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1. Introduction

The Weiersterass well-known theorem on the approximation of the continuous function
by the trigonometric polynomials and its quantitative refinement represented by Jackson
inequality

En(f) ≤ Cω(f,
1

n
) (1.1)

are one of the basement of the Approximation Theory.
In the inequality (1.1), for 2π−periodic continuous function f, En(f) denotes the best

approximation of f by the trigonometric polynomials, i. e.

En(f) = inf max
x∈[0,2π]

|f(x) − Tk(x)| ,

where the infimum is taken over all trigonometric polynomials of order k ≤ n, and

ω(f, δ) = sup
|h|≤δ

max
x∈[0,2π]

|f(x + h) − f(x)|

denotes the modulus of continuity of f. The analog of Jackson inequality is correct for
the mean approximation and higher order modulus of continuity as well (see [1]).

Yet by 1912, S. Bernstein [2], obtained the reversed estimations of Jackson’s inequality
in the space of continuous functions for some specific cases. Later Quade [3], brothers
A. and M. Timan [4], S. B. Stechkin [5], M. Timan [6], etc. proved the reversed type
inequalities of Jackson’s inequality, including in Lp, 1 < p < ∞, spaces. These type
inequalities played an important role in the investigation of properties of the conjugate
functions [7], in the study of absolute convergent Fourier series [8], and in the related
problems. In the weighted Lebesgue spaces the inverse inequalities for classical module
of smoothness and best approximations were derived in the papers [6], [9]. In [10] this
result is extended for reflexive Orlicz space. For the approximation in weighted Lebesgue
and Orlicz spaces we refer to [11], [12], [13], [14].

The order of generalized modulus of smoothness, as it has been shown in [6] and [9],
depends not only on the rate of the best approximation but also on the metric of the
spaces. In the present paper we reveal that the similar influence in weighted Lorentz
spaces is expressed not only by the ”leading” parameter of the space, but also by the
second parameter in the definition of Lorentz spaces.
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Let T = [−π, π) and w : T → R
1 be an almost everywhere positive, integrable

function. Let f∗
w(t) be a nondecreasing rearrangement of f : T → R

1 with respect to the
Borel measure

w(e) =

∫

e

w(x)dx

i. e.

f∗
w(t) = inf {τ ≥ 0 : w (x ∈ T : |f(x)| > τ) ≤ t} .

Let 1 < p, s < ∞ and let L
ps
w (T) be a weighted Lorentz space, i. e. a set of all

measurable functions for which

‖f‖L
ps
w

=

(
∫

T

(f∗∗(t))s
t

s
p

dt

t

)1/s

< ∞,

where

f∗∗(t) =
1

t

t
∫

0

f∗
w(u)du.

In what follows, En(f)L
ps
w

denotes the best approximation of f ∈ L
ps
w (T) by trigonomet-

ric polynomials of order n, i. e.

En(f)L
ps
w

= inf ‖f − Tk‖L
ps
w

,

where the infimum is taken over all trigonometric polynomials of order k ≤ n.

Let for f ∈ L
ps
w (T) define the generalized modulus of smoothness as

Ωl (f, δ)L
ps
w

= sup
0<h<δ

∥

∥

∥

∥

l
Π

i=1

(

I − Ahi

)

f

∥

∥

∥

∥

L
ps
w

, δ > 0,

where I is the identity operator and

(

Ahi
f
)

(x) :=
1

2hi

x+hi
∫

x−hi

f(u)du.

The weights w considered in the paper are from Muckenhoupt class Ap, i. e. they
satisfy

sup
1

|I|

∫

I

w(x)dx

(

1

|I|

∫

I

w1−p′

(x)dx

)p−1

< ∞, p′ =
p

p − 1
,

where the supremum is taken over all intervals with length ≤ 2π.

Whenever w ∈ Ap, 1 < p, s < ∞, the Hardy-Littlewood maximal function of any
f ∈ L

ps
w (T), and therefore the average Ahi

f belong to L
ps
w (T) [15]. Thus Ωl(f, δ)L

ps
w

makes a sense for any w ∈ Ap(T).
In the sequel constants (often different constants in the same series of inequalities)

will generally be denoted by c.

2. Main Results

In the present paper we prove the following results.

Theorem 1. Let 1 < p < ∞, and 1 < s ≤ 2 or p > 2 and s ≥ 2. Let w ∈ Ap(T).
Then there exists a positive constant c such that

Ωl

(

f,
1

n

)

L
ps
w

≤
c

n2l

( n
∑

k=1

k2lγ−1E
γ
k−1(f)L

ps
w

)1/γ

(2.1)

for arbitrary f ∈ L
ps
w (T) and natural n, where γ = min(s, 2).
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Theorem 2. Let 1 < p < ∞, and 1 < s ≤ 2 or p > 2 and s ≥ 2, and let w ∈ Ap(T)
and f ∈ L

ps
w (T). Assume that

∞
∑

k=1

krγ−1E
γ
k (f)L

ps
w

< ∞ (2.2)

for some natural number r and γ = min(s, 2). Then there exists the absolutely continuous

(r − 1)th order derivative f(r−1)(x) such that f(r) ∈ L
ps
w and

En(f(r))L
ps
w

≤ c

{

nrEn(f)L
ps
w

+

( ∞
∑

k=n+1

krγ−1E
γ
k (f)L

ps
w

)1/γ}

(2.3)

for arbitrary natural n, where γ = min(s, 2) and the constant c does not depend on f

and n.

Theorem 3. Let the conditions of Theorem 2 be fulfilled. Then there exists a positive
constant c such that

Ωl

(

f,
1

n

)

L
ps
w

≤
c

n2l

( n
∑

k=1

k(r+2l)γ−1E
γ
k−1(f)L

ps
w

)1/γ

+ (2.4)

+ c

( ∞
∑

k=n+1

krγ−1E
γ
k (f)L

ps
w

)1/γ

for arbitrary f ∈ L
ps
w (T) and natural n, where γ = min(s, 2).

Corollary. Let for some integer r ≥ 1 and l ≥ 1

En(f)L
ps
w

= O
( 1

nr+2l

)

.

Then

Ωl

(

f(r),
1

n

)

L
ps
w

= O
( ln n

n2l

)1/γ
. (2.5)

Let {αn} be a monotonic sequence of positive numbers convergent to zero. Let
Φps

w (αn) be the set of functions f ∈ L
ps
w for which

En(f)L
ps
w

∼ αn.

The sharpness of (2.5) when s, p > 2 shows the following.

Theorem 4. There exists a constant c > 0 such that, for each αn ↓ 0, there exists
f0 ∈ Φps

w (αn) satisfying the inequality

Ω
(

f0,
1

n

)

L
ps
w

≥
c

n2

( n
∑

k=1

k3α2
k−1

)1/2

(2.6)

for arbitrary natural n.
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