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SINGULAR INTEGRAL EQUATIONS IN THE LEBESGUE

SPACES WITH VARIABLE EXPONENT

V. KOKILASHVILI AND S. SAMKO

Abstra
t. For the singular integral operators with pie
ewise 
on-

tinuous 
oeÆ
ients there is proved the 
riterion of Fredholmness and

formula for index in the generalized Lebesgue spa
es L

p(�)

(�) on a

�nite 
losed Lyapunov 
urve � or a 
urve of bounded rotation. The

obtained 
riterion shows that Fredholmness in this spa
e and the in-

dex depend on values of the fun
tion p(t) at the dis
ontinuity points

of the 
oeÆ
ients of the operator, but do not depend on values of p(t)

at points of their 
ontinuity.

îâäæñéâ. ê�öîëéöæ á�áàâêæèæ� òîâáÿëèéñîë�æï çîæðâîæñéæ

á� æêáâóïæï òëîéñè� ñ��ê-ñ��ê ñûõãâðæ çëâòæùæâêðâ�æ�êæ ïæêàñ-

è�îñèæ æêðâàî�èñîæ ëìâî�ðëîâ�æï�åãæï ï�ïîñè ø�çâðæè èæ-

�ìñêëãæï � ûæîâ�äâ à�êï�ä�ãîñèæ èâ�âàæï à�êäëà�áâ�ñè L

p(�)

(�)

ïæãîùââ�öæ. ê�øãâêâ�æ�, îëé �é ïæãîùââ�öæ òîâáÿëèéñîë�� á�

æêáâóïæ á�éëçæáâ�ñèæ� p(t) òñêóùææï éêæöãêâèë�â�äâ ëìâî�ðëîæï

çëâòæùæâêðå� ûõãâðæï ûâîðæèâ�öæ á� �î �îæï á�éëçæáâ�ñèæ p(t)

òñêóùææï éêæöãêâèë�â�äâ é�åæ ñûõãâðë�æï ûâîðæèâ�öæ.

1. Introdu
tion

We 
onsider the singular integral operator

A'(t) : = u(t)'(t) +

v(t)

�i

Z

�

'(�) d�

� � t

= f(t); t 2 �; (1.1)

or

A = aP

+

+ bP

�

; a = u+ v; b = u� v; (1.2)

where P

�

=

1

2

(I � S) are the proje
tors, generated by the singular integral

operator

S'(t) =

1

�i

Z

�

'(�) d�

� � t

;
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in the generalized Lebesgue spa
es L

p(�)

(�) with a variable exponent p(t)

satisfying the logarithmi
 smoothness 
ondition. The 
oeÆ
ients u and v

are assumed to be pie
e-wise 
ontinuous and � is a �nite 
losed 
urve in the


omplex plane.

We obtain ne
essary and suÆ
ient 
onditions for the operator A to be

Fredholm in the spa
e L

p(�)

(�) and give a formula for the index under some

natural assumptions on p(x), see Theorem A. The obtained 
riterion shows

that Fredholmness of the operator A in the spa
e L

p(t)

(�) and its index

depend on values of the fun
tion p(t) at the dis
ontinuity points of the


oeÆ
ients a(t) and b(t), but do not depend on values of p(t) at points of


ontinuity.

The generalized Lebesgue spa
es L

p(�)

with variable exponent and op-

erators in these spa
es are intensively studied nowadays. One may see an

evident rise of interest to these spa
es and to the 
orresponding Sobolev type

spa
esW

m;p(�)

during the last de
ade, espe
ially the last years. The in
rease

in studying both the spa
es L

p(�)

or W

m;p(�)

themselves and the operator

theory in these spa
es is observed. As is known, this interest is aroused,

apart from mathemati
al 
uriosity, by possible appli
ations to models with

the so 
alled non-standard lo
al growth (in 
uid me
hani
s, elasti
ity theory,

in di�erential equations, see for example [23℄, [7℄ and referen
es therein).

The development of the operator theory in the spa
es L

p(�)

en
ountered

essential diÆ
ulties from the very beginning. For example, in the 
ase of

the spa
es L

p(�)

(R

n

), the 
onvolution operators in general are not bounded

in these spa
es, the Young theorem not being valid in the general 
ase. A


onvolution operator may be bounded in this spa
e if, roughly speaking,

its kernel has singularity only at the origin, see [24℄. One of the problems

whi
h were open for a long time, was the boundedness of the maximal

operator and of singular operators in these spa
es. The boundedness of

the maximal operator was re
ently proved by L. Diening [5℄, [6℄ in 
ase of

bounded domains 
 � R

n

or in the 
ase of 
 = R

n

, but p(x) 
onstant at

in�nity. Re
ently, D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer [4℄

proved the boundedness of the maximal operator on unbounded domains

when the exponent p(x) is not ne
essary 
onstant at in�nity.

There is also an evident progress in this dire
tion for singular opera-

tors. L. Diening and M. Ru�zi�
ka [7℄ proved the boundedness of Calderon-

Zygmund type operators in these spa
es. As is known, for appli
ation, the

weighted boundedness of singular operators is required. The weighted es-

timates with power weights were proved by the authors for the maximal

operator on bounded domains in [5℄{[19℄ see also [14℄ and for singular type

operators in [20℄, [16℄, [18℄, [17℄.

In this paper we give an appli
ation of the weighted results obtained in

[20℄, [16℄, [18℄, [17℄ to the theory of Fredholm solvability of singular integral

equations (1.1) with pie
e-wise 
ontinuous 
oeÆ
ients. As is well known
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to resear
hes in this �eld, to investigate su
h equations in this or other

fun
tion spa
e, one should know exa
tly what are ne
essary and suÆ
ient


onditions of weighted singular operator in this spa
e. These 
onditions

being known, to obtain the 
riterion of Fredholmness, one should follow

the known s
heme of investigation of singular operators in already studied

situations, for example in the spa
es L

p

(�), p = 
onst. This s
heme may

be rewritten in terms of an arbitrary Bana
h spa
e of fun
tions de�ned on

�, subje
t to some natural axioms. We do this in Se
tion 4. As a model

of the s
heme to follow we use the Gakhov{Muskhelishvili{Khvedelidze{

Gohberg{Krupnik s
heme of investigation of singular operators with pie
e-

wise 
ontinuous 
oeÆ
ients.

The theory of singular integral operators itself was intensively developed

last de
ades and was generalized, in parti
ular, to the 
ase of general weights

(Mu
kenhoupt weights) and Carleson 
urves, both generalizations leading

to new e�e
ts, see [1℄{[3℄, [28℄ and referen
es therein. We do not tou
h

su
h generalizations in the L

p(�)

-setting in this paper. Basing on the ap-

proa
hes developed in [1℄{[3℄, [28℄ one 
an 
onsider the operator A in these

more general situations, as soon as ne
essary and suÆ
ient 
onditions of

the boundedness of the singular operator S in the spa
es L

p(�)

(�; �) with

a general weight � and/or a Carleson 
urve � are known. For the time

being, this boundedness is a 
hallenging open problem in both the 
ases.

This problem being solved, this would pave the way to obtain results on

Fredholmness of singular integral operators in more general situations.

For \bad" 
urves and general weights this open problem is tightly 
on-

ne
ted with other open questions. As is already known, on Lyapunov 
urves

the assumption on p(t) guaranteering the boundedness of the singular op-

erator is the logarithmi
 smoothness 
ondition, see (2.6), whi
h is ne
essary

in a sense; at the least, it is surely ne
essary for the maximal operator.

Can the boundedness of the singular integral operator on a Carleson 
urve

be proved under this 
ondition? Or 
an it be proved if p(t) is even in�nitely

di�erentiable, but variable. Or on the whole 
lass of Carleson 
urves the

boundedness may be true only for 
onstant p ? All these questions are open.

The paper is organized as follows. The main statement on Fredholmness

of the operator A is given in Theorem A. In this statement for the spa
es

L

p(�)

(�), the 
urve � is assumed to be a Lyapunov 
urve or a 
urve of

bounded rotation without 
usps.

However, in fa
t we formulate a more general statement on Fredholm-

ness of the operator A in an abstra
t Bana
h spa
e of fun
tions on �,

satisfying some natural axioms. This statement, as already mentioned

above, appears as a result of an abstra
t Bana
h spa
e reformulation of

the Gohberg-Krupnik s
heme of investigation of singular operators with

pie
e-wise 
ontinuous 
oeÆ
ients. For the 
ompleteness of the presentation
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and the reader's 
onvenien
e we expose this reformulation with proofs in

Se
tion 4.

The theorem on Fredholmness of the operator A in the spa
es L

p(�)

(�) is

obtained as a 
orollary to that abstra
t Bana
h spa
e s
heme, see Se
tion 5.

It is possible to extend the Fredholmness theorem for the operator A also

for pie
ewise Lyapunov 
urves or 
urves of bounded variation with arbitrary


usps, but we do not dwell on this extension in this paper.

We remind the basi
s for the Lebesgue spa
es with variable exponents

in Subse
tion 2.1; the reader is referred for details to the papers [27℄, [21℄,

[26℄, [25℄ in the 
ase of the spa
es L

p(�)

(
), 
 2 R

n

and to the papers [19℄,

[20℄, [16℄ in the 
ase of the spa
es L

p(�)

(�) on 
urves.

Notation:

� is a �nite 
losed re
ti�able Jordan 
urve on a 
omplex plane;

` is its length;

D

+

is the interior of the 
urve � and D

�

is its exterior;

PC(�) is the 
lass of pie
e-wise 
ontinuous fun
tions on � with a �nite

number of jumps;

Ind

X

A is the index of the Fredholm operator A in a Bana
h spa
e X ;

ind a is the winding number of a 
ontinuous fun
tion a on a 
losed 
urve

�; �

X

(A) and �

X

(A) are de�
ien
y numbers of a Fredholm operator A in

the Bana
h spa
e X ;

Z= f0;�1;�2;�3; : : :g;

1

q(t)

= 1�

1

p(t)

:

2. Preliminaries

a). On L

p(�)

-spa
es. Let 
 be a bounded open subset of R

n

and p(x) a

measurable fun
tion on 
 su
h that 1 < p

0

� p(x) � P <1; x 2 
 and

�

�

p(x) � p(y)

�

�

�

A

ln

1

jx�yj

; jx� yj �

1

2

; x; y 2 
: (2.1)

We refer to ([14℄, Appendix A) for examples of non-holderian fun
tions

satisfying 
ondition (2.1). By L

p(�)

(
) we denote the spa
e of fun
tions

f(x) on 
 su
h that

A

p

(f) =

Z




jf(x)j

p(x)

dx <1:

This is a Bana
h fun
tion spa
e with respe
t to the norm

kfk

L

p(�)

= inf

n

� > 0 : A

p

�

f

�

�

� 1

o

: (2.2)
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Under 
ondition (2.5) the spa
e L

p(�)


oin
ides with the spa
e

�

f(x) :

�

�

�

Z




f(x)'(x) dx

�

�

�

<1 for all '(x) 2 L

q(�)

(
)

�

(2.3)

where

1

p(t)

+

1

q(t)

� 1, up to equivalen
e of the norms

kfk

L

p(�)

� sup

k'k

L

q(�)

�1

�

�

�

Z




f(x)'(x) dx

�

�

�

� sup

A

q

(')�1

�

�

�

Z




f(x)'(x) dx

�

�

�

; (2.4)

see [21℄, Theorem 2.3 or [26℄, Theorem 3.5.

Let � be a measurable almost everywhere positive integrable fun
tion.

The weighted Lebesgue spa
e L

p(�)

�

= L

p(�)

(
; �) is de�ned as the set of all

measurable fun
tions for whi
h

kfk

L

p(�)

�

= k�fk

L

p(�)

<1:

The spa
e L

p(�)

(
; �) is a Bana
h spa
e.

The spa
e L

p(�)

(�) on a re
ti�able simple 
urve

� =

�

t 2 C : t = t(s); 0 � s � `

	

;

where s is the ar
 length, may be introdu
ed in a similar way via the fun
-

tional

I

p

(f) =

Z

�

�

�

f(t)j

p(t)

�

�

dtj =

`

Z

0

�

�

f [t(s)℄

�

�

p[t(s)℄

ds:

We assume that

1 < p

0

� p(t) � P <1; t 2 �: (2.5)

Condition (2.1) may be imposed either on the fun
tion p(t):

�

�

p(t

1

)� p(t

2

)

�

�

�

A

ln

1

jt

1

�t

2

j

; jt

1

� t

2

j �

1

2

; t

1

; t

2

2 � (2.6)

or on the fun
tion p

�

(s) = p[t(s)℄:

�

�

p

�

(s

1

)� p

�

(s

2

)

�

�

�

A

ln

1

js

1

�s

2

j

; js

1

� s

2

j �

1

2

; s

1

; s

2

2 [0; `℄: (2.7)

Sin
e jt(s

1

)�t(s

2

)j � js

1

�s

2

j, 
ondition (2.6) always implies (2.7). Inversely,

(2.7) implies (2.6),if there exists � > 0 su
h that js

1

�s

2

j � 
jt(s

1

)� t(s

2

)j

�

:

Therefore, 
onditions (2.6) and (2.7) are equivalent, for example on 
urves

with the so 
alled 
hord 
ondition.

We shall deal with the weighted spa
e

L

p(�)

(�; �) =

�

f : kf [t(s)℄�(s)k

L

p(s)

<1
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where

�(s) =

n

Y

k=1

jt(s)� t(


k

)j

�

k

t

n

Y

k=1

js� 


k

j

�

k

(2.8)

where 


k

2 [0; `℄, k = 1; 2; : : : ; n.

We remind the H�older inequality

�

�

�

Z

�

f(t)g(t) dt

�

�

�

� 
kfk

L

p(�)

kgk

L

q(�)

(2.9)

for the spa
es with variable exponent. From (2.9) the imbedding follows

L

p(�)

(�; jt� t

0

j




) � L

1

(�); if 
 <

1

q(t

0

)

: (2.10)

b). Two theorems on the spa
es L

p(�)

(�). In [18℄, [17℄ the following

statements were proved.

Theorem 2.1. Let � be a Lyapunov 
urve or a 
urve of bounded rotation

without 
usps and let p(s) satisfy 
onditions (2:5) and (2:7). The operator

S is bounded in the spa
e L

p(�)

�

(�) with the weight fun
tion (2:8) if and only

if

�

1

p(


k

)

< �

k

<

1

q(


k

)

; k = 1; 2; : : : ; n: (2.11)

Theorem 2.2. Let p(x) satisfy the 
ondition 1 � p(x) � P <1, x 2 R

n

and let �(x) � 0 be su
h that jfx 2 R

n

: �(x) = 0gj = 0 and

w(x) = [�(x)℄

p(x)

2 L

1

lo


(R

n

): (2.12)

Then C

1

0

(R

n

) is dense in the spa
e L

p(�)

(R

n

; �).

Similarly, the following analogue of Theorem 2.2 
an be proved.

Theorem 2.3. Let � be a Jordan 
urve. The set C

1

(�) (and even the

set of rational fun
tions on �) is dense in L

p(�)

(�; �) under the assumptions

1 � p(t) � P < 1, t 2 � and jft 2 � : �(t) = 0gj = 0 and [�(t)℄

p(t)

2

L

1

(�).

3. Statement of the main result for the spa
es L

p(�)

(�)

Let h(t) 2 PC(�) and t

1

; t

2

; : : : ; t

n

be the points of dis
ontinuity of h(t).

De�nition 3.1. Following the known de�nition ([10℄, p. 63), we say that

a fun
tion h(t) 2 PC(�) is p(�)-nonsingular, if

inf

t2�

jh(t)j > 0 (3.1)
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and at all the points of dis
ontinuity of h(t) the following 
ondition is sat-

is�ed:

arg

h(t

k

� 0)

h(t

k

+ 0)

6=

2�

p(t

k

)

(mod 2�); k = 1; 2; : : : ; n: (3.2)

For a non-vanishing fun
tion h(t) 2 PC(�) we denote

�(t

k

) =

1

2�

t

k+1

�0

Z

t

k

+0

d argh(t): (3.3)

De�nition 3.2. Let h(t) 2 PC(�) be a p(�)-nonsingular fun
tion. The

integer

ind

p(�)

a =

n

X

k=1

h

�(t

k

)�

1

2�

arg

h(t

k

� 0)

h(t

k

+ 0)

i

; (3.4)

where the values of

1

2�

arg

h(t

k

�0)

h(t

k

+0)

are 
hosen in the interval

�

1

q(t

k

)

<

1

2�

arg

h(t

k

� 0)

h(t

k

+ 0)

<

1

p(t

k

)

(3.5)

where

1

p(t)

+

1

q(t)

� 1, is 
alled the p(�)-index of the fun
tion a.

Basing on Lemma 2.7 from [11℄, it is easy to see that ind

p(�)

a is the

same as the Gohberg{Krupnik p-index de�ned as the winding number of

the 
urve, obtained from the image h(�) of the 
urve � by supplementing

it at its dis
ontinuities by the 
orresponding 
ir
ular ar
s in the well known

way (see for instan
e, [10℄, p. 63{64); the only di�eren
e is now in the fa
t

that the angle of the ar
 is de�ned by the exponent p(t

k

) varying from one

dis
ontinuity point to another.

Theorem A. Let � be a 
losed Lyapunov 
urve or a 
urve of bounded

rotation without 
usps and let p(t); t 2 �, satisfy assumptions (2:5) and

(2:7). The operator A = aP

+

+ bP

�

with a; b 2 PC(�) is Fredholm in the

spa
e L

p(�)

(�) if and only if

inf

t2�

ja(t)j 6= 0; inf

t2�

jb(t)j 6= 0 (3.6)

and the fun
tion

a(t)

b(t)

is p(�)-nonsingular. Under these 
onditions

Ind

L

p(�)

A = � ind

p(�)

a

b

: (3.7)

Theorem A is proved in Se
tion 5.

From Theorem A it follows that the essential spe
trum of the operator

aP

+

+P

�

with a 2 PC(�) in the spa
e L

p(�)

(�) (the set of points on 
omplex

plane for whi
h an operator is not Fredholm) is des
ribed similarly to the


ase of 
onstant p, as the union of the images a(�) and the well known
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ir
ular ar
s �

p(t

k

)

(a(t

k

� 0); a(t

k

+0)), 
onne
ting the points a(t

k

� 0) and

a(t

k

+ 0) and having the angle

2�

p(t

k

)

depending on the point t

k

.

4. Singular integral operators in Bana
h fun
tion spa
es X(�)

The theory of singular integral equations with 
oeÆ
ients inPC(�) is

well known, for example, in the Lebesgue weighted spa
es L

p

(�; �) (see

for instan
e, [10℄ and in other spa
es of integrable fun
tions. A natural

question is the following. Let X(�) be an arbitrary Bana
h fun
tion spa
e

on �. Under what axioms on the spa
e X(�) the result on Fredholmness

of the singular operator is formulated in the terms similar to those used in

Theorem A, that is, in the terms of X-nonsingular fun
tions and X-index,

properly de�ned.

We give some answer to that question below. In this 
onne
tion we

observe that the idea of singling out the bounds for the weight fun
tions

(used in Axioms 1 and 2) as the base of 
onstru
tion of Fredholm 
riterion

is well known in the theory of singular integral operators, see [28℄; [1℄{[3℄,

Ch. 2, [12℄. In the 
ontext of Carleson 
urves and general weights this idea

led to the notion of the so 
alled indi
ator set of the spa
e at the point

t

0

2 �, see [3℄, p. 72. We show that it is possible to axiomatize this idea so

that the Gohberg-Krupnik approa
h known for L

p

(�; �)-spa
es on Lyapunov


urves, may be presented for an arbitrary Bana
h fun
tion spa
e under two

natural axioms.

4.1. Bana
h fun
tion spa
es, suitable for singular operators. Let

X = X(�) be any Bana
h spa
e of fun
tions on a 
losed simple Jordan

re
ti�able 
urve � satisfying the following assumptions

C(�) � X(�) � L

1

(�); (4.1)

ka fk

X

� sup

t2�

ja(t)j � kfk

X

for any a 2 L

1

(�); (4.2)

the operator S is bounded in X(�); (4.3)

C

1

(�) is dense in X(�): (4.4)

Assumptions (4.1){(4.4) will be used to formulate the statement on Fred-

holmness in the 
ase of 
ontinuous 
oeÆ
ients. For the 
ase of pie
e-wise


oeÆ
ients we shall also need the following Axioms 1 and 2.

Axiom 1. For the spa
e X(�) there exist two fun
tions �(t) and �(t),

0 < �(t) < 1, 0 < �(t) < 1; su
h that the operator

jt� t

0

j


(t

0

)

Sjt� t

0

j

�
(t

0

)

I; t

0

2 � (4.5)

is bounded in the spa
e X(�) for all 
(t

0

) su
h that

��(t

0

) < 
(t

0

) < 1� �(t

0

) (4.6)

and is unbounded in X(�) if 
(t

0

) =2 (��(t

0

); 1� �(t

0

)).
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The fun
tions �(t) and �(t) will be 
alled index fun
tions of the spa
e

X(�).

In the 
ase X(�) = L

p(�)

(�; �) = ff : jt� t

0

j

�

f(t) 2 L

p(�)

(�)g we have

�(t) = �(t) =

1

p(t)

+ �; (4.7)

whi
h follows from Theorem 2.1.

Let X(�; jt� t

0

j




) = ff : jt� t

0

j




f(t) 2 X(�)g:

Axiom 2. For any 
 < 1� �(t

0

) the imbedding X(�; jt� t

0

j




) � L

1

(�)

is valid and C

1

(�) is dense in X(�; jt� t

0

j




), whatsoever t

0

2 � is.

Lemma 4.1. Let the spa
e X(�) satisfy 
onditions (4:1){(4:2) and t

1

;

t

2

; : : : ; t

n

2 �. Then

n

Y

k=1

jt� t

k

j




k

2 X(�) (4.8)

for all 


k

> ��

k

, k = 1; 2; : : : ; n.

Proof. Let �rst n = 1. If 


1

� 0, the in
lusion (4.8) is obvious be
ause of

the imbedding C(�) � X(�).

Let 


1

� 0. Sin
e 1 2 X(�), from Axiom 1 it follows that jt� t

1

j




1

S(j� �

t

1

j

�


1

)(t) 2 X(�). As�


1

� 0, we have that S(j��t

1

j

�


1

)(t) is a 
ontinuous

fun
tion non-vanishing at the point y = t

1

, as is known. Then jt � t

1

j




1

2

X(�), by property (4.2) taken into a

ount.

The 
ase n > 1 redu
es to the 
ase n = 1 by introdu
ing a unity par-

tition on �: 1 �

n

P

j=1

!

j

(t) with !

j

(t) 2 C

1

(�) and !

j

(t) � 0 in a small

neigbourhood of the point t

j

. Then

n

Y

k=1

jt� t

k

j




k

=

n

X

j=1

jt� t

j

j




j

a

j

(t) (4.9)

with a

j

(t) 2 C

1

(�), so that

n

Q

k=1

jt � t

k

j




k

2 X in view of the 
ase n = 1

and (4.2). �

Let now

X(�; �) =

�

f : �(t)f(t)2X(�)

	

; �(t) =

n

Y

k=1

jt� t

k

j




k

; (4.10)

t

1

; : : : ; t

n

2 �:
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Lemma 4.2. Let X(�) be a Bana
h fun
tion spa
e satisfying 
onditions

(4:1){(4:2) and Axioms 1{2. Then the spa
e X(�; �) satis�es 
onditions

(4:1){(4:2) as well, if

��

(

t

k

) < 


k

< 1� �(t

k

); k = 1; : : : ; n:

Proof. To verify properties (4.1){(4.2) for the spa
e X(�; �), we observe

that � � C(�) � X(�) by Lemma 4.1, whi
h means that C(�) � X(�; �).

The imbedding X(�; �) � L

1

(�) is easily derived from Axiom 2 (introdu
e

the unity partition).

Property (4.2) for X(�; �) obviously follows from its validity for X(�).

Property (4.3) is in fa
t postulated in Axiom 1, the passage from the single

weight jt� t

k

j




k

to the weight �(t) in (4.10) being justi�ed by the standard

us of a unity partition, as in (4.9). Finally, property (4.2) is also in fa
t

postulated in Axiom 1 sin
e the spa
e X(�; �) is the algebrai
 sum of the

spa
es X(�; jt� t

k

j); k = 1; 2; :::; n. �

4.2. X-nonsingular fun
tions and X-index of a PC-fun
tion. Here

we present an abstra
t Bana
h spa
e reformulation of the notions of p-non-

singularity and p-index [10℄. A development of these notions in the 
ontext

of Carleson 
urves related to the notion of the indi
ator set may be found

in [3℄, Proposition 7.3 and Theorem 7.4.

For a fun
tion a 2 PC(�) we put as usual


(t) =

1

2�i

ln

a(t� 0)

a(t+ 0)

(4.11)

and

!(t) =

n

Y

k=1

(t� z

0

)


(t

k

)

k

(4.12)

where z

0

2 D

+

, t

k

are the points of dis
ontinuity of a and the fun
tions

!

k

(z) = (z � z

0

)


(t

k

)

k

stand for univalent analyti
 fun
tions in the 
omplex

plane with the 
ut passing from z

0

to in�nity through the point t

k

2 �: The

fun
tion

a

1

(t) =

a(t)

!(t)

(4.13)

is 
ontinuous on � independently of the 
hoi
e of

<
(t

k

) =

1

2�

arg

a(t

k

� 0)

a(t

k

+ 0)

: (4.14)

Following De�nitions 3.1 and 3.2, we introdu
e the following de�nitions.

De�nition 4.3. LetX(�) be a Bana
h fun
tion spa
e satisfying Axiom 1.

A fun
tion a 2 PC(�) is 
alled X-nonsingular if inf

t2�

ja(t)j > 0 and

1

2�

arg

a(t

k

� 0)

a(t

k

+ 0)

=2 [�(t

k

); �(t

k

)℄ +Z (4.15)
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where [� � � ℄ +Z stands for the set of

S

�2[��� ℄

f�; �� 1; �� 2; : : : g, and �(t) and

�(t) are the index fun
tions of the spa
e X .

De�nition 4.4. Let X(�) satisfy Axiom 1 and a 2 PC(�) be X-

nonsingular. The integer

ind

X

a =

n

X

k=1

�

�(t

k

)�<
(t

k

)

�

; (4.16)

where �(t

k

) are in
rements (3.3) and <
(t

k

) are 
hosen in the interval

�(t

k

)� 1 < <
(t

k

) < �(t

k

); (4.17)

will be referred to as X-index of the fun
tion a.

4.3. The 
ase of a 2 C(�).

Theorem B. Let X(�) be any Bana
h fun
tion spa
e satisfying assump-

tions (4:1){(4:4). The operator A = aP

+

+bP

�

with a, b 2 C(�) is Fredholm

in the spa
e X if and only if a(t) 6= 0; b(t) 6= 0 for all t 2 �. In this 
ase

Ind

X

A = ind

X

b

a

:= {.

Proof. The proof is 
ompletely standard and follows the well known argu-

ments, but we give short proofs for 
ompleteness.

1st step (
ompa
tness of the 
ommutators aS � SaI, a 2 C(�)). These


ommutators are 
ompa
t in X(�). Indeed, it is known that any fun
tion

a(t) 
ontinuous on � may be approximated in C(�) by a rational fun
tion

r(t), whatsoever Jordan 
urve � we have, as is known from the famous

Mergelyan's result, see for instan
e, [8℄, p. 169. Therefore, sin
e the singular

operator S is bounded in X(�) by assumption (4.3), we obtain that the


ommutator aS � SaI is approximated in the operator norm in X by the


ommutator rS�SrI whi
h is �nite-dimensional operator, and 
onsequently


ompa
t in X(�): Therefore, aS � SaI is 
ompa
t.

2st step (suÆ
ien
y). By 
ompa
tness of the 
ommutators we have

(aP

+

+ bP

�

)(bP

+

+ aP

�

) = ab I + T , where T is a 
ompa
t operator, so

the operator (aP

+

+ bP

�

) has a regularizer. Consequently, it is Fredholm.

3rd step (the operator A

{

= P

+

+t

{

P

�

). Let 0 2 D

+

. The operator A

{

is right invertible in X(�), if { � 0 and left invertible if { � 0 and has the

de�
ien
y numbers �

X

(A

{

) = { and �

X

(A

{

) = 0 if { � 0 and �

X

(A

{

) = 0

and �

X

(A

{

) = j{j if { � 0. Indeed, the operator A

{

is Fredholm in X(�)

by the suÆ
ien
y part of Theorem B (the previous step). The one-sided

invertibility follows from the relations

A

{

A

�{

= I; if { � 0; A

�{

A

{

= I; if { � 0

well known on spa
es of \ni
e" fun
tions and valid on X(�) by (4.3){(4.4).

To obtain the information on the de�
ien
y numbers in the spa
e X(�), we
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observe that H

�

(�) � C(�) � X(�) by (4.1) and that �

H

�(A

{

) = { in


ase { � 0 ([22℄). Therefore, �

X

(A

{

) � {. Sin
e X(�) � L

1

(�), we also

have �

X

(A

{

) � {. The 
ase { � 0 is treated similarly.

4th step (the operator N = (t��)P

+

+P

�

). The operatorN is invertible

in X(�), if � 2 D

�

and is Fredholm with Ind

X

N = �1, if � 2 D

+

. Indeed,

the invertibility in the 
ase when � 2 D

�

is 
he
ked dire
tly: N

1

N =

NN

1

= I , where N

1

=

1

t��

P

+

+ P

�

, with 
onditions (4.3){(4.4) taken

into a

ount. The 
ase when � 2 D

+

follows from the 3rd step, sin
e

(t� �)P

+

+ P

�

= (t� �)

�

P

+

+ (t� �)

�1

P

�

�

:

5th step (ne
essity). Suppose that a(t

0

) = 0 for some t

0

2 � and the

operator A is Fredholm. By 
ompa
tness of the 
ommutators aS�SaI (the

1st step), we have the relations

aP

+

+ bP

�

= (P

+

+ bP

�

)(aP

+

+ P

�

) + T

1

= (aP

+

+ P

�

)(P

+

+ bP

�

) + T

2

where T

1

and T

2

are 
ompa
t operators in X(�). So aP

+

+P

�

is Fredholm

and a(t

0

) = 0. We may approximate the fun
tion a in C(�) by rational

fun
tions a

"

su
h that a

"

(t

0

) = 0. Then the operators a

"

P

+

+ P

�

with "

small enough, are Fredholm. To arrive at a 
ontradi
tion, we follow [9℄,

p. 174, and represent a

"

as a

"

(t) = (t� t

0

)s(t). Then

a

"

P

+

+P

�

= (sP

+

+P

�

)[(t�t

0

)P

+

+P

�

℄ = [(t�t

0

)P

+

+P

�

℄(sP

+

+P

�

)+T;

where T is a 
ompa
t operator. Therefore, the operator (t � t

0

)P

+

+ P

�

has a regularizer and is a Fredholm operator, whi
h is impossible in view

of the statement of the 4th step and the known property of the stability of

index of Fredholm operator.

6th step (index formula). As in [9℄, p. 103, we approximate the fun
tion


(t) =

a(t)

b(t)

by a rational fun
tion r(t) so that


(t) = r(t)[1 +m(t)℄ with max

t2�

jm(t)j <

1

kP

+

k

X

: (4.18)

Let r(t) = t

�{

�

+

(t)

�

�

(t)

be the fa
torization of the fun
tion r(t). Sin
e kmk

C(�)

<

1, we have ind(1 +m) = 0 and then ind r = ind 
 = �{.

In the 
ase { � 0, the representation is valid:

A = b�

�

(I +mP

+

)

�

1

�

+

P

+

+

1

�

�

P

�

�

(t

�{

P

+

+ P

�

) (4.19)

with the referen
e to 
onditions (4.3){(4.4). The operator I + mP

�

is

invertible sin
e kmP

+

k

X

< 1 by (4.18) and (4.3). Sin
e the operator

1

�

+

P

+

+

1

�

�

P

�

is also obviously invertible in X , from (4.19) we obtain

Ind

X

A = ind

X

(t

�{

P

+

) + P

�

= { a

ording to the statement at the 3rd

step. �
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4.4. The 
ase of a 2 PC(�).

Theorem C. Let X(�) be any Bana
h fun
tion spa
e satisfying assump-

tions (4:1){(4:4) and Axioms 1{2. The operator A = aP

+

+ bP

�

with

a; b 2 PC(�) is Fredholm in the spa
e X if

inf

t2�

ja(t)j 6= 0; inf

t2�

jb(t)j 6= 0 (4.20)

and

the fun
tion

a(t)

b(t)

is X � nonsingular: (4.21)

In this 
ase

Ind

X

A = � ind

X

a

b

: (4.22)

Condition (4:20) is also ne
essary for the operator A to be Fredholm in X.

If the index fun
tions �(t) and �(t) of the spa
e X 
oin
ide at the points t

k

of dis
ontinuity of the 
oeÆ
ients a(t); b(t):

�(t

k

) = �(t

k

); k = 1; 2; : : : ; n; (4.23)

then 
ondition (4:21) is ne
essary as well.

Proof. Be
ause of 
ondition (4.20) we may assume that b(t) � 1 (the ne
es-

sity of (4.20) for both a and b simultaneously is shown similarly to the 
ase

b(t) � 1).

SuÆ
ien
y. Let

!(t) =

!

+

(t)

!

�

(t)

; !

+

(t) =

n

Y

k=1

(z � t

k

)


(t

k

)

; !

�

(t) =

n

Y

k=1

�

z � t

k

z � z

0

�


(t

k

)

be the well known fa
torization of the fun
tion (4.12). We remind that

<
(t

k

) are 
hosen a

ording to (4.17). We make use of the well known

representation

aP

+

+ P

�

=

1

!

�

(a

1

P

+

+ P

�

)!

�

(!P

+

+ P

�

); (4.24)

where a

1

is fun
tion (4.13), see for instan
e, [11℄, p. 22. The fun
tion a

1

is

in C(�) by the 
hoi
e of the values 
(t

k

). Relation (4.24) being valid for in-

stan
e in 
ase of \ni
e" fun
tions is extended to the spa
eX(�) by 
ondition

(4.4), sin
e both the operator !P

+

+P

�

and

1

!

�

(a

1

P

+

+P

�

)!

�

are bounded

inX(�), the former by 
ondition (4.3) and the latter by Lemma 4.2. The op-

erator

1

!

�

(a

1

P

+

+P

�

)!

�

is Fredholm inX(�) by Theorem B and Lemma 4.2

and its index in X(�) is equal to ind a

1

whi
h is nothing else, but ind

X

a.

Thus (4.22) is obtained.

It remains to show that the operator !P

+

+P

�

is invertible in the spa
e

X(�) thanks to the 
hoi
e (4.17). This is 
he
ked in the familiar way:

N(!P

+

+P

�

) = (!P

+

+P

�

)N , whereN =

1

!

�

(

1

!

P

+

+P

�

)!

�

. The operator

K is bounded under the 
hoi
e (4.17) in the spa
e X(�) by Lemma 4.2.



74 V. KOKILASHVILI AND S. SAMKO

Ne
essity. Let the operator A be Fredholm in X . We �rst assume that

a(t

k

� 0) 6= 0; k = 1; 2; : : : ; n. We have to show that a(t) 6= 0 for all other

points and that the required 
onditions on the jumps are satis�ed.

1st step (redu
tion to a simpler operator). Sin
e a(t

k

� 0) 6= 0, the

fun
tion !(t) is well de�ned and the fun
tion a

1

(t) =

a(t)

!(t)

is 
ontinuous. As

the 
ommutators aS � SaI; a 2 C(�) are 
ompa
t in the spa
e X(�) (see

the 1st step in the proof of Theorem B), we have

A = (!P

+

+ P

�

)(a

1

P

+

+ P

�

) + T (4.25)

From Fredholmness of the operator A we 
on
lude by the Yood theorem (see

f.e. [11℄, p. 4, Property 1.11) that the operator !P

+

+P

�

is a �

�

-operator.

2nd step (ne
essity of the 
onditions on jumps for the operator !P

+

+

P

�

). The following lemma reformulates a statement well known for example

for L

p

(�; �)-spa
es for the 
ase of the abstra
t spa
es X(�).

Lemma 4.3. Let a(t

k

�0) 6= 0; k = 1; 2; : : : ; n and the spa
e X(�) satisfy


onditions (4:1){(4:4) and Axioms 1{2 and let �(t

k

) = �(t

k

); k = 1; 2; : : : ; n.

The operator 	 = !P

+

+ P

�

with ! de�ned in (4:12), is a �

+

- or �

�

-

operator in the spa
e X(�) if and only if

<


k

6= �(t

k

) (mod 1) for all k = 1; 2; : : : ; n: (4.26)

Proof. By the suÆ
ien
y part of Theorem C, 
ondition (4.26) is suÆ-


ient. To prove the ne
essity, suppose that <


k

= �(t

k

) + r for some

r = 0;�1;�2; : : : and for some k, say k = 1, but that the operator 	 is a

�

+

- or �

�

-operator. Let �rst <


k

6= �

k

(mod 1) for all other k = 2; 3; : : : ; n:

We put 	

�"

= !

�"

P

+

+ P

�

, " > 0; where !

�"

= (t � z

0

)

�"

1

!(t): This new

fun
tion has the new exponents 


�"

1

= 


1

� ". We 
hoose " small enough,

so that <


1

� " � �

1

is not an integer. Then, by the suÆ
ien
y part of

Theorem C, the operators 	

"

and 	

�"

are Fredholm operators in the spa
e

X(�; �): The 
al
ulation of the index by formula (4.22) gives

Ind

X

[(t� z

0

)

�

P

+

+ P

�

℄ = [�(t

1

)�<�℄ in 
ase <� 6= �(t

1

) +m; (4.27)

where m = 0;�1;�2; : : : and [� � � ℄ on the right-hand side stands for the

entire part of a number. Then

Ind

X

	

"

� Ind

X

	

�"

=

= [<
(t

1

) + "� �(t

1

)℄� [<
(t

1

)� "� �(t

1

)℄ = ["℄� [�"℄ = 1: (4.28)

But on the other hand, k	

�"

� 	k

X

� 
 sup

t2�

j(t � z

0

)

�"

� 1j � 


1

" whi
h


ontradi
ts (4.2) by stability theorem for �

�

-operators in Bana
h spa
es.

This proves the lemma for the 
ase k = 1. If 
ondition on (4.26) is

violated for several k = n

1

; : : : ; n

m

; the arguments are similar: the operators
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�"

must then be introdu
ed with the fun
tions

!

�"

(t) =

m

Y

i=1

(t� z

0

)

�"

i

!(t): �

3rd step (ne
essity of the 
onditions for the operator N). Sin
e the

operator P

+

+ !P

�

is a �

�

-operator (see the 1st step), by Lemma 4.3,


onditions (4.26) are satis�ed. Consequently, by the suÆ
ien
y part of

our theorem, the operator P

+

+ !P

�

is a Fredholm operator in the spa
e

X(�). As is well known, if any two of the linear operators A;B and AB are

Fredholm then the remaining one is Fredholm as well (see, f.e. [11℄, p. 4,

Property 1.12). Therefore, from (4.25) we 
on
lude that the operator a

1

P

+

+

P

�

is Fredholm in X . Then by Theorem B, a

1

(t) 6= 0 and 
onsequently

a(t) 6= 0, t 2 �.

4rd step. It remains to lift the assumptions a(t

k

� 0) 6= 0; b(t

k

� 0) 6= 0.

Suppose that some of the numbers a(t

k

� 0) are equal to zero and the

operator A is Fredholm in X(�). There exists a 
omplex number " with an

arbitrarily small modulus and a point t

0


lose to t

k

su
h that a(t

k

�0)+" 6= 0,

but a(t

0

)+" = 0. Let A

"

= (a+")P

+

+P

�

. Evidently, kA

"

�Ak = k"Ik = ".

Therefore, by the stability theorem for Fredholm operators, we obtain that

the operator A

"

is Fredholm for suÆ
iently small ". This 
ontradi
ts the

pre
eding part. �

5. Proof of Theorem A

Proof. To show that the statements of Theorem A may be obtained from

Theorem C as a parti
ular 
ase, we have to verify that the spa
e L

p(�)

(�) is

the spa
e of the typeX(�) under the assumptions of Theorem A. To this end

we have to 
he
k 
onditions (4.1){(4.4) and Axioms 1{2 of Subse
tion 4.1.

Condition (4.1) is obvious by assumption (2.5). Condition (4.2) is evi-

dent.

Condition (4.3) follows from Theorem 2.1.

Condition (4.4), that is, denseness of C

1

(�) in L

p(�)

(�), follows from

Theorem 2.3.

The validity of Axiom 1 for the spa
e X(�) = L

p(�)

(�) follows from

Theorem 2.1 a

ording to (4.7). The imbedding L

p(�)

(�; jt � t

0

j




) � L

1

(�)

for 
 < 1 � �(t

0

), required by Axiom 2, follows from (2.10) sin
e �(t

0

) =

1

p(t

0

)

a

ording to (4.7). Finally, the denseness of C

1

(�) in the spa
es

X(�; jt� t

0

j




) for t

0

2 � follows as a parti
ular 
ase from Theorem 2.2. �

Remark 5.1. Following the same s
heme, it is not diÆ
ult to prove that the

operator A = aP

+

+ bP

�

with a; b 2 PC(�) has the same solvability pi
ture

in the spa
es with variable exponent as in the spa
es with 
onstant p, that
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is, dim kerA = { = ind

p(�)

a, dim 
oker A = 0, if { � 0, and dimker A = 0,

dim 
oker A = j{j, if { � 0.

We also note that, basing on (4.7), one 
an also easily obtain a similar


orollary from Theorem C for the 
ase of the weighted spa
es L

p(�)

(�; �)

with the power weight �xed to a �nite number of points on �.
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