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SINGULAR INTEGRAL EQUATIONS IN THE LEBESGUE
SPACES WITH VARIABLE EXPONENT

V. KOKILASHVILI AND S. SAMKO

ABSTRACT. For the singular integral operators with piecewise con-
tinuous coefficients there is proved the criterion of Fredholmness and
formula for index in the generalized Lebesgue spaces LP()(T) on a
finite closed Lyapunov curve I" or a curve of bounded rotation. The
obtained criterion shows that Fredholmness in this space and the in-
dex depend on values of the function p(t) at the discontinuity points
of the coefficients of the operator, but do not depend on values of p(t)
at points of their continuity.
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1. INTRODUCTION

We consider the singular integral operator

Ap(t) : = u(t)p(t) + % / @ =f(t), teT, (1.1)
or '
A=aPy +bP_, a=u+v, b=u-—wv, (1.2)

where Py = %(I + S) are the projectors, generated by the singular integral

operator
1 p(r) dr
Se(t) = /7( ) )

T—1
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in the generalized Lebesgue spaces LP()(T') with a variable exponent p(t)
satisfying the logarithmic smoothness condition. The coefficients u and v
are assumed to be piece-wise continuous and I is a finite closed curve in the
complex plane.

We obtain necessary and sufficient conditions for the operator A to be
Fredholm in the space LP(")(T") and give a formula for the index under some
natural assumptions on p(z), see Theorem A. The obtained criterion shows
that Fredholmness of the operator A in the space LP()(T) and its index
depend on values of the function p(t) at the discontinuity points of the
coefficients a(t) and b(t), but do not depend on values of p(t) at points of
continuity.

The generalized Lebesgue spaces LP() with variable exponent and op-
erators in these spaces are intensively studied nowadays. One may see an
evident rise of interest to these spaces and to the corresponding Sobolev type
spaces W™P(") during the last decade, especially the last years. The increase
in studying both the spaces LP() or W™P(") themselves and the operator
theory in these spaces is observed. As is known, this interest is aroused,
apart from mathematical curiosity, by possible applications to models with
the so called non-standard local growth (in fluid mechanics, elasticity theory,
in differential equations, see for example [23], [7] and references therein).

The development of the operator theory in the spaces LP(*) encountered
essential difficulties from the very beginning. For example, in the case of
the spaces LP()(IR"), the convolution operators in general are not bounded
in these spaces, the Young theorem not being valid in the general case. A
convolution operator may be bounded in this space if, roughly speaking,
its kernel has singularity only at the origin, see [24]. One of the problems
which were open for a long time, was the boundedness of the maximal
operator and of singular operators in these spaces. The boundedness of
the maximal operator was recently proved by L. Diening [5], [6] in case of
bounded domains @ C R™ or in the case of ! = R™, but p(z) constant at
infinity. Recently, D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer [4]
proved the boundedness of the maximal operator on unbounded domains
when the exponent p(x) is not necessary constant at infinity.

There is also an evident progress in this direction for singular opera-
tors. L. Diening and M. RuZzicka [7] proved the boundedness of Calderon-
Zygmund type operators in these spaces. As is known, for application, the
weighted boundedness of singular operators is required. The weighted es-
timates with power weights were proved by the authors for the maximal
operator on bounded domains in [5]-[19] see also [14] and for singular type
operators in [20], [16], [18], [17].

In this paper we give an application of the weighted results obtained in
[20], [16], [18], [17] to the theory of Fredholm solvability of singular integral
equations (1.1) with piece-wise continuous coefficients. As is well known
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to researches in this field, to investigate such equations in this or other
function space, one should know exactly what are necessary and sufficient
conditions of weighted singular operator in this space. These conditions
being known, to obtain the criterion of Fredholmness, one should follow
the known scheme of investigation of singular operators in already studied
situations, for example in the spaces L,(T'), p = const. This scheme may
be rewritten in terms of an arbitrary Banach space of functions defined on
I, subject to some natural axioms. We do this in Section 4. As a model
of the scheme to follow we use the Gakhov-Muskhelishvili-Khvedelidze—
Gohberg-Krupnik scheme of investigation of singular operators with piece-
wise continuous coefficients.

The theory of singular integral operators itself was intensively developed
last decades and was generalized, in particular, to the case of general weights
(Muckenhoupt weights) and Carleson curves, both generalizations leading
to new effects, see [1]-[3], [28] and references therein. We do not touch
such generalizations in the LP()-setting in this paper. Basing on the ap-
proaches developed in [1]-[3], [28] one can consider the operator A in these
more general situations, as soon as necessary and sufficient conditions of
the boundedness of the singular operator S in the spaces L”(')(F,p) with
a general weight p and/or a Carleson curve I' are known. For the time
being, this boundedness is a challenging open problem in both the cases.
This problem being solved, this would pave the way to obtain results on
Fredholmness of singular integral operators in more general situations.

For “bad” curves and general weights this open problem is tightly con-
nected with other open questions. As is already known, on Lyapunov curves
the assumption on p(t) guaranteering the boundedness of the singular op-
erator is the logarithmic smoothness condition, see (2.6), which is necessary
in a sense; at the least, it is surely necessary for the maximal operator.

Can the boundedness of the singular integral operator on a Carleson curve
be proved under this condition? Or can it be proved if p(t) is even infinitely
differentiable, but variable. Or on the whole class of Carleson curves the
boundedness may be true only for constant p 7 All these questions are open.

The paper is organized as follows. The main statement on Fredholmness
of the operator A is given in Theorem A. In this statement for the spaces
L”(')(F), the curve I' is assumed to be a Lyapunov curve or a curve of
bounded rotation without cusps.

However, in fact we formulate a more general statement on Fredholm-
ness of the operator A in an abstract Banach space of functions on T,
satisfying some natural axioms. This statement, as already mentioned
above, appears as a result of an abstract Banach space reformulation of
the Gohberg-Krupnik scheme of investigation of singular operators with
piece-wise continuous coefficients. For the completeness of the presentation
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and the reader’s convenience we expose this reformulation with proofs in
Section 4.

The theorem on Fredholmness of the operator A in the spaces LP()(T') is
obtained as a corollary to that abstract Banach space scheme, see Section 5.
It is possible to extend the Fredholmness theorem for the operator A also
for piecewise Lyapunov curves or curves of bounded variation with arbitrary
cusps, but we do not dwell on this extension in this paper.

We remind the basics for the Lebesgue spaces with variable exponents
in Subsection 2.1; the reader is referred for details to the papers [27], [21],
[26], [25] in the case of the spaces LP()(Q), Q € R* and to the papers [19],
[20], [16] in the case of the spaces LP()(T") on curves.

Notation:

I is a finite closed rectifiable Jordan curve on a complex plane;

£ is its length;

D7 is the interior of the curve I' and D~ is its exterior;

PC(T) is the class of piece-wise continuous functions on I" with a finite
number of jumps;

Indx A is the index of the Fredholm operator A in a Banach space X;

ind a is the winding number of a continuous function a on a closed curve
T; ax(A) and Bx(A) are deficiency numbers of a Fredholm operator A in
the Banach space X;

Z:{O,:l:l,:l:Q,:l:3,}, $:1_ﬁt)

2. PRELIMINARIES

a). On LP()-spaces. Let Q be a bounded open subset of R* and p(z) a
measurable function on Q such that 1 < py < p(z) < P < oo, z € Q and

, x,y €. (2.1)

DN | =

|z —y| <

We refer to ([14], Appendix A) for examples of non-holderian functions
satisfying condition (2.1). By LP()(Q) we denote the space of functions
f(z) on Q such that

Ap(f) = [ If (@) Ddx < co.
/

This is a Banach function space with respect to the norm

1f[Iz»c) = inf {A >0: Ap(§) < 1}. (2.2)
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Under condition (2.5) the space LP() coincides with the space

{ ‘/f da: < oo forall ¢(z )ELQ(')(Q)} (2.3)

where Wt) + Tt) = 1, up to equivalence of the norms

1w~ s | [ Fa)ote) do| ~ sup | / F(a)el) dal,
llell () <1 A Aq(p)<1

see [21], Theorem 2.3 or [26], Theorem 3.5.
Let p be a measurable almost everywhere positive integrable function.

The weighted Lebesgue space Lg(') = LP0)(Q, p) is defined as the set of all
measurable functions for which

1z = lpflleey < oo

(2.4)

The space LP() (€, p) is a Banach space.
The space LP()(T) on a rectifiable simple curve

F={teC: t=t(s), 0<s</(},

where s is the arc length, may be introduced in a similar way via the func-

tional
4
B0 = [ 150p = [ {71 as
r 0

We assume that
1<po<pt)<P<oo, tel. (2.5)

Condition (2.1) may be imposed either on the function p(t):

, t1, ta €T (26)

N | =

A
|p(t1) _p(t2)| < —) |t1 —t2| <
D]

or on the function p.(s) = p[t(s)]:

s1, s2 €10,4]. (2.7)

l\:)ln—l

A
[po(s1) = Palo2)| € T, sy =] <
P

Since |t(s1)—t(s2)| < |s1—s2|, condition (2.6) always implies (2.7). Inversely,
(2.7) implies (2.6),if there exists A > 0 such that |s; — sa| < c|t(s1) —t(s2)|*.
Therefore, conditions (2.6) and (2.7) are equivalent, for example on curves
with the so called chord condition.

We shall deal with the weighted space

j7 0] = { £ IF1)p(9) | o) < 00}
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where
p(s) = T It(s) = tlen))® ~ [ Is — exl® (2.8)
k=1 k=1

where ¢, € [0,/], k =1,2,...,n.
We remind the Holder inequality

| [ 1090 dt] < ll 7o ol (29)
r
for the spaces with variable exponent. From (2.9) the imbedding follows
1
LPO(T, |t —to|7) € LY(D), if v < —/—. (2.10)
q(to)

b). Two theorems on the spaces LP()(T). In [18], [17] the following
statements were proved.

Theorem 2.1. Let T be a Lyapunov curve or a curve of bounded rotation
without cusps and let p(s) satisfy conditions (2.5) and (2.7). The operator
S is bounded in the space Lg(')(I‘) with the weight function (2.8) if and only
if

1

1
< Br<——, k=1,2,...,n. 2.11
o) B (2.11)

q(cr)’

Theorem 2.2. Let p(x) satisfy the condition 1 < p(z) < P < 0o, z € R?
and let p(z) > 0 be such that [{x € R* : p(x) =0} =0 and
w(@) = [p(x)") € Lj,o(R"). (2.12)
Then C3°(R™) is dense in the space LPC)(R™, p).

Similarly, the following analogue of Theorem 2.2 can be proved.

Theorem 2.3. Let T' be a Jordan curve. The set C*°(T) (and even the
set of rational functions on T) is dense in LP()(T, p) under the assumptions
1<pt)<P<oo,tc€land|{t T : p(t) =0} =0 and [p(t)]"® €
LY(D).

3. STATEMENT OF THE MAIN RESULT FOR THE SPACES LP()(T)

Let h(t) € PC(T) and t1,t2,...,t, be the points of discontinuity of h(t).
Definition 3.1. Following the known definition ([10], p. 63), we say that
a function h(t) € PC(T) is p(:)-nonsingular, if

infyer |A(t)] > 0 (3.1)
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and at all the points of discontinuity of h(t) the following condition is sat-
isfied:
h(ty, — 0 2r
. (tr —0) »
h(ty +0) ° p(tr)

For a non-vanishing function h(t) € PC(T') we denote

(mod27), k=1,2,...,n. (3.2)

tr+1—0
1
O(t) = — / darg h(t). (3.3)
2T
tr+0

Definition 3.2. Let h(t) € PC(T') be a p(-)-nonsingular function. The
integer

n
. 1 h(ty, —0)
dyya= O(ty) — — —_— 34
ind, ) a ;[m 3 Y8 0] (3.4)
where the values of % arg ZE;:—;S; are chosen in the interval
1 1 h(tr — 0 1
——— < —arg (t = 0) < (3.5)

q(te) 2 7 h(te +0)  p(te)
where ﬁt) + ﬁt) = 1, is called the p(-)-index of the function a.

Basing on Lemma 2.7 from [11], it is easy to see that indp.)a is the
same as the Gohberg—Krupnik p-index defined as the winding number of
the curve, obtained from the image h(T") of the curve I’ by supplementing
it at its discontinuities by the corresponding circular arcs in the well known
way (see for instance, [10], p. 63—64); the only difference is now in the fact
that the angle of the arc is defined by the exponent p(t;) varying from one
discontinuity point to another.

Theorem A. Let T be a closed Lyapunov curve or a curve of bounded
rotation without cusps and let p(t),t € T, satisfy assumptions (2.5) and
(2.7). The operator A = aPy + bP_ with a,b € PC(T") is Fredholm in the
space LPC)(T) if and only if

infrer Ja(t)] £ 0, infyer |b(t)] £ 0 (3.6)

and the function % is p(-)-nonsingular. Under these conditions

IndL A=— indp(.) . (37)

r(-)

Sal S

Theorem A is proved in Section 5.

From Theorem A it follows that the essential spectrum of the operator
aP, +P_ with a € PC(T) in the space L?()(T) (the set of points on complex
plane for which an operator is not Fredholm) is described similarly to the
case of constant p, as the union of the images a(I') and the well known
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circular arcs v, )(a(ty —0),a(ty +0)), connecting the points a(tx —0) and
a(ty + 0) and having the angle #’L) depending on the point tj,.
4. SINGULAR INTEGRAL OPERATORS IN BANACH FUNCTION SPACES X (I

The theory of singular integral equations with coefficients inPC(T") is
well known, for example, in the Lebesgue weighted spaces L, (T, p) (see
for instance, [10] and in other spaces of integrable functions. A natural
question is the following. Let X (T') be an arbitrary Banach function space
on I'. Under what axioms on the space X (I') the result on Fredholmness
of the singular operator is formulated in the terms similar to those used in
Theorem A, that is, in the terms of X-nonsingular functions and X-index,
properly defined.

We give some answer to that question below. In this connection we
observe that the idea of singling out the bounds for the weight functions
(used in Axioms 1 and 2) as the base of construction of Fredholm criterion
is well known in the theory of singular integral operators, see [28]; [1]-[3],
Ch. 2, [12]. In the context of Carleson curves and general weights this idea
led to the notion of the so called indicator set of the space at the point
to € T', see [3], p. 72. We show that it is possible to axiomatize this idea so
that the Gohberg-Krupnik approach known for L, (T, p)-spaces on Lyapunov
curves, may be presented for an arbitrary Banach function space under two
natural axioms.

4.1. Banach function spaces, suitable for singular operators. Let
X = X(T') be any Banach space of functions on a closed simple Jordan
rectifiable curve T satisfying the following assumptions

C(T) c X(T) c Ly(T), (4.1)

lla fllx < supla(®)] - [If[lx for any a € Loo(T), (4.2)
€

the operator S is bounded in X (T), (4.3)

)

C>*(I') is densein X(I). (44

Assumptions (4.1)—(4.4) will be used to formulate the statement on Fred-

holmness in the case of continuous coefficients. For the case of piece-wise
coefficients we shall also need the following Axioms 1 and 2.

Axiom 1. For the space X(T') there exist two functions a(t) and 5(t),
0 <a(t)<1,0<p(t) <1, such that the operator

|t — to| S|t — to| YT, to el (4.5)
is bounded in the space X (T) for all v(to) such that
~a(to) < 1(to) < 1 B(to) (4.6)

and is unbounded in X(T') if v(to) ¢ (—a(to),1 — B(to)).
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The functions «a(t) and (t) will be called index functions of the space
X(T).
In the case X (') = LPO)(T, p) = {f : |t — to|*f(t) € LPC)(I")} we have

— t i, (47)

which follows from Theorem 2.1.
Let X (T, |t — to|") = {f : |t — tol £ () € X(T)}.

Axiom 2. For any v <1 — B(ty) the imbedding X (T, |t — to|?) C LY(T)
is valid and C*°(T") is dense in X (T, |t — to|”), whatsoever tg € T is.

Lemma 4.1. Let the space X (T') satisfy conditions (4.1)—(4.2) and ty,
ta,...,tn € I'. Then

Il 1=t € x(T) (4.8)
k=1
for all v, > —a, k=1,2,...,n.

Proof. Let first n = 1. If 94 > 0, the inclusion (4.8) is obvious because of
the imbedding C(T") C X(I).

Let 71 < 0. Since 1 € X (T'), from Axiom 1 it follows that |t —t1]|"* S(|7 —
t1|7")(t) € X(T). As —y; > 0, we have that S(|T—t;|~7)(¢) is a continuous
function non-vanishing at the point y = t;, as is known. Then |t — t1|" €
X (T), by property (4.2) taken into account.

The case n > 1 reduces to the case n = 1 by introducing a unity par-
tition on I': 1 = ) w;(t) with w;(¢t) € C®°(T') and w;(t) = 0 in a small

=1

J_
neigbourhood of the point ¢;. Then

LT 0=t =" 1t = t517a;(0) (4.9)
k=1 j=1

n
with a;(t) € Coo(T), so that [] |t — tx]”* € X in view of the case n = 1

k=1
and (4.2). O

Let now
X(T,p) = {f:p0)f (&) €XD)}, p(t) = JT It —tul™, (4.10)
k=1

t1,...,th €T.
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Lemma 4.2. Let X(T') be a Banach function space satisfying conditions
(4.1)—(4.2) and Axioms 1-2. Then the space X(T',p) satisfies conditions
(4.1)—(4.2) as well, if

—Oé(tk) < <1-=p8@r), k=1,...,n.

Proof. To verify properties (4.1)-(4.2) for the space X(T,p), we observe
that p - C(T") ¢ X(T') by Lemma 4.1, which means that C(I") C X (T, p).
The imbedding X (T, p) C L'(T) is easily derived from Axiom 2 (introduce
the unity partition).

Property (4.2) for X(T, p) obviously follows from its validity for X (T).
Property (4.3) is in fact postulated in Axiom 1, the passage from the single
weight |t — tx|™ to the weight p(t) in (4.10) being justified by the standard
us of a unity partition, as in (4.9). Finally, property (4.2) is also in fact
postulated in Axiom 1 since the space X (T, p) is the algebraic sum of the
spaces X (T, |t — tx]), k =1,2,...,n. O

4.2. X-nonsingular functions and X-index of a PC-function. Here
we present an abstract Banach space reformulation of the notions of p-non-
singularity and p-index [10]. A development of these notions in the context
of Carleson curves related to the notion of the indicator set may be found
in [3], Proposition 7.3 and Theorem 7.4.

For a function a € PC(T') we put as usual

1 a(t —0)
70 = 5 M T o)

(4.11)

and
n

w(t) = JJ (¢~ z0)7 ™ (4.12)
k=1
where z9 € DT, t; are the points of discontinuity of a and the functions
w(2) = (2 — zo)z(t’“) stand for univalent analytic functions in the complex
plane with the cut passing from zy to infinity through the point ¢;, € I'. The
function

a(t)
t) = —+= 4.1
al( ) w(t) ( 3)
is continuous on I' independently of the choice of
1 tr — 0
Ry(tr) = — arg altr = 0) (4.14)

27 a(ty +0)
Following Definitions 3.1 and 3.2, we introduce the following definitions.

Definition 4.3. Let X (I') be a Banach function space satisfying Axiom 1.
A function a € PC(T") is called X-nonsingular if tlrellf la(t)| > 0 and

1 a(ty — 0)

— arg alte £0)

o ¢ [a(tr), B(ty)] + Z (4.15)
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where [-+ -]+ Z stands for the set of |J {£,6+£1,6+2,...}, and «(t) and
B(t) are the index functions of the space X.
Definition 4.4. Let X(T') satisfy Axiom 1 and a € PC(T) be X-
nonsingular. The integer
n
indx a = Z [G(tk) — §R’y(tk)], (4.16)
k=1
where 6(t;,) are increments (3.3) and R+y(t) are chosen in the interval
Bte) — 1 < Ry(ty) < alty), (4.17)

will be referred to as X-index of the function a.
4.3. The case of a € C(I").

Theorem B. Let X (T') be any Banach function space satisfying assump-
tions (4.1)—<(4.4). The operator A = aPy+bP_ with a, b € C(T') is Fredholm
in the space X if and only if a(t) # 0,b(t) # 0 for all t € T. In this case
Indx A =indx % = .

Proof. The proof is completely standard and follows the well known argu-
ments, but we give short proofs for completeness.

1st step (compactness of the commutators aS — Sal, a € C(T')). These
commutators are compact in X (I"). Indeed, it is known that any function
a(t) continuous on I' may be approximated in C'(T') by a rational function
r(t), whatsoever Jordan curve T' we have, as is known from the famous
Mergelyan’s result, see for instance, [8], p. 169. Therefore, since the singular
operator S is bounded in X (I') by assumption (4.3), we obtain that the
commutator aS — Sal is approximated in the operator norm in X by the
commutator S —SrI which is finite-dimensional operator, and consequently
compact in X (T"). Therefore, aS — Sal is compact.

2st step (sufficiency). By compactness of the commutators we have
(aPy + bP_)(bPy + aP_) = ab I + T, where T is a compact operator, so
the operator (aPy + bP_) has a regularizer. Consequently, it is Fredholm.

3rd step (the operator A,, = Py +t*P_). Let 0 € DF. The operator A,,
is right invertible in X (T"), if s¢ > 0 and left invertible if 5 < 0 and has the
deficiency numbers ax (A,,) = > and Bx(A,) =0if 6 > 0 and ax(4,) =0
and Bx(A,) = |5 if > < 0. Indeed, the operator A,, is Fredholm in X (T")
by the sufficiency part of Theorem B (the previous step). The one-sided
invertibility follows from the relations

A A =1, if #>0, A A, =1I, if %<0

well known on spaces of “nice” functions and valid on X (T") by (4.3)-(4.4).
To obtain the information on the deficiency numbers in the space X (T'), we
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observe that H*(T') ¢ C(T') ¢ X(T') by (4.1) and that ag»(A4,.) = » in
case » > 0 ([22]). Therefore, ax(A4,.) > s. Since X(T') C Li(T), we also
have ax(A,.) < 5. The case s < 0 is treated similarly.

4th step (the operator N = (t—\)Py+P_). The operator N is invertible
in X(T'), if A € D~ and is Fredholm with Indx N = —1, if A € DT. Indeed,
the invertibility in the case when A € D7 is checked directly: N1 N =
NN; = I, where Ny = 5P, + P_, with conditions (4.3)-(4.4) taken
into account. The case when A € DV follows from the 3rd step, since
(t—=XNPp+P_=(t—N [P+ (t—N"1P].

5th step (necessity). Suppose that a(tp) = 0 for some tg € T' and the
operator A is Fredholm. By compactness of the commutators aS — Sal (the
1st step), we have the relations

aP++bP_:(P++bP_)(aP++P_)+T1:(aP++P_)(P++bP_)+T2

where T} and T3 are compact operators in X (I'). So aP; + P_ is Fredholm
and a(tp) = 0. We may approximate the function @ in C(T") by rational
functions a. such that a.(tp) = 0. Then the operators a. Py + P_ with ¢
small enough, are Fredholm. To arrive at a contradiction, we follow [9],
p. 174, and represent a. as a(t) = (t — t9)s(t). Then

G,EP+ +P_ = (SP+ +P_)[(t—t0)P++P_] = [(t—t())P+ +P_](SP+ +P_)+T,

where T is a compact operator. Therefore, the operator (¢t — to)Py + P—
has a regularizer and is a Fredholm operator, which is impossible in view
of the statement of the 4th step and the known property of the stability of
index of Fredholm operator.

6th step (index formula). Asin [9], p. 103, we approximate the function

e(t) = % by a rational function r(¢) so that

1
c(t) =r()[1+m(t)] with max|m(t)| < —=——. 4.18
() = (@)l ®)] nax [m(t)| A (4.18)
Let r(t) = t*”if—gtt; be the factorization of the function r(t). Since ||m||c(r) <
1, we have ind(1 +m) = 0 and then indr = ind ¢ = —s.
In the case s < 0, the representation is valid:
1 1
A=bx_(I +mP;) (—P+ + —P_) (P + P_) (4.19)
X+ X—

with the reference to conditions (4.3)—(4.4). The operator I + mP_ is
invertible since ||[mPy||x < 1 by (4.18) and (4.3). Since the operator
ﬁPjL + X%P, is also obviously invertible in X, from (4.19) we obtain
Indx A = indx (¢t *Py) + P_ = 3 according to the statement at the 3rd
step. (]
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4.4. The case of a € PC(T).

Theorem C. Let X (T') be any Banach function space satisfying assump-
tions (4.1)—(4.4) and Azioms 1-2. The operator A = aP. + bP_ with
a,b € PC(T) is Fredholm in the space X if

infier |a(t)] #0, infeer [b(2)] # 0 (4.20)
and
. a(t) . .
the function 10} is X — nonsingular. (4.21)
In this case a
IndX A=— indX 6 (422)

Condition (4.20) is also necessary for the operator A to be Fredholm in X.
If the index functions a(t) and B(t) of the space X coincide at the points ty,
of discontinuity of the coefficients a(t), b(t):

a(ty) = B(tg), k=1,2,...,n, (4.23)
then condition (4.21) is necessary as well.

Proof. Because of condition (4.20) we may assume that b(t) = 1 (the neces-
sity of (4.20) for both a and b simultaneously is shown similarly to the case

b(t) = 1).
Sufficiency. Let
w(t) = MY wt(t) = ﬁ(z — )Y W (1) = & (z - tk)’Y(tk)
w_(t) , k=1 ’ b1 Z — 20

be the well known factorization of the function (4.12). We remind that
Rv(tr) are chosen according to (4.17). We make use of the well known
representation

1
aP+ +P7:—_(G/1P+ +P,)w7(wP++P,), (424)
w

where a; is function (4.13), see for instance, [11], p. 22. The function a; is
in C(T') by the choice of the values vy(t;). Relation (4.24) being valid for in-
stance in case of “nice” functions is extended to the space X (') by condition
(4.4), since both the operator wPy + P_ and —=(a; Py + P_)w™ are bounded
in X (T'), the former by condition (4.3) and the latter by Lemma 4.2. The op-
erator -= (a1 Py +P_)w™ is Fredholm in X (T') by Theorem B and Lemma 4.2
and its index in X (I') is equal to ind a; which is nothing else, but indxa.
Thus (4.22) is obtained.

It remains to show that the operator wP; + P_ is invertible in the space
X(T') thanks to the choice (4.17). This is checked in the familiar way:
N(wPy+P_) = (wPy+P_)N, where N = -1 (L P, + P_)w~. The operator
K is bounded under the choice (4.17) in the space X (I') by Lemma 4.2.
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Necessity. Let the operator A be Fredholm in X. We first assume that
a(ty £0) # 0,k =1,2,...,n. We have to show that a(t) # 0 for all other
points and that the required conditions on the jumps are satisfied.

1st step (reduction to a simpler operator). Since a(ty £0) # 0, the

function w(t) is well defined and the function a4 (t) = Z((?) is continuous. As

the commutators aS — Sal,a € C(T') are compact in the space X(I") (see
the 1st step in the proof of Theorem B), we have

A:(LLJP+ +P_)(G1P++P_)+T (425)

From Fredholmness of the operator A we conclude by the Yood theorem (see
f.e. [11], p. 4, Property 1.11) that the operator wPy + P_ is a ®_-operator.

2nd step (necessity of the conditions on jumps for the operator wPy +
P_). The following lemma reformulates a statement well known for example
for LP(T, p)-spaces for the case of the abstract spaces X (I).

Lemma 4.3. Let a(ty £0) # 0,k =1,2,...,n and the space X(I') satisfy
conditions (4.1)—(4.4) and Azioms 1-2 and let a(ty) = B(ty), k=1,2,...,n.
The operator ¥ = wP, + P_ with w defined in (4.12), is a ®;- or P_-
operator in the space X (T) if and only if

Ry # a(ty) (mod 1) forall k=1,2,...,n. (4.26)

Proof. By the sufficiency part of Theorem C, condition (4.26) is suffi-
cient. To prove the necessity, suppose that Ry, = «(tr) + r for some
r=0,+1,%+2,... and for some k, say k = 1, but that the operator ¥ is a
®_ - or _-operator. Let first Ryi, # o (mod 1) for all other k = 2,3,... n.
We put ¥i. = wi. Py + P, e > 0, where wi. = (t — 29)F°w(t). This new
function has the new exponents 'ylis =1 £ e. We choose ¢ small enough,
so that Ry, + & — a1 is not an integer. Then, by the sufficiency part of
Theorem C, the operators ¥, and ¥_. are Fredholm operators in the space
X(T, p). The calculation of the index by formula (4.22) gives

Indx[(t — 20)" Py + P-] = [a(t1) — Rv] in case Rv # a(ty) +m, (4.27)

where m = 0,£1,£2,... and [---] on the right-hand side stands for the
entire part of a number. Then

Indx \I’E - IndX ‘I’_E =
=Ry(t) +e—a(t)] =[Ry(th) —e —alt)] =[] = [-e] =1.  (4.28)
But on the other hand, ||¥1. — ¥||x < esup|(t — 20)* — 1| < c1e which
tel

contradicts (4.2) by stability theorem for ®_-operators in Banach spaces.
This proves the lemma for the case k¥ = 1. If condition on (4.26) is
violated for several k = nq, ..., n,,, the arguments are similar: the operators
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W . must then be introduced with the functions

m

we:(t) = [J(t - 20)fw(®). O

i=1

3rd step (necessity of the conditions for the operator N). Since the
operator Py + wP_ is a ®_-operator (see the 1st step), by Lemma 4.3,
conditions (4.26) are satisfied. Consequently, by the sufficiency part of
our theorem, the operator P, + wP_ is a Fredholm operator in the space
X(T'). Asis well known, if any two of the linear operators A, B and AB are
Fredholm then the remaining one is Fredholm as well (see, f.e. [11], p. 4,
Property 1.12). Therefore, from (4.25) we conclude that the operator a; P+
P_ is Fredholm in X. Then by Theorem B, a;(t) # 0 and consequently
a(t) #0,t €T.
4rd step. It remains to lift the assumptions a(ty = 0) # 0,b(t £ 0) # 0.
Suppose that some of the numbers a(t £ 0) are equal to zero and the
operator A is Fredholm in X (T'). There exists a complex number £ with an
arbitrarily small modulus and a point to close to #j such that a(t;+0)+¢ # 0,
but a(tg)+e = 0. Let A. = (a+¢)Py+ P_. Evidently, [|[A.—A|| = ||leI]| = e.
Therefore, by the stability theorem for Fredholm operators, we obtain that
the operator A. is Fredholm for sufficiently small €. This contradicts the
preceding part. a

5. PROOF oF THEOREM A

Proof. To show that the statements of Theorem A may be obtained from
Theorem C as a particular case, we have to verify that the space LP()(T') is
the space of the type X (I') under the assumptions of Theorem A. To this end
we have to check conditions (4.1)—(4.4) and Axioms 1-2 of Subsection 4.1.

Condition (4.1) is obvious by assumption (2.5). Condition (4.2) is evi-
dent.

Condition (4.3) follows from Theorem 2.1.

Condition (4.4), that is, denseness of C°(T') in LP()(T"), follows from
Theorem 2.3.

The validity of Axiom 1 for the space X(I') = LPC)(T") follows from
Theorem 2.1 according to (4.7). The imbedding LP)(T, |t — to|7) € L*(T)
for v < 1 — B(to), required by Axiom 2, follows from (2.10) since S(tp) =
p(lTO) according to (4.7). Finally, the denseness of C*°(T") in the spaces
X(T, |t —to|") for ty € T follows as a particular case from Theorem 2.2. O

Remark 5.1. Following the same scheme, it is not difficult to prove that the
operator A = aPy +bP_ with a,b € PC(T') has the same solvability picture
in the spaces with variable exponent as in the spaces with constant p, that
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is, dimker A = 3 = ind,(.) a, dim coker A = 0, if 5 > 0, and dimker A = 0,
dim coker A = |, if 2 < 0.

We also note that, basing on (4.7), one can also easily obtain a similar
corollary from Theorem C for the case of the weighted spaces Lp(')(F,p)
with the power weight fixed to a finite number of points on I'.
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