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SINGULAR INTEGRAL EQUATIONS IN THE LEBESGUE

SPACES WITH VARIABLE EXPONENT

V. KOKILASHVILI AND S. SAMKO

Abstrat. For the singular integral operators with pieewise on-

tinuous oeÆients there is proved the riterion of Fredholmness and

formula for index in the generalized Lebesgue spaes L

p(�)

(�) on a

�nite losed Lyapunov urve � or a urve of bounded rotation. The

obtained riterion shows that Fredholmness in this spae and the in-

dex depend on values of the funtion p(t) at the disontinuity points

of the oeÆients of the operator, but do not depend on values of p(t)

at points of their ontinuity.

îâäæñéâ. ê�öîëéöæ á�áàâêæèæ� òîâáÿëèéñîë�æï çîæðâîæñéæ

á� æêáâóïæï òëîéñè� ñ��ê-ñ��ê ñûõãâðæ çëâòæùæâêðâ�æ�êæ ïæêàñ-

è�îñèæ æêðâàî�èñîæ ëìâî�ðëîâ�æï�åãæï ï�ïîñè ø�çâðæè èæ-

�ìñêëãæï � ûæîâ�äâ à�êï�ä�ãîñèæ èâ�âàæï à�êäëà�áâ�ñè L

p(�)

(�)

ïæãîùââ�öæ. ê�øãâêâ�æ�, îëé �é ïæãîùââ�öæ òîâáÿëèéñîë�� á�

æêáâóïæ á�éëçæáâ�ñèæ� p(t) òñêóùææï éêæöãêâèë�â�äâ ëìâî�ðëîæï

çëâòæùæâêðå� ûõãâðæï ûâîðæèâ�öæ á� �î �îæï á�éëçæáâ�ñèæ p(t)

òñêóùææï éêæöãêâèë�â�äâ é�åæ ñûõãâðë�æï ûâîðæèâ�öæ.

1. Introdution

We onsider the singular integral operator

A'(t) : = u(t)'(t) +

v(t)

�i

Z

�

'(�) d�

� � t

= f(t); t 2 �; (1.1)

or

A = aP

+

+ bP

�

; a = u+ v; b = u� v; (1.2)

where P

�

=

1

2

(I � S) are the projetors, generated by the singular integral

operator

S'(t) =

1

�i

Z

�

'(�) d�

� � t

;
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in the generalized Lebesgue spaes L

p(�)

(�) with a variable exponent p(t)

satisfying the logarithmi smoothness ondition. The oeÆients u and v

are assumed to be piee-wise ontinuous and � is a �nite losed urve in the

omplex plane.

We obtain neessary and suÆient onditions for the operator A to be

Fredholm in the spae L

p(�)

(�) and give a formula for the index under some

natural assumptions on p(x), see Theorem A. The obtained riterion shows

that Fredholmness of the operator A in the spae L

p(t)

(�) and its index

depend on values of the funtion p(t) at the disontinuity points of the

oeÆients a(t) and b(t), but do not depend on values of p(t) at points of

ontinuity.

The generalized Lebesgue spaes L

p(�)

with variable exponent and op-

erators in these spaes are intensively studied nowadays. One may see an

evident rise of interest to these spaes and to the orresponding Sobolev type

spaesW

m;p(�)

during the last deade, espeially the last years. The inrease

in studying both the spaes L

p(�)

or W

m;p(�)

themselves and the operator

theory in these spaes is observed. As is known, this interest is aroused,

apart from mathematial uriosity, by possible appliations to models with

the so alled non-standard loal growth (in uid mehanis, elastiity theory,

in di�erential equations, see for example [23℄, [7℄ and referenes therein).

The development of the operator theory in the spaes L

p(�)

enountered

essential diÆulties from the very beginning. For example, in the ase of

the spaes L

p(�)

(R

n

), the onvolution operators in general are not bounded

in these spaes, the Young theorem not being valid in the general ase. A

onvolution operator may be bounded in this spae if, roughly speaking,

its kernel has singularity only at the origin, see [24℄. One of the problems

whih were open for a long time, was the boundedness of the maximal

operator and of singular operators in these spaes. The boundedness of

the maximal operator was reently proved by L. Diening [5℄, [6℄ in ase of

bounded domains 
 � R

n

or in the ase of 
 = R

n

, but p(x) onstant at

in�nity. Reently, D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer [4℄

proved the boundedness of the maximal operator on unbounded domains

when the exponent p(x) is not neessary onstant at in�nity.

There is also an evident progress in this diretion for singular opera-

tors. L. Diening and M. Ru�zi�ka [7℄ proved the boundedness of Calderon-

Zygmund type operators in these spaes. As is known, for appliation, the

weighted boundedness of singular operators is required. The weighted es-

timates with power weights were proved by the authors for the maximal

operator on bounded domains in [5℄{[19℄ see also [14℄ and for singular type

operators in [20℄, [16℄, [18℄, [17℄.

In this paper we give an appliation of the weighted results obtained in

[20℄, [16℄, [18℄, [17℄ to the theory of Fredholm solvability of singular integral

equations (1.1) with piee-wise ontinuous oeÆients. As is well known
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to researhes in this �eld, to investigate suh equations in this or other

funtion spae, one should know exatly what are neessary and suÆient

onditions of weighted singular operator in this spae. These onditions

being known, to obtain the riterion of Fredholmness, one should follow

the known sheme of investigation of singular operators in already studied

situations, for example in the spaes L

p

(�), p = onst. This sheme may

be rewritten in terms of an arbitrary Banah spae of funtions de�ned on

�, subjet to some natural axioms. We do this in Setion 4. As a model

of the sheme to follow we use the Gakhov{Muskhelishvili{Khvedelidze{

Gohberg{Krupnik sheme of investigation of singular operators with piee-

wise ontinuous oeÆients.

The theory of singular integral operators itself was intensively developed

last deades and was generalized, in partiular, to the ase of general weights

(Mukenhoupt weights) and Carleson urves, both generalizations leading

to new e�ets, see [1℄{[3℄, [28℄ and referenes therein. We do not touh

suh generalizations in the L

p(�)

-setting in this paper. Basing on the ap-

proahes developed in [1℄{[3℄, [28℄ one an onsider the operator A in these

more general situations, as soon as neessary and suÆient onditions of

the boundedness of the singular operator S in the spaes L

p(�)

(�; �) with

a general weight � and/or a Carleson urve � are known. For the time

being, this boundedness is a hallenging open problem in both the ases.

This problem being solved, this would pave the way to obtain results on

Fredholmness of singular integral operators in more general situations.

For \bad" urves and general weights this open problem is tightly on-

neted with other open questions. As is already known, on Lyapunov urves

the assumption on p(t) guaranteering the boundedness of the singular op-

erator is the logarithmi smoothness ondition, see (2.6), whih is neessary

in a sense; at the least, it is surely neessary for the maximal operator.

Can the boundedness of the singular integral operator on a Carleson urve

be proved under this ondition? Or an it be proved if p(t) is even in�nitely

di�erentiable, but variable. Or on the whole lass of Carleson urves the

boundedness may be true only for onstant p ? All these questions are open.

The paper is organized as follows. The main statement on Fredholmness

of the operator A is given in Theorem A. In this statement for the spaes

L

p(�)

(�), the urve � is assumed to be a Lyapunov urve or a urve of

bounded rotation without usps.

However, in fat we formulate a more general statement on Fredholm-

ness of the operator A in an abstrat Banah spae of funtions on �,

satisfying some natural axioms. This statement, as already mentioned

above, appears as a result of an abstrat Banah spae reformulation of

the Gohberg-Krupnik sheme of investigation of singular operators with

piee-wise ontinuous oeÆients. For the ompleteness of the presentation
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and the reader's onveniene we expose this reformulation with proofs in

Setion 4.

The theorem on Fredholmness of the operator A in the spaes L

p(�)

(�) is

obtained as a orollary to that abstrat Banah spae sheme, see Setion 5.

It is possible to extend the Fredholmness theorem for the operator A also

for pieewise Lyapunov urves or urves of bounded variation with arbitrary

usps, but we do not dwell on this extension in this paper.

We remind the basis for the Lebesgue spaes with variable exponents

in Subsetion 2.1; the reader is referred for details to the papers [27℄, [21℄,

[26℄, [25℄ in the ase of the spaes L

p(�)

(
), 
 2 R

n

and to the papers [19℄,

[20℄, [16℄ in the ase of the spaes L

p(�)

(�) on urves.

Notation:

� is a �nite losed reti�able Jordan urve on a omplex plane;

` is its length;

D

+

is the interior of the urve � and D

�

is its exterior;

PC(�) is the lass of piee-wise ontinuous funtions on � with a �nite

number of jumps;

Ind

X

A is the index of the Fredholm operator A in a Banah spae X ;

ind a is the winding number of a ontinuous funtion a on a losed urve

�; �

X

(A) and �

X

(A) are de�ieny numbers of a Fredholm operator A in

the Banah spae X ;

Z= f0;�1;�2;�3; : : :g;

1

q(t)

= 1�

1

p(t)

:

2. Preliminaries

a). On L

p(�)

-spaes. Let 
 be a bounded open subset of R

n

and p(x) a

measurable funtion on 
 suh that 1 < p

0

� p(x) � P <1; x 2 
 and

�

�

p(x) � p(y)

�

�

�

A

ln

1

jx�yj

; jx� yj �

1

2

; x; y 2 
: (2.1)

We refer to ([14℄, Appendix A) for examples of non-holderian funtions

satisfying ondition (2.1). By L

p(�)

(
) we denote the spae of funtions

f(x) on 
 suh that

A

p

(f) =

Z




jf(x)j

p(x)

dx <1:

This is a Banah funtion spae with respet to the norm

kfk

L

p(�)

= inf

n

� > 0 : A

p

�

f

�

�

� 1

o

: (2.2)
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Under ondition (2.5) the spae L

p(�)

oinides with the spae

�

f(x) :

�

�

�

Z




f(x)'(x) dx

�

�

�

<1 for all '(x) 2 L

q(�)

(
)

�

(2.3)

where

1

p(t)

+

1

q(t)

� 1, up to equivalene of the norms

kfk

L

p(�)

� sup

k'k

L

q(�)

�1

�

�

�

Z




f(x)'(x) dx

�

�

�

� sup

A

q

(')�1

�

�

�

Z




f(x)'(x) dx

�

�

�

; (2.4)

see [21℄, Theorem 2.3 or [26℄, Theorem 3.5.

Let � be a measurable almost everywhere positive integrable funtion.

The weighted Lebesgue spae L

p(�)

�

= L

p(�)

(
; �) is de�ned as the set of all

measurable funtions for whih

kfk

L

p(�)

�

= k�fk

L

p(�)

<1:

The spae L

p(�)

(
; �) is a Banah spae.

The spae L

p(�)

(�) on a reti�able simple urve

� =

�

t 2 C : t = t(s); 0 � s � `

	

;

where s is the ar length, may be introdued in a similar way via the fun-

tional

I

p

(f) =

Z

�

�

�

f(t)j

p(t)

�

�

dtj =

`

Z

0

�

�

f [t(s)℄

�

�

p[t(s)℄

ds:

We assume that

1 < p

0

� p(t) � P <1; t 2 �: (2.5)

Condition (2.1) may be imposed either on the funtion p(t):

�

�

p(t

1

)� p(t

2

)

�

�

�

A

ln

1

jt

1

�t

2

j

; jt

1

� t

2

j �

1

2

; t

1

; t

2

2 � (2.6)

or on the funtion p

�

(s) = p[t(s)℄:

�

�

p

�

(s

1

)� p

�

(s

2

)

�

�

�

A

ln

1

js

1

�s

2

j

; js

1

� s

2

j �

1

2

; s

1

; s

2

2 [0; `℄: (2.7)

Sine jt(s

1

)�t(s

2

)j � js

1

�s

2

j, ondition (2.6) always implies (2.7). Inversely,

(2.7) implies (2.6),if there exists � > 0 suh that js

1

�s

2

j � jt(s

1

)� t(s

2

)j

�

:

Therefore, onditions (2.6) and (2.7) are equivalent, for example on urves

with the so alled hord ondition.

We shall deal with the weighted spae

L

p(�)

(�; �) =

�

f : kf [t(s)℄�(s)k

L

p(s)

<1
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where

�(s) =

n

Y

k=1

jt(s)� t(

k

)j

�

k

t

n

Y

k=1

js� 

k

j

�

k

(2.8)

where 

k

2 [0; `℄, k = 1; 2; : : : ; n.

We remind the H�older inequality

�

�

�

Z

�

f(t)g(t) dt

�

�

�

� kfk

L

p(�)

kgk

L

q(�)

(2.9)

for the spaes with variable exponent. From (2.9) the imbedding follows

L

p(�)

(�; jt� t

0

j



) � L

1

(�); if  <

1

q(t

0

)

: (2.10)

b). Two theorems on the spaes L

p(�)

(�). In [18℄, [17℄ the following

statements were proved.

Theorem 2.1. Let � be a Lyapunov urve or a urve of bounded rotation

without usps and let p(s) satisfy onditions (2:5) and (2:7). The operator

S is bounded in the spae L

p(�)

�

(�) with the weight funtion (2:8) if and only

if

�

1

p(

k

)

< �

k

<

1

q(

k

)

; k = 1; 2; : : : ; n: (2.11)

Theorem 2.2. Let p(x) satisfy the ondition 1 � p(x) � P <1, x 2 R

n

and let �(x) � 0 be suh that jfx 2 R

n

: �(x) = 0gj = 0 and

w(x) = [�(x)℄

p(x)

2 L

1

lo

(R

n

): (2.12)

Then C

1

0

(R

n

) is dense in the spae L

p(�)

(R

n

; �).

Similarly, the following analogue of Theorem 2.2 an be proved.

Theorem 2.3. Let � be a Jordan urve. The set C

1

(�) (and even the

set of rational funtions on �) is dense in L

p(�)

(�; �) under the assumptions

1 � p(t) � P < 1, t 2 � and jft 2 � : �(t) = 0gj = 0 and [�(t)℄

p(t)

2

L

1

(�).

3. Statement of the main result for the spaes L

p(�)

(�)

Let h(t) 2 PC(�) and t

1

; t

2

; : : : ; t

n

be the points of disontinuity of h(t).

De�nition 3.1. Following the known de�nition ([10℄, p. 63), we say that

a funtion h(t) 2 PC(�) is p(�)-nonsingular, if

inf

t2�

jh(t)j > 0 (3.1)



SINGULAR INTEGRAL EQUATIONS 67

and at all the points of disontinuity of h(t) the following ondition is sat-

is�ed:

arg

h(t

k

� 0)

h(t

k

+ 0)

6=

2�

p(t

k

)

(mod 2�); k = 1; 2; : : : ; n: (3.2)

For a non-vanishing funtion h(t) 2 PC(�) we denote

�(t

k

) =

1

2�

t

k+1

�0

Z

t

k

+0

d argh(t): (3.3)

De�nition 3.2. Let h(t) 2 PC(�) be a p(�)-nonsingular funtion. The

integer

ind

p(�)

a =

n

X

k=1

h

�(t

k

)�

1

2�

arg

h(t

k

� 0)

h(t

k

+ 0)

i

; (3.4)

where the values of

1

2�

arg

h(t

k

�0)

h(t

k

+0)

are hosen in the interval

�

1

q(t

k

)

<

1

2�

arg

h(t

k

� 0)

h(t

k

+ 0)

<

1

p(t

k

)

(3.5)

where

1

p(t)

+

1

q(t)

� 1, is alled the p(�)-index of the funtion a.

Basing on Lemma 2.7 from [11℄, it is easy to see that ind

p(�)

a is the

same as the Gohberg{Krupnik p-index de�ned as the winding number of

the urve, obtained from the image h(�) of the urve � by supplementing

it at its disontinuities by the orresponding irular ars in the well known

way (see for instane, [10℄, p. 63{64); the only di�erene is now in the fat

that the angle of the ar is de�ned by the exponent p(t

k

) varying from one

disontinuity point to another.

Theorem A. Let � be a losed Lyapunov urve or a urve of bounded

rotation without usps and let p(t); t 2 �, satisfy assumptions (2:5) and

(2:7). The operator A = aP

+

+ bP

�

with a; b 2 PC(�) is Fredholm in the

spae L

p(�)

(�) if and only if

inf

t2�

ja(t)j 6= 0; inf

t2�

jb(t)j 6= 0 (3.6)

and the funtion

a(t)

b(t)

is p(�)-nonsingular. Under these onditions

Ind

L

p(�)

A = � ind

p(�)

a

b

: (3.7)

Theorem A is proved in Setion 5.

From Theorem A it follows that the essential spetrum of the operator

aP

+

+P

�

with a 2 PC(�) in the spae L

p(�)

(�) (the set of points on omplex

plane for whih an operator is not Fredholm) is desribed similarly to the

ase of onstant p, as the union of the images a(�) and the well known
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irular ars �

p(t

k

)

(a(t

k

� 0); a(t

k

+0)), onneting the points a(t

k

� 0) and

a(t

k

+ 0) and having the angle

2�

p(t

k

)

depending on the point t

k

.

4. Singular integral operators in Banah funtion spaes X(�)

The theory of singular integral equations with oeÆients inPC(�) is

well known, for example, in the Lebesgue weighted spaes L

p

(�; �) (see

for instane, [10℄ and in other spaes of integrable funtions. A natural

question is the following. Let X(�) be an arbitrary Banah funtion spae

on �. Under what axioms on the spae X(�) the result on Fredholmness

of the singular operator is formulated in the terms similar to those used in

Theorem A, that is, in the terms of X-nonsingular funtions and X-index,

properly de�ned.

We give some answer to that question below. In this onnetion we

observe that the idea of singling out the bounds for the weight funtions

(used in Axioms 1 and 2) as the base of onstrution of Fredholm riterion

is well known in the theory of singular integral operators, see [28℄; [1℄{[3℄,

Ch. 2, [12℄. In the ontext of Carleson urves and general weights this idea

led to the notion of the so alled indiator set of the spae at the point

t

0

2 �, see [3℄, p. 72. We show that it is possible to axiomatize this idea so

that the Gohberg-Krupnik approah known for L

p

(�; �)-spaes on Lyapunov

urves, may be presented for an arbitrary Banah funtion spae under two

natural axioms.

4.1. Banah funtion spaes, suitable for singular operators. Let

X = X(�) be any Banah spae of funtions on a losed simple Jordan

reti�able urve � satisfying the following assumptions

C(�) � X(�) � L

1

(�); (4.1)

ka fk

X

� sup

t2�

ja(t)j � kfk

X

for any a 2 L

1

(�); (4.2)

the operator S is bounded in X(�); (4.3)

C

1

(�) is dense in X(�): (4.4)

Assumptions (4.1){(4.4) will be used to formulate the statement on Fred-

holmness in the ase of ontinuous oeÆients. For the ase of piee-wise

oeÆients we shall also need the following Axioms 1 and 2.

Axiom 1. For the spae X(�) there exist two funtions �(t) and �(t),

0 < �(t) < 1, 0 < �(t) < 1; suh that the operator

jt� t

0

j

(t

0

)

Sjt� t

0

j

�(t

0

)

I; t

0

2 � (4.5)

is bounded in the spae X(�) for all (t

0

) suh that

��(t

0

) < (t

0

) < 1� �(t

0

) (4.6)

and is unbounded in X(�) if (t

0

) =2 (��(t

0

); 1� �(t

0

)).
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The funtions �(t) and �(t) will be alled index funtions of the spae

X(�).

In the ase X(�) = L

p(�)

(�; �) = ff : jt� t

0

j

�

f(t) 2 L

p(�)

(�)g we have

�(t) = �(t) =

1

p(t)

+ �; (4.7)

whih follows from Theorem 2.1.

Let X(�; jt� t

0

j



) = ff : jt� t

0

j



f(t) 2 X(�)g:

Axiom 2. For any  < 1� �(t

0

) the imbedding X(�; jt� t

0

j



) � L

1

(�)

is valid and C

1

(�) is dense in X(�; jt� t

0

j



), whatsoever t

0

2 � is.

Lemma 4.1. Let the spae X(�) satisfy onditions (4:1){(4:2) and t

1

;

t

2

; : : : ; t

n

2 �. Then

n

Y

k=1

jt� t

k

j



k

2 X(�) (4.8)

for all 

k

> ��

k

, k = 1; 2; : : : ; n.

Proof. Let �rst n = 1. If 

1

� 0, the inlusion (4.8) is obvious beause of

the imbedding C(�) � X(�).

Let 

1

� 0. Sine 1 2 X(�), from Axiom 1 it follows that jt� t

1

j



1

S(j� �

t

1

j

�

1

)(t) 2 X(�). As�

1

� 0, we have that S(j��t

1

j

�

1

)(t) is a ontinuous

funtion non-vanishing at the point y = t

1

, as is known. Then jt � t

1

j



1

2

X(�), by property (4.2) taken into aount.

The ase n > 1 redues to the ase n = 1 by introduing a unity par-

tition on �: 1 �

n

P

j=1

!

j

(t) with !

j

(t) 2 C

1

(�) and !

j

(t) � 0 in a small

neigbourhood of the point t

j

. Then

n

Y

k=1

jt� t

k

j



k

=

n

X

j=1

jt� t

j

j



j

a

j

(t) (4.9)

with a

j

(t) 2 C

1

(�), so that

n

Q

k=1

jt � t

k

j



k

2 X in view of the ase n = 1

and (4.2). �

Let now

X(�; �) =

�

f : �(t)f(t)2X(�)

	

; �(t) =

n

Y

k=1

jt� t

k

j



k

; (4.10)

t

1

; : : : ; t

n

2 �:
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Lemma 4.2. Let X(�) be a Banah funtion spae satisfying onditions

(4:1){(4:2) and Axioms 1{2. Then the spae X(�; �) satis�es onditions

(4:1){(4:2) as well, if

��

(

t

k

) < 

k

< 1� �(t

k

); k = 1; : : : ; n:

Proof. To verify properties (4.1){(4.2) for the spae X(�; �), we observe

that � � C(�) � X(�) by Lemma 4.1, whih means that C(�) � X(�; �).

The imbedding X(�; �) � L

1

(�) is easily derived from Axiom 2 (introdue

the unity partition).

Property (4.2) for X(�; �) obviously follows from its validity for X(�).

Property (4.3) is in fat postulated in Axiom 1, the passage from the single

weight jt� t

k

j



k

to the weight �(t) in (4.10) being justi�ed by the standard

us of a unity partition, as in (4.9). Finally, property (4.2) is also in fat

postulated in Axiom 1 sine the spae X(�; �) is the algebrai sum of the

spaes X(�; jt� t

k

j); k = 1; 2; :::; n. �

4.2. X-nonsingular funtions and X-index of a PC-funtion. Here

we present an abstrat Banah spae reformulation of the notions of p-non-

singularity and p-index [10℄. A development of these notions in the ontext

of Carleson urves related to the notion of the indiator set may be found

in [3℄, Proposition 7.3 and Theorem 7.4.

For a funtion a 2 PC(�) we put as usual

(t) =

1

2�i

ln

a(t� 0)

a(t+ 0)

(4.11)

and

!(t) =

n

Y

k=1

(t� z

0

)

(t

k

)

k

(4.12)

where z

0

2 D

+

, t

k

are the points of disontinuity of a and the funtions

!

k

(z) = (z � z

0

)

(t

k

)

k

stand for univalent analyti funtions in the omplex

plane with the ut passing from z

0

to in�nity through the point t

k

2 �: The

funtion

a

1

(t) =

a(t)

!(t)

(4.13)

is ontinuous on � independently of the hoie of

<(t

k

) =

1

2�

arg

a(t

k

� 0)

a(t

k

+ 0)

: (4.14)

Following De�nitions 3.1 and 3.2, we introdue the following de�nitions.

De�nition 4.3. LetX(�) be a Banah funtion spae satisfying Axiom 1.

A funtion a 2 PC(�) is alled X-nonsingular if inf

t2�

ja(t)j > 0 and

1

2�

arg

a(t

k

� 0)

a(t

k

+ 0)

=2 [�(t

k

); �(t

k

)℄ +Z (4.15)
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where [� � � ℄ +Z stands for the set of

S

�2[��� ℄

f�; �� 1; �� 2; : : : g, and �(t) and

�(t) are the index funtions of the spae X .

De�nition 4.4. Let X(�) satisfy Axiom 1 and a 2 PC(�) be X-

nonsingular. The integer

ind

X

a =

n

X

k=1

�

�(t

k

)�<(t

k

)

�

; (4.16)

where �(t

k

) are inrements (3.3) and <(t

k

) are hosen in the interval

�(t

k

)� 1 < <(t

k

) < �(t

k

); (4.17)

will be referred to as X-index of the funtion a.

4.3. The ase of a 2 C(�).

Theorem B. Let X(�) be any Banah funtion spae satisfying assump-

tions (4:1){(4:4). The operator A = aP

+

+bP

�

with a, b 2 C(�) is Fredholm

in the spae X if and only if a(t) 6= 0; b(t) 6= 0 for all t 2 �. In this ase

Ind

X

A = ind

X

b

a

:= {.

Proof. The proof is ompletely standard and follows the well known argu-

ments, but we give short proofs for ompleteness.

1st step (ompatness of the ommutators aS � SaI, a 2 C(�)). These

ommutators are ompat in X(�). Indeed, it is known that any funtion

a(t) ontinuous on � may be approximated in C(�) by a rational funtion

r(t), whatsoever Jordan urve � we have, as is known from the famous

Mergelyan's result, see for instane, [8℄, p. 169. Therefore, sine the singular

operator S is bounded in X(�) by assumption (4.3), we obtain that the

ommutator aS � SaI is approximated in the operator norm in X by the

ommutator rS�SrI whih is �nite-dimensional operator, and onsequently

ompat in X(�): Therefore, aS � SaI is ompat.

2st step (suÆieny). By ompatness of the ommutators we have

(aP

+

+ bP

�

)(bP

+

+ aP

�

) = ab I + T , where T is a ompat operator, so

the operator (aP

+

+ bP

�

) has a regularizer. Consequently, it is Fredholm.

3rd step (the operator A

{

= P

+

+t

{

P

�

). Let 0 2 D

+

. The operator A

{

is right invertible in X(�), if { � 0 and left invertible if { � 0 and has the

de�ieny numbers �

X

(A

{

) = { and �

X

(A

{

) = 0 if { � 0 and �

X

(A

{

) = 0

and �

X

(A

{

) = j{j if { � 0. Indeed, the operator A

{

is Fredholm in X(�)

by the suÆieny part of Theorem B (the previous step). The one-sided

invertibility follows from the relations

A

{

A

�{

= I; if { � 0; A

�{

A

{

= I; if { � 0

well known on spaes of \nie" funtions and valid on X(�) by (4.3){(4.4).

To obtain the information on the de�ieny numbers in the spae X(�), we
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observe that H

�

(�) � C(�) � X(�) by (4.1) and that �

H

�(A

{

) = { in

ase { � 0 ([22℄). Therefore, �

X

(A

{

) � {. Sine X(�) � L

1

(�), we also

have �

X

(A

{

) � {. The ase { � 0 is treated similarly.

4th step (the operator N = (t��)P

+

+P

�

). The operatorN is invertible

in X(�), if � 2 D

�

and is Fredholm with Ind

X

N = �1, if � 2 D

+

. Indeed,

the invertibility in the ase when � 2 D

�

is heked diretly: N

1

N =

NN

1

= I , where N

1

=

1

t��

P

+

+ P

�

, with onditions (4.3){(4.4) taken

into aount. The ase when � 2 D

+

follows from the 3rd step, sine

(t� �)P

+

+ P

�

= (t� �)

�

P

+

+ (t� �)

�1

P

�

�

:

5th step (neessity). Suppose that a(t

0

) = 0 for some t

0

2 � and the

operator A is Fredholm. By ompatness of the ommutators aS�SaI (the

1st step), we have the relations

aP

+

+ bP

�

= (P

+

+ bP

�

)(aP

+

+ P

�

) + T

1

= (aP

+

+ P

�

)(P

+

+ bP

�

) + T

2

where T

1

and T

2

are ompat operators in X(�). So aP

+

+P

�

is Fredholm

and a(t

0

) = 0. We may approximate the funtion a in C(�) by rational

funtions a

"

suh that a

"

(t

0

) = 0. Then the operators a

"

P

+

+ P

�

with "

small enough, are Fredholm. To arrive at a ontradition, we follow [9℄,

p. 174, and represent a

"

as a

"

(t) = (t� t

0

)s(t). Then

a

"

P

+

+P

�

= (sP

+

+P

�

)[(t�t

0

)P

+

+P

�

℄ = [(t�t

0

)P

+

+P

�

℄(sP

+

+P

�

)+T;

where T is a ompat operator. Therefore, the operator (t � t

0

)P

+

+ P

�

has a regularizer and is a Fredholm operator, whih is impossible in view

of the statement of the 4th step and the known property of the stability of

index of Fredholm operator.

6th step (index formula). As in [9℄, p. 103, we approximate the funtion

(t) =

a(t)

b(t)

by a rational funtion r(t) so that

(t) = r(t)[1 +m(t)℄ with max

t2�

jm(t)j <

1

kP

+

k

X

: (4.18)

Let r(t) = t

�{

�

+

(t)

�

�

(t)

be the fatorization of the funtion r(t). Sine kmk

C(�)

<

1, we have ind(1 +m) = 0 and then ind r = ind  = �{.

In the ase { � 0, the representation is valid:

A = b�

�

(I +mP

+

)

�

1

�

+

P

+

+

1

�

�

P

�

�

(t

�{

P

+

+ P

�

) (4.19)

with the referene to onditions (4.3){(4.4). The operator I + mP

�

is

invertible sine kmP

+

k

X

< 1 by (4.18) and (4.3). Sine the operator

1

�

+

P

+

+

1

�

�

P

�

is also obviously invertible in X , from (4.19) we obtain

Ind

X

A = ind

X

(t

�{

P

+

) + P

�

= { aording to the statement at the 3rd

step. �
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4.4. The ase of a 2 PC(�).

Theorem C. Let X(�) be any Banah funtion spae satisfying assump-

tions (4:1){(4:4) and Axioms 1{2. The operator A = aP

+

+ bP

�

with

a; b 2 PC(�) is Fredholm in the spae X if

inf

t2�

ja(t)j 6= 0; inf

t2�

jb(t)j 6= 0 (4.20)

and

the funtion

a(t)

b(t)

is X � nonsingular: (4.21)

In this ase

Ind

X

A = � ind

X

a

b

: (4.22)

Condition (4:20) is also neessary for the operator A to be Fredholm in X.

If the index funtions �(t) and �(t) of the spae X oinide at the points t

k

of disontinuity of the oeÆients a(t); b(t):

�(t

k

) = �(t

k

); k = 1; 2; : : : ; n; (4.23)

then ondition (4:21) is neessary as well.

Proof. Beause of ondition (4.20) we may assume that b(t) � 1 (the nees-

sity of (4.20) for both a and b simultaneously is shown similarly to the ase

b(t) � 1).

SuÆieny. Let

!(t) =

!

+

(t)

!

�

(t)

; !

+

(t) =

n

Y

k=1

(z � t

k

)

(t

k

)

; !

�

(t) =

n

Y

k=1

�

z � t

k

z � z

0

�

(t

k

)

be the well known fatorization of the funtion (4.12). We remind that

<(t

k

) are hosen aording to (4.17). We make use of the well known

representation

aP

+

+ P

�

=

1

!

�

(a

1

P

+

+ P

�

)!

�

(!P

+

+ P

�

); (4.24)

where a

1

is funtion (4.13), see for instane, [11℄, p. 22. The funtion a

1

is

in C(�) by the hoie of the values (t

k

). Relation (4.24) being valid for in-

stane in ase of \nie" funtions is extended to the spaeX(�) by ondition

(4.4), sine both the operator !P

+

+P

�

and

1

!

�

(a

1

P

+

+P

�

)!

�

are bounded

inX(�), the former by ondition (4.3) and the latter by Lemma 4.2. The op-

erator

1

!

�

(a

1

P

+

+P

�

)!

�

is Fredholm inX(�) by Theorem B and Lemma 4.2

and its index in X(�) is equal to ind a

1

whih is nothing else, but ind

X

a.

Thus (4.22) is obtained.

It remains to show that the operator !P

+

+P

�

is invertible in the spae

X(�) thanks to the hoie (4.17). This is heked in the familiar way:

N(!P

+

+P

�

) = (!P

+

+P

�

)N , whereN =

1

!

�

(

1

!

P

+

+P

�

)!

�

. The operator

K is bounded under the hoie (4.17) in the spae X(�) by Lemma 4.2.
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Neessity. Let the operator A be Fredholm in X . We �rst assume that

a(t

k

� 0) 6= 0; k = 1; 2; : : : ; n. We have to show that a(t) 6= 0 for all other

points and that the required onditions on the jumps are satis�ed.

1st step (redution to a simpler operator). Sine a(t

k

� 0) 6= 0, the

funtion !(t) is well de�ned and the funtion a

1

(t) =

a(t)

!(t)

is ontinuous. As

the ommutators aS � SaI; a 2 C(�) are ompat in the spae X(�) (see

the 1st step in the proof of Theorem B), we have

A = (!P

+

+ P

�

)(a

1

P

+

+ P

�

) + T (4.25)

From Fredholmness of the operator A we onlude by the Yood theorem (see

f.e. [11℄, p. 4, Property 1.11) that the operator !P

+

+P

�

is a �

�

-operator.

2nd step (neessity of the onditions on jumps for the operator !P

+

+

P

�

). The following lemma reformulates a statement well known for example

for L

p

(�; �)-spaes for the ase of the abstrat spaes X(�).

Lemma 4.3. Let a(t

k

�0) 6= 0; k = 1; 2; : : : ; n and the spae X(�) satisfy

onditions (4:1){(4:4) and Axioms 1{2 and let �(t

k

) = �(t

k

); k = 1; 2; : : : ; n.

The operator 	 = !P

+

+ P

�

with ! de�ned in (4:12), is a �

+

- or �

�

-

operator in the spae X(�) if and only if

<

k

6= �(t

k

) (mod 1) for all k = 1; 2; : : : ; n: (4.26)

Proof. By the suÆieny part of Theorem C, ondition (4.26) is suÆ-

ient. To prove the neessity, suppose that <

k

= �(t

k

) + r for some

r = 0;�1;�2; : : : and for some k, say k = 1, but that the operator 	 is a

�

+

- or �

�

-operator. Let �rst <

k

6= �

k

(mod 1) for all other k = 2; 3; : : : ; n:

We put 	

�"

= !

�"

P

+

+ P

�

, " > 0; where !

�"

= (t � z

0

)

�"

1

!(t): This new

funtion has the new exponents 

�"

1

= 

1

� ". We hoose " small enough,

so that <

1

� " � �

1

is not an integer. Then, by the suÆieny part of

Theorem C, the operators 	

"

and 	

�"

are Fredholm operators in the spae

X(�; �): The alulation of the index by formula (4.22) gives

Ind

X

[(t� z

0

)

�

P

+

+ P

�

℄ = [�(t

1

)�<�℄ in ase <� 6= �(t

1

) +m; (4.27)

where m = 0;�1;�2; : : : and [� � � ℄ on the right-hand side stands for the

entire part of a number. Then

Ind

X

	

"

� Ind

X

	

�"

=

= [<(t

1

) + "� �(t

1

)℄� [<(t

1

)� "� �(t

1

)℄ = ["℄� [�"℄ = 1: (4.28)

But on the other hand, k	

�"

� 	k

X

�  sup

t2�

j(t � z

0

)

�"

� 1j � 

1

" whih

ontradits (4.2) by stability theorem for �

�

-operators in Banah spaes.

This proves the lemma for the ase k = 1. If ondition on (4.26) is

violated for several k = n

1

; : : : ; n

m

; the arguments are similar: the operators
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�"

must then be introdued with the funtions

!

�"

(t) =

m

Y

i=1

(t� z

0

)

�"

i

!(t): �

3rd step (neessity of the onditions for the operator N). Sine the

operator P

+

+ !P

�

is a �

�

-operator (see the 1st step), by Lemma 4.3,

onditions (4.26) are satis�ed. Consequently, by the suÆieny part of

our theorem, the operator P

+

+ !P

�

is a Fredholm operator in the spae

X(�). As is well known, if any two of the linear operators A;B and AB are

Fredholm then the remaining one is Fredholm as well (see, f.e. [11℄, p. 4,

Property 1.12). Therefore, from (4.25) we onlude that the operator a

1

P

+

+

P

�

is Fredholm in X . Then by Theorem B, a

1

(t) 6= 0 and onsequently

a(t) 6= 0, t 2 �.

4rd step. It remains to lift the assumptions a(t

k

� 0) 6= 0; b(t

k

� 0) 6= 0.

Suppose that some of the numbers a(t

k

� 0) are equal to zero and the

operator A is Fredholm in X(�). There exists a omplex number " with an

arbitrarily small modulus and a point t

0

lose to t

k

suh that a(t

k

�0)+" 6= 0,

but a(t

0

)+" = 0. Let A

"

= (a+")P

+

+P

�

. Evidently, kA

"

�Ak = k"Ik = ".

Therefore, by the stability theorem for Fredholm operators, we obtain that

the operator A

"

is Fredholm for suÆiently small ". This ontradits the

preeding part. �

5. Proof of Theorem A

Proof. To show that the statements of Theorem A may be obtained from

Theorem C as a partiular ase, we have to verify that the spae L

p(�)

(�) is

the spae of the typeX(�) under the assumptions of Theorem A. To this end

we have to hek onditions (4.1){(4.4) and Axioms 1{2 of Subsetion 4.1.

Condition (4.1) is obvious by assumption (2.5). Condition (4.2) is evi-

dent.

Condition (4.3) follows from Theorem 2.1.

Condition (4.4), that is, denseness of C

1

(�) in L

p(�)

(�), follows from

Theorem 2.3.

The validity of Axiom 1 for the spae X(�) = L

p(�)

(�) follows from

Theorem 2.1 aording to (4.7). The imbedding L

p(�)

(�; jt � t

0

j



) � L

1

(�)

for  < 1 � �(t

0

), required by Axiom 2, follows from (2.10) sine �(t

0

) =

1

p(t

0

)

aording to (4.7). Finally, the denseness of C

1

(�) in the spaes

X(�; jt� t

0

j



) for t

0

2 � follows as a partiular ase from Theorem 2.2. �

Remark 5.1. Following the same sheme, it is not diÆult to prove that the

operator A = aP

+

+ bP

�

with a; b 2 PC(�) has the same solvability piture

in the spaes with variable exponent as in the spaes with onstant p, that
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is, dim kerA = { = ind

p(�)

a, dim oker A = 0, if { � 0, and dimker A = 0,

dim oker A = j{j, if { � 0.

We also note that, basing on (4.7), one an also easily obtain a similar

orollary from Theorem C for the ase of the weighted spaes L

p(�)

(�; �)

with the power weight �xed to a �nite number of points on �.
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