p

p− 1
,

s

2
> p′ (10)

then as is proved in [21], the equality
Kp(·)(A;B;G+) = Ep(·)(A;B;G+) (11)

holds.
In particular, inclusion (11) holds if

A,B ∈ L∞(G+), p ∈ P (Γ). (12)
When

Γ ∈ I∗, p ∈ P (Γ), a ∈ A(p(t),Γ), b ∈ Lp(t)(Γ) (13)
problem (5) in the class Kp(t)(Γ) has been investigated in [22].

Since when solving problem (5) in the class Kp(t)(A;B; Γ), of impor-
tance for us is equality (11) and knowledge of a picture of its solvability in
Kp(t)(A;B; Γ), we will assume that the condition

Γ ∈ I∗, A,B ∈ Ls,2(G), s > 2, p ∈ P (Γ),
s

2
> p′, (14)

or
Γ ∈ I∗, A,B ∈ L∞(G), p ∈ P (Γ), (15)

is fulfilled.
In the first case, the choice for A,B is wide, but the set of admissible

p(t) is bounded by the condition s
2 > p′. In the second case, the set of A

and B contracts, but now p(t) is arbitrary from P (Γ).
Thus, let condition (14) or (15) be fulfilled and we are required to find a

generalized analytic function W which is a regular solution of equation (3),
representable by the generalized Cauchy type integral with density Lp(·)(Γ)
and almost everywhere on Γ equality (5) is valid.

When we say that W is a regular solution of problem (5), we regard that
all the conditions adopted in this section for W are satisfied.

7. Solution of the Problem

7.1. One necessary condition of solvability. If
Γ ∈ I∗, a ∈ A(p(t),Γ) p ∈ P (Γ). (16)

then the function

X(z) =

{
exph(z), z ∈ G+,

(z − z0)
−κ exph(z), z0 ∈ G+, z ∈ G− (17)
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satisfies the following conditions: there exists δ > 0 such that

X(z) ∈ Ẽp(t)+δ(G±), (18)

[X(z)]−1 ∈ Ẽq(t)+δ(G±) (19)
a(t) = X+(t)[X−(t)]−1 (20)

(see [22]).
We write condition (5) in the form

W+(X+)−1 −W−(X−)−1 = b(X+)−1, (21)
and assume

V = W (X)−1. (22)

Lemma 1. Let

LW = ∂zW +AW +BW, L1V = ∂zV +AV +B
X

X
V .

If LW = 0, then L1V = 0, where V is given by equality (22). Conversely,
if L1V = 0 and W = V X, then LW = 0.

Proof. Since X(z) and (X(z))−1 are the functions, analytic in G, it can be
easily verified that

L1V = L1
W

X
=

1

X
(∂zW +AW +BW ) =

1

X
LW.

From the above equality follow two statements of the lemma. �

Corollary 1. If W ∈ Us,2(A;B;G), s > 2 then V ∈ Us,2(A;BX
X ;G).

Corollary 2. If V is the function given by equality (22), then
V = ΦV expωV , (23)

where
ΦV =

ΦW

X
, ω

V
= ω

W
. (24)

Proof. We have

V =
W

X
=

ΦW

X
expωW ,

ω
W

=

∫∫
G

(
A+B

W

W

) dξdη

ζ − z
=

∫∫
G

(
A+B

XV

XV

) dξdη

ζ − z
=

=

∫∫
G

(
A+B

X

X

V

V

) dξdη

ζ − z
= ω

V
; (25)

(We have used here the equality W = V X and Corollary 1).
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Thus,
V = ΦV expω

V
=

ΦW

X
expω

V

and hence,
ΦV =

ΦW

X
. (26)

Equalities (25) and (26) are just the provable by us equalities (24). �

Since ΦW ∈ Ep(·)(G+) and 1
X ∈ Ẽq(·)+δ(G±) (see (19)), it follows from

(26) that ΦV ∈ E1+ε(G+), ε > 0 and hence V ∈ E1+ε
(
A;BX

X ;G+
)

. Be-
havior of the function ϕV in the domain G− depends on 1

X .
If κ = ind a ≥ 0, then it is easily seen from (17) that limz→∞ V (z) = 0

for κ = 0 and limz→∞ V (z) = const for κ = 1.
For κ > 1, the function V at the point z = ∞ admits the pole of order

κ−1. Therefore there exist Φ̃ ∈ E1+ε(G−), ε > 0 and the polynomial Qκ−1

of order κ − 1 such that
ΦV = Φ̃ +Qκ−1.

By virtue of (21)–(22), we have

V + − V − =
b

X+
.

Since ΦV and Φ̃V belong to E1+ε(G±), then W belongs to the class
E1+ε

(
A;BX

X ;G±
)

.
Let Ω1,1(z, t) and Ω2,1(z, t) be the principal kernels of the class

Us,2
(
A;BX

X ;G±
)
s > 2. Then

W (z)

X(z)
= V (z) = K̃Γ,1

( b

X+

)
+ Vκ−1(z),

where

K̂Γ,1

( b

X+

)
=

∫
Γ

Ω1,1(z, t)
b(t)

X+(t)
− Ω2,1(z, t)

( b(t)

X+(t)

)
dt

where V̂κ−1(z) is the generalized polynomial of order κ − 1. This implies
that one possible solution of problem (5) will be

W (z) = X(z)Wb(z) +X(z)V̂χ−1(z), (27)
where

Wb(z) = K̃Γ,1

( b

X+

)
.

Since
b

X+
∈ L1+η(Γ), η > 0
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we have

W = X
(
K̃Γ,1

b

X+

)
= XΦWb

expω
Wb

∈ Eη
(
A;B

X

X
;G±

)
. (28)

Next,

W+
b =

1

2

(
b+X+S̃Γ,1

( b

X+

))
, W−

b =
1

2a

(
− b+X+S̃Γ,1

( b

X+

))
. (29)

This implies that for the inclusion Wb ∈ Kp(·)(A;B; Γ) it is necessary
that

(Tb)(t) = X+(t)S̃Γ,1

( b

X+

)
(t) ∈ Lp(t)(Γ). (30)

Conversely, if (30) holds, then Wb ∈ Eη
(
A;BX

X ;G±
)

and (Wb)
+ ∈

Lp(t)(Γ). According to the generalized Smirnov’s theorem (see [17]), we
will have Wb ∈ Ep̃(t)(A;B;G), where p̃(t) = max(p(t), η) = p(t), i.e.,

Wb(z) ∈ Ep(t)(A;B;G±). (31)
Thus the following lemma is valid.
Lemma 2. For problem (5) to be solvable for κ ≥ 0, it is necerssary and

sufficient that inclusions (30) be fulfilled.
Let condition (30) be fulfilled. Find out under what additional conditions

Wb is a particular solution of problem (5) and construct its general solution.
We consider separately the cases κ ≥ 0 and κ < 0.

7.2. The case κ ≥ 0. By virtue of (31),
Wb(z)=K̃Γ,1(W

+
b −W−

b ) = (K̃Γ,1f)(z), f(t)=(W+
b (t)−W−

b (t)) ∈ Lp(t)(Γ).

Since Γ∈I∗; p∈H(Γ) and Wb(∞)=0, we have Wb(z) ∈ Kp(·)
(
A;BX

X ; Γ
)

(see Corollary 1).
Therefore (K̃Γ,1f)(z) ∈ Ep(·)

(
A;BX

X ;G±
)

, and hence, Wb is the solution
of problem (5). Now, to find its general solution, we have to solve the
problem

V + − V − = 0 (32)
in the class of functions whose analytic divisor admits the representation
Φv = Φ̃v +Qκ−1, Φ̃ ∈ Ep(t)(G±).

It follows from (32) that Φ̃+
v − Φ̃v = 0, and since Wb ∈ Kp(·)

(
A, BX

X ,Γ
)

,
therefore Φ̃v = 0. Consequently, the solutions of (32) are the functions V
for which analytic divisor is the polynomial Qκ−1.

We denote such a function by V̂κ−1. Then if condition (30) is fulfilled, a
general solution of the problem is

W (z) = X(z)K̃Γ,1

( b

X+

)
(z) +X(z)Ṽκ−1(z). (33)
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7.3. The case κ < 0. In this case the only one possible solution of the
problem may be only the function Wb(z); however, for this function to be
of the class Ep(·)(A;B;G−), it is necessary and sufficient that the function
K̃Γ,1

(
b

X+

)
(z) at the point z = ∞ have zero of order |κ|. For this to be so,

it is necessary and sufficient that

Im
∫
Γ

uk(t)b(t)dt = 0, k = 0, 1, . . . , 2(1 + |κ|)− 3, (34)

where uk are linearly independent solutions of the homogeneous problem

u+(t) =
1

a(t)
u−(t) (35)

(see [4], p. 53).
Let us show that uk belongs to Eq(t)(G±).
Since 1

a(t) ∈ A(q(t),Γ) and ind 1
a(t) = −κ > 0, according to the result

obtained in item 7.2, the solutions of problem (35) are given by the equality

u(z) =
1

X(z)
ũ|κ|−1,

where û|κ|−1 is the generalized polynomial of order |κ| − 1.
Consequently, the analytic divisor of the generalized analytic function

u(z) is Q|κ|−1(z)

X(z) .
By virtue of the fact that we have inclusion (19) and Φu(∞) = 0, we can

conclude that ΦW (z) ∈ Eq(t)(G±), and hence, u(z) ∈ Eq(·)(A;B;G±). This
implies that the function Wb under conditions (30) and (34) is the solution
of problem (5).

7.4. The main theorem. From the results obtained in items 6.2 and 6.3 it
follows that if condition (14) or (15) with respect to Γ, p(t), a(t), b(t) are ful-
filled, then for the Riemann problem considered in the class Kp(t)(A;B; Γ)
(or in PEp(t)(A;B; Γ)), the theorem, analogous to that appearing in the
classical assumptions and in the class Kp(t)(Γ), is valid.

Theorem. Let Γ be the simple closed curve bounding the domains G+

and G− and let the condition (14) or (15) be fulfilled. If, moreover, a(t) ∈
Λ(p(t),Γ), b(t) ∈ Lp(·)(Γ) and κ = ind a(t), then for problem (5) to be
solvable in the class Kp(t)(A;B; Γ), it is necessary and sufficient that the
condition

(T̃ b)(t) = X+(t)
(
S̃Γ,1

b

X+

)
(t) ∈ Lp(t)(Γ)

be fulfilled, where S̃Γ,1 is the generalized Cauchy singular integral with prin-
cipal kernels Ω1,1 and Ω1,2 of the class Us,2(A;BX

X ;G±), and X(z) is the
function given by equality (17).
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If this condition is fulfilled, then:
(i) when κ = ind a ≥ 0, the problem is solvable and its general solution

is given by the equality

W (z) = X(z)K̃
( b

X+

)
(z) +X(z)V̂κ−1(z),

where Ṽκ−1(z) is an arbitrary generalized polynomial of order (Vκ−1(z)
= 0);

(ii) when κ < 0, then for the solvability of the problem it is necessary
and sufficient that the condition T̃ b ∈ Lp(t)(Γ) and

Im
∫
Γ

uk(t)b(t)dt = 0, k = 0, 1, . . . , 2(1 + |x|)− 3

be fulfilled, where uk are linearly independent solutions of the class Kp(t)(−A;

−BX
X ; Γ) of the problem

u+(t) =
1

a(t)
u−(t).

Remark. If b ∈ Lp(t)+δ(δ), δ > 0 then T̃b ∈ Lp(t)(Γ).
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