V. Kokilashvili and S. Samko

Singular Integrals and Potentials in Some Banach Function Spaces with Variable Exponent

(Reported on September 5, 2002)

1. On some Banach function Spaces

Let (Ω, μ) be a measure space. Let $M(\Omega, \mu)$ be a space of measurable functions on Ω .

Definition 1. A normed linear space $X = (X(\Omega, \mu), || ||_X)$ is called a Banach function space if the following conditions are satisfied:

i) The norm $||f||_X$ is defined for all $f \in M(\Omega, \mu)$.

ii) $||f||_X = 0$ if and only if, f(x) = 0 μ -a.e., on Ω .

iii) $\|f\|_X = \||f|\|_X$ for all $f \in X$. iv) For every $Q \subset \Omega$ with $\mu Q < \infty$ we have $\|\chi_Q\|_X < \infty$. v) If $f_n \in M(\Omega, \mu), n = 1, 2, \ldots$ and $f_n \nearrow f$ μ -a.e., on Ω then

$$\|f_n\|_X \nearrow \|f\|_X.$$

vi) If $f, g \in M(\Omega, \mu)$ and $0 \le f(x) \le g(x) \mu$ -a.e., on Ω then

$$\|f\|_X \le \|g\|_X.$$

vii) Given $Q \subset \Omega$ with $\mu Q < \infty$, there exists a constant c_Q such that for all $f \in X$,

$$\int_{Q} |f(x)| d\mu \le c_Q \|f\|_X.$$

Every Banach function space is a Banach space. For definition and fundamental properties of Banach function space we refer to [1].

We shall deal with some special Banach function space.

Let Ω be a bounded open subset of \mathbb{R}^n and p(x) is a measurable function on Ω such that

$$1 < p_0 \le p(x) \le P < \infty, \quad x \in \overline{\Omega},\tag{1}$$

and

$$p(x) - p(y)| \le \frac{A}{\ln 1/(|x-y|)}, \ |x-y| \le 1/2, \ x, y \in \overline{\Omega}.$$
 (2)

By $L^{p(\cdot)}(\Omega)$ we denote the space of measurable functions f(x) on Ω such that

$$A_p(f) = \int_{\Omega} |f(x)|^{p(x)} dx < \infty.$$

²⁰⁰⁰ Mathematics Subject Classification: 42B20, 47B38.

Key words and phrases. Banach function space, non-increasing rearrangement, variable exponent, singular integral operator, Riesz potential, Lyapunov curve, curve of bounded rotation.

This is a Banach function space with respect to the norm

$$\left\|f\right\|_{L^{p(\cdot)}} = \inf\{\lambda > 0 : A_p(f/\lambda) \le 1\}$$

(see e.g., [2]).

In [3] the boundedness of maximal functions in $L^{p(\cdot)}$ spaces has been proved. Further in [4] the mapping properties of maximal operator and singular operator with fixed singularity in weighted $L^{p(\cdot)}$ spaces was studied.

On the base of $L^{p(\cdot)}$ we introduce some new Banach function space. Let us denote by

$$f^*(t) = \sup \left\{ s \ge 0 : m\{x \in \Omega : |f(x)| > s\} > t \right\}$$

-the non-increasing rearrangement of function f. Here by m we denote the Lebesgue measure. It is clear that $f^*(t) = 0$ when $t > m\Omega$, since $m\Omega < \infty$.

Let a function p(t) satisfy the condition (1.1) when $t \in [0, m\Omega]$.

Definition 2. The subset of all functions of $M(\Omega, m)$ for which

$$\|f\|_{\Lambda^{p(\cdot)}} = \|f^{**}\|_{L^{p(\cdot)}} < \infty$$

we call a space $\Lambda^{p(\cdot)}$.

Here

$$f^{**}(t) = 1/t \int_{0}^{t} f^{*}(y) dy.$$

It is clear that $f^*(t) \leq f^{**}(t)$. According to the Theorem IV from [4] we conclude that there exists such constant c > 0 that

$$\|f^*\|_{L^{p(\cdot)}} \le \|f^{**}\|_{L^{p(\cdot)}} \le c\|f^*\|_{L^{p(\cdot)}}.$$

Note that $\|f^{**}\|_{L^{p(\cdot)}}$ is a norm. The triangle inequality follows from the inequality

$$(f+g)^{**}(t) \le f^{**}(t) + g^{**}(t)$$

(See e.g., [5], Section 2).

.

2. Integral Transforms in \mathbb{R}^n

Let us start by mapping property of singular integrals in $\Lambda^{p(\cdot)}$. The singular operators we take into account have the form

$$Kf(x) = \lim_{\varepsilon \to 0+} \int_{\{y: |y| \ge \varepsilon\}} \frac{k(y)}{|y|^n} f(x-y) \, dy, \quad x \in \Omega,$$

where K is an odd function on R^n which is homogeneous of degree 0 and satisfies the following Dini condition on the unit sphere S^{n-1} on R^n

$$\int_{0} \frac{\omega(\delta)}{\delta} d\delta < \infty, \quad \text{where} \quad \omega(\delta) = \sup_{\substack{x, y \in S^{n-1} \\ |x-y| \le \delta}} \left| k(x) - k(y) \right|.$$

Observe that this definition includes classical operators, such as the Hilbert transform (n = 1, k(x) = x/|x|) and Riesz transform $(n \ge 2, k(x) = (x_j)/(|x|), j = 1, \ldots, n)$.

Theorem 1. Let $1 \le p(t) < P < \infty$ for $t \in [0, m\Omega]$. Let the conditions

$$1 < p_0 \le p(t) < P < \infty$$

and

$$|p(t_1) - p(t_2)| \le \frac{A}{\ln 1/(|t_1 - t_2|)}, \quad |t_1 - t_2| \le 1/2,$$

be satisfied in a neighbourhood [0,d] of the origin, d > 0. Then K is bounded in $\Lambda^{p(\cdot)}$.

Theorem 2. Let p(t) satisfy the conditions of previous theorem. Suppose that

$$-1/(p(0)) < \beta < 1/(q(0)).$$
 (3)

Then the inequality

$$\|Kf\|_{\Lambda_{\beta}}^{p}(\cdot) \leq c\|f\|_{\Lambda_{\beta}^{p}(\cdot)}$$

holds with a constant c independent of f.

Corollary 1. Let p be as in Theorem 1. Then if the condition (3) is satisfied the operators R_j (j = 1, ..., n) are bounded in $\Lambda_{\beta}^{p(\cdot)}$.

In the sequel we discuss the boundedness in $\Lambda^{p(\cdot)}$ of Riesz potentials and application to the imbedding of certain spaces of differentiable functions.

Let us start by Riesz potential

$$I_{\alpha}f(x) = \int_{\Omega} \frac{f(y)}{|x-y|^{n-\alpha}} \, dy, \quad x \in \Omega, \quad 0 < \alpha < n.$$

Theorem 3. Let us suppose that p(t) satisfy the requirments from the previous Theorem. Let s(x) be a measurable function on $[0, m\Omega]$ such that $1 \le s(x) < S < \infty$ for all $x \in [0, m\Omega]$, and

$$s(0) = p(0)$$
 and $|s(x) - p(x)| \le \frac{A}{\ln 1|x|}, \quad 0 < x < \delta, \quad \delta > 0.$

Then I_{α} acts boundedly from $L^{p(\cdot)}$ into $L^{s(\cdot)}$. Moreover, if

$$-1/p(0) < \beta < 1/(q(0)),$$

then the inequality

$$\|t^{\beta}I_{\alpha}\|_{\Lambda^{s(\cdot)}} \leq c\|t^{\beta}f\|_{\Lambda^{p(\cdot)}}$$

holds with a constant c independent of f.

Theorem 4. Let $n \ge 2$ and let k be any positive integer smaller than n. Suppose that p(x) and s(x) satisfy the conditions of Theorem 1. Then

i) a positive constant c exists such that

$$\|u\|_{\Lambda^{s(\cdot)}} \le c \|D^{k}u\|_{\Lambda^{p(\cdot)}} \tag{4}$$

(5)

for all real-valued functions u in Ω where the continuation by 0 outside Ω has weak derivatives up to order k over \mathbb{R}^n . Here D^k stands for the vector of k-th order derivatives of u.

If Ω is convex, then a positive constant c exists such that

$$\inf_{P\in \mathcal{P}_{k-1}} \|f-Q\|_{\Lambda^{s}(\cdot)} \leq c \|D^k u\|_{\Lambda^{p}(\cdot)}$$

for all real valued functions u in Ω having weak derivatives up to order k in Ω . Here \mathcal{Q}_{k-1} denotes the set of all polynomials Q of degree $\leq k-1$.

152

When k = 1 inequality (5) holds, in particular, with $Q = 1/(m\Omega) \int_{\Omega} u(x) dx$ -the mean value of u over Ω .

Now we are going to discuss the mapping properties of Poisson integral and conjugate Poisson integrals in $\Lambda_\beta^{p(\cdot)}$ spaces. Let us consider the Poisson integral

$$u_f(x,y) = \int_{\Omega} f(u) \frac{y}{(|x-u|^2 + y^2)^{(n+1)/2}} \, du, \quad x,y \in \Omega,$$

and the system of conjugate Poisson integrals

$$v_f^j(x,y) = \int_{\Omega} f(u) \frac{x_j - y_j}{(|x - u|^2 + y^2)^{(n+1)/2}} \, du, \ x, y \in \Omega \ j = 1, 2, \dots, n.$$

Since $m\Omega < \infty$ for $f \in L^{p(\cdot)}(\Omega)$ we have that $f \in L^{p_0}(\Omega)$. Thus we conclude that

$$Tf(x) = \sup_{y>0} |u_f(x,y)| \le cMf(x)$$
(6)

and

$$v_f^j(x,y) = u_{R_j}(x,y) \tag{7}$$

(see [6], chapters 6 and 2).

From (6) thanks to the known estimate (see [7]) we have

$$\left(\sup_{y}|u_{f}(x,y)|\right)^{*}(t) \leq c(Mf)^{*}(t) \leq c_{1}1/t \int_{0}^{t} f^{*}(y)dy.$$
(8)

Theorem 5. Let p(t) and β satisfy the conditions of Theorem 1. Then T is bounded in $\Lambda_{\beta}^{p(\cdot)}$.

Now consider the operator

$$\widetilde{T}_j f(x) = \sup_{y} \left| v_f^j(x, y) \right|.$$

Theorem 6. Let a function p(t) and a number β satisfy the conditions of Theorem 1. Then the operators \widetilde{T}_j are bounded in $\Lambda_{\beta}^{p(\cdot)}$.

3. Cauchy Singular Integrals on Lyapunov curves and curves of bounded rotation

In this section we deal with the Cauchy singular integral

$$S_{\Gamma}f(t) = \int_{\Gamma} \frac{f(\tau)}{\tau - t} d\tau$$

where Γ is a finite rectifiable Jordan curve on which as a parameter the arc-length is chosen starting any fixed point. The equation of the curve in the case is t = t(s), $0 \le s \le l$, where l is its length.

 Γ is called the Lyapunov curve if $t'(s) \in \operatorname{Lip} \alpha$, $0 < \alpha \leq 1$. When t'(s) is a function of bounded variation, then Γ is called as a curve of bounded rotation.

Our goal is to study the mapping property of S_{Γ} when Γ is a Lyapunov curve or a curve of bounded rotation without cusps.

We assume that a function p(s) is defined on [0, l]. In the sequel f(t(s)) will denoted by $f_0(s)$.

Theorem 7. Let Γ be a Lyapunov curve. Let

$$1 \le p(s) \le P < \infty$$
 for $s \in [0, l]$.

Suppose that the conditions

$$1 < p_0 \le p(s) \le P < \infty$$

and

$$|p(s_1) - p(s_2)| \le \frac{A}{\ln 1/(|s_1 - s_2|)}, \quad s_1, s_2 \in [0, l]$$

are satisfied in some neighbourhood of the origin.

Then S_{Γ} is bounded in $\Lambda^{p(s)}$.

Theorem 8. Let Γ be a curve of bounded rotation without cusps. Let p(s) satisfy the condition of Theorem 1 supposing that m denotes the arc-length measure on Γ . Then S_{Γ} is bounded in $\Lambda^{p(s)}$.

Note that for the constant p the boundedness of S_{Γ} on Lyapunov curve and on curve of bounded rotation without cusps has been proved in [8] and [9] respectively.

Theorem 9. Let Γ be a Lyapunov curve or a curve of bounded rotation without cusps. Let a weight $w(s) = |t(s) - t(0)|^{\beta}$

where

 $-1/(p(0)) < \beta < 1/(q(0)).$

Then Cauchy singular operator S_{Γ} acts boundedly in Λ_w^p .

Basing on the recent results on the singular integrals from [10] we conclude the validity of

Theorem 10. Let Γ be a Lyapunov curve or a curve of bounded rotation without cusps. If the function p(s) satisfies the conditions (1) and (2) on $\overline{\Omega} = [0, \ell]$, then S_{Γ} is bounded in $L^{p(s)}$.

References

1. W. A. J. Luxemburg, Banach function spaces. Thesis: Technische Hogescool to Delft, 1955.

2. D. E. Edmunds, J. Lang and A. Nekvinda, On $L^{p(x)}$ norms, *Proc. Roy. Soc. London Ser. A* **455**(1999), 219–225.

3. L. Diening, Maximal functions in generalized Lebesgue $L^{p(x)}$ spaces. Mathematical Inequalities (to appear).

4. V. Kokilashvili and S. Samko, Maximal and fractional operators in $L^{p(x)}$ spaces. Lisbon Instituto Superior Tecnico Departamento de Matematica, Preprint **13**(2002), May, 2002.

5. R. A. Hunt, On L(p,q) spaces, L'. Ens. Math. 12(1966), 249-275.

6. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidian Spaces. Princeton, New Jersey, Princeton University Press, 1971.

7. C. Benett and R. Sharpley, Interpolation of Operators. *Pure and Appl. Math*, **129**, *Academic Press, Boston*, 1988.

154

8. B. V. Khvedelidze, Linear discontinuous boundary value problems of function theory, singular integral equations, and some of their applications. (Russian) *Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR* **23**(1956), 3–158.

9. I. Danilyuk, Irregular Boundary Value Problems in the Plane. (Russian) Nauka, Moscow, 1975.

10. L. Diening and M. Ruzicka, Calderon-Zygmund operators on generalized Lebesgue spaces $L^{p(x)}$ and problems related to fluid dinamics. *Mathematische Fakultaät, Albert-Ludwing- Universitat Freiburg* **21**(2002), 1–19.

Authors' addresses:

V. Kokilashvili A. Razmadze Mathematical Institute Georgian Academy of Sciences 1, Aleksidze St., Tbilisi, 380093 Georgia

Stefan G. Samko Universidade do Algarve Unidade do Ciencias Exactas e Humanas Campus de Gambelas Faro 8000, Portugal