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1. Introduction

We prove a certain p(·) → q(·)-version of Rubio de Francia’s extrapolation theorem [7]

within the frameworks of weighted spaces L
p(·)
̺ on metric measure spaces. By means of

this extrapolation theorem and known theorems on the boundedness with Muckenhoupt
weights in the case of constant p, we obtain results on weighted p(·) → q(·)- or p(·) → p(·)-
boundedness - in the case of variable exponent p(x) - of the following operators: potential
type operators, Fourier multipliers, multipliers of trigonometric Fourier series, singular
integral operators on Carleson curves and some others.

2. Definitions and preliminaries

In the sequel, (X, d, µ) denotes a metric space with the (quasi)metric d and non-
negative measure µ, Ω is an open set in X. The following conditions are assumed to
be satisfied: 1) all the balls B(x, r) are measurable, 2) the space C(X) of uniformly
continuous functions on X is dense in L1(µ). In most of the statements we also suppose
that 3) the measure µ satisfies the doubling condition: µB(x, 2r) ≤ CµB(x, r), where
C > 0 does not depend on r > 0 and x ∈ X.

For a locally µ-integrable function f : X → R
1 we consider the maximal function

Mf(x) = sup
r>0

1

µ(B(x, r))

∫

B(x,r)

|f(y)| dµ(y).

By As = As(X), where 1 ≤ s < ∞, we denote the class of weights w : X → R
1 which

satisfy the Muckenhoupt condition

sup
B

(
1

µB

∫

B

w(y)dµ(y)

)(
1

µB

∫

B

w
− 1

s−1 (y)dµ(y)

)s−1

< ∞

in the case 1 < s < ∞, and the condition Mw(x) ≤ Cw(x) with a constant C > 0,
not depending on x ∈ X, in the case s = 1. As is known, the weighted boundedness∫
X

(Mf(x))sw(x)dµ(x) ≤ C
∫
X

|f(x)|sw(x)dµ(x) holds, if and only if w ∈ As.
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Definition 2.1. A µ-measurable function p : Ω → R
1 is said to belong to the class

P(Ω), if
1 < p− ≤ p+ < ∞, (1)

where p− = p−(Ω) = ess inf
x∈Ω

p(x) and p+ = p+(Ω) = ess sup
x∈Ω

p(x). It is said to belong to

the class WL(Ω) (weak Lipshitz), if

|p(x) − p(y)| ≤
A

ln 1
d(x,y)

, d(x, y) ≤
1

2
, x, y ∈ Ω, (2)

where A > 0 does not depend on x and y.

Definition 2.2. By L
p(·)
̺ (Ω) we denote the weighted Banach function space of µ-

measurable functions f : Ω → R
+
1 , such that

‖f‖
L

p(·)
̺

:= ‖̺f‖p(·) = inf

{
λ > 0 :

∫

Ω

∣∣∣∣
̺(x)f(x)

λ

∣∣∣∣
p(x)

dµ(x) ≤ 1

}
< ∞. (3)

Definition 2.3. We say that a weight ̺ belongs to the class Ap(·)(Ω), if the maximal

operator M is bounded in the space L
p(·)
̺ (Ω).

For lower and upper local dimensions of X at a point x, we use an approach different
from known in the fractal geometry and used in the variable exponent analysis on metric
measure spaces in [3]. To this end, we use Matuzewska-Orlicz indices of measures of
balls. This idea to introduce local dimensions in terms of these indices by the following
definition was borrowed from [9].

Definition 2.4. The numbers

dim(X; x) = sup
r>1

ln
(

lim
h→0

µB(x,rh)
µB(x,h)

)

ln r
, dim(X; x) = inf

r>1

ln
(

lim
h→0

µB(x,rh)
µB(x,h)

)

ln r
(4)

will be referred to as local lower and upper dimensions.

The “dimension” dim(X; x) may be also rewritten in terms of the upper limit as well:

dim(X; x) = sup
0<r<1

ln
(

lim
h→0

µB(x,rh)
µB(x,h)

)

ln r
. (5)

Since the function µ0(x, r) = lim
h→0

µB(x,rh)
µB(x,h)

is semimultiplicative in r, by properties of

such functions we obtain that dim(X; x) ≤ dim(X; x) and we may rewrite these dimensions
also in the form

dim(X; x) = lim
r→0

lnµ0(x, r)

ln r
, dim(X; x) = lim

r→∞

lnµ0(x, r)

ln r
. (6)

For lower local dimensions we also introduce their lower bound

dim(Ω) := ess inf
x∈X

dim(Ω; x).

In case where Ω is unbounded, we will also need similar dimensions connected in a

sense with the influence of infinity. Let µ∞(x, r) = lim
h→∞

µB(x,rh)
µB(x,h)

. We introduce the

numbers

dim∞(X) = lim
r→0

ln µ∞(x, r)

ln r
, dim∞(X) = lim

r→∞

lnµ∞(x, r)

ln r
. (7)

As shown in [9], these limits do not depend on the “starting” point x. It is easy to see that

they are non-negative. In the sequel, we always assume that dim(Ω), dim∞(Ω), dim∞(Ω)∈
(0,∞).
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We consider, in particular, the weights

̺(x) =
[
1 + d(x0, x)

]β∞

N∏

k=1

[d(x, xk)]βk , xk ∈ X, k = 0, 1, . . . , N, (8)

where β∞ = 0 in the case where X is bounded. Let Π = {x0, x1, . . . , xN} be a given
finite set of points in X. We take d(x, y) = |x − y| in all the cases where X = R

n.

Definition 2.5. A weight function of form (8) is said to belong to the class Vp(·)(Ω, Π),

where p(·) ∈ C(Ω), if

−
dim(Ω)

p(xk)
< βk <

dim(Ω)

p′(xk)
(9)

and, in the case Ω is infinite,

−
dim∞(Ω)

p∞
< β∞ +

N∑

k=1

βk < dim∞(Ω) −
dim∞(Ω)

p∞
. (10)

Note that when the metric space X has a constant dimension s in the sense that
c1rs ≤ µB(x, r) ≤ c2rs with the constants c1 > 0 and c2 > 0, not depending on x ∈ X

and r > 0, the inequalities in (9), (10) and (16) turn respectively into

−
s

p(xk)
< βk <

s

p′(xk)
, −

s

p∞
< β∞ +

N∑

k=1

βk <
s

p′∞
(11)

and
−

s

p(xk)
< m(w) ≤ M(w) <

s

p′(xk)
, k = 1, 2, . . . , N. (12)

We admit also a more general class of weights

̺(x) = w0
[
1 + d(x0, x)

] N∏

k=1

wk

[
d(x, xk)

]
(13)

with “radial” weights, where the functions wk, k = 0, 1, . . . , N, belong to a class of
Zygmund-Bary-Stechkin type with possible oscillation between two power functions with
different exponents.

By U = U([0, ℓ]) we denote the class of functions u ∈ C([0, ℓ]), 0 < ℓ ≤ ∞, such that

u(0) = 0, u(t) > 0 for t > 0 and u is an almost increasing function on [0, ℓ]. By Ũ we
denote the class of function u, such that tau(t) ∈ U for some a ∈ R

1. Recall that a
function v ∈ U is said to belong to the Zygmund-Bary-Stechkin class Φ0

δ , if

h∫

0

v(t)

t
dt ≤ cv(h) and

ℓ∫

h

v(t)

t1+δ
dt ≤ c

v(h)

hδ
,

where c = c(v) > 0 does not depend on h ∈ (0, ℓ]. It is known (see [8]) that v ∈ Φ0
δ, if

and only if 0 < m(v) ≤ M(v) < δ, where

m(w) = sup
t>1

ln
(

lim
h→0

w(ht)
w(h)

)

ln t
and M(w) = sup

t>1

ln
(

lim
h→0

w(ht)
w(h)

)

ln t
. (14)

For functions w defined in the neighborhood of infinity and such that w
(

ℓ2

r

)
∈

Ũ([0, ℓ]), we introduce also

m∞(w) = sup
x>1

ln
[
lim h→∞

w(xh)
w(h)

]

ln x
, M∞(w) = inf

x>1

ln
[
limh→∞

w(xh)
w(h)

]

ln x
. (15)

Generalizing Definition 2.5, we introduce also the following notion.
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Definition 2.6. A weight function ̺ of form (13) is said to belong to the class
V osc

p(·)
(Ω, Π), where p(·) ∈ C(Ω), if

wk(r) ∈ Ũ([0, ℓ]), ℓ = diam Ω and −
dim(Ω)

p(xk)
< m(wk) ≤ M(wk) <

dim(Ω)

p′(xk)
, (16)

k = 1, 2, . . . , N, and (in the case Ω is infinite) w0

(
1
r

)
∈ Ũ([0, δ]) for some δ > 0, and

−
dim∞(Ω)

p∞
<

N∑

k=0

m∞(wk) ≤
N∑

k=0

M∞(wk) <
dim∞(Ω)

p′∞
− ∆p∞ , (17)

where ∆p∞ =
dim∞(Ω)−dim ∞(Ω)

p∞
.

Observe that in the case Ω = X = R
n conditions (16) and (17) take the form

wk(r) ∈ Ũ(R1
+) :=

{
w : w (r) , w

(
1

r

)
∈ Ũ([0, 1])

}
(18)

and

−
n

p(xk)
< m(wk) ≤ M(wk) <

n

p′(xk)
,

−
n

p∞
<

N∑

k=0

m∞(wk) ≤
N∑

k=0

M∞(wk) <
n

p′∞
.

(19)

Remark 2.7. For every p0 ∈ (1, p−) there hold the implications ̺ ∈ Vp(·)(Ω, Π) =⇒

̺−p0 ∈ V(p̃)′(·)(Ω, Π) and ̺ ∈ V ocs
p(·)

(Ω,Π) =⇒ ̺−p0 ∈ V ocs
(p̃)′(·)

(Ω, Π), where p̃(x) = p(x)
p0

.

Theorem 2.8. Let X be a metric space with doubling measure and let Ω be bounded.

If p ∈ P(Ω) ∩ WL(Ω) and ̺ ∈ V osc
p(·)

(Ω, Π), then M is bounded in the space L
p(·)
̺ (Ω).

Theorem 2.9. Let X be a metric space with doubling measure and let Ω be unbounded.

Let p ∈ P(Ω) ∩ WL(Ω) and let there exist R > 0 such that p(x) ≡ p∞ = const for

x ∈ Ω\B(x0, R). If ̺ ∈ V osc
p(·)

(Ω,Π), then M is bounded in the space L
p(·)
̺ (Ω).

The Euclidean version of Theorems 2.8 and 2.9 was proved in [4], [5]; in [5] there were
also proved the corresponding versions of these theorems for the maximal operator on
Carleson curves.

Theorem 2.10. Let Ω be a bounded open set in a doubling measure metric space

X, let the exponent p(x) satisfy conditions (1), (2). Then the operator M is bounded in

L
p(·)
̺ (Ω), if

[̺(x)]p(x) ∈ Ap−(Ω).

We refer to [6] for Theorem 2.9, its detailed proof for the case where X is a Carleson
curve is given in [5], the proof for a doubling measure metric space being in fact the same.

3. Extrapolation theorem on metric measure spaces

In the sequel F = F(Ω) denotes a family of ordered pairs (f, g) of non-negative µ-
measurable functions, defined on an open set Ω ⊂ X. When saying that there holds an
inequality of type (2) for all pairs (f, g) ∈ F and weights w ∈ A1, we always mean that
it is valid for all the pairs, for which the left-hand side is finite, and that the constant c

depends only on p0, q0 and the A1-constant of the weight. In the sequel, the numbers p0

and q0 are arbitrary such that

0 < p0 ≤ q0 < ∞, p0 < p− and
1

p0
−

1

p+
<

1

q0
. (1)
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We use the notation p̃(x) = p(x)
p0

, q̃(x) = q(x)
q0

.

Remark 3.1. The extrapolation Theorem 3.2 with variable exponents in the non-
weighted case ̺(x) ≡ 1 and in the Euclidean setting was proved in [1].

Observe that the measure µ in Theorem 3.2 is not assumed to be doubling.

Theorem 3.2. Let X be a metric measure space and Ω an open set in X. Assume

that for some p0 and q0, satisfying conditions (1) and every weight w ∈ A1(Ω) there

holds the inequality

( ∫

Ω

fq0 (x)w(x)dµ(x)

) 1
q0

≤ c0

( ∫

Ω

gp0(x)[w(x)]
p0
q0 dµ(x)

) 1
p0

(2)

for all f, g in a given family F . Let the variable exponent q(x) be defined by 1
q(x)

= 1
p(x)

−
(

1
p0

− 1
q0

)
, let the exponent p(x) and the weight ̺(x) satisfy the conditions

p ∈ P(Ω) and ̺−q0 ∈ A(q̃)′(Ω). (3)

Then for all (f, g) ∈ F with f ∈ L
p(·)
̺ (Ω) the inequality

‖f‖
L

q(·)
̺

≤ C‖g‖
L

p(·)
̺

(4)

is valid with a constant C > 0, not depending on f and g.

4. Application to problems of the boundedness in L
p(·)
̺ of classical operators

of harmonic analysis

Let

Iα
Xf(x) =

∫

X

f(y) dµ(y)

µB(x, d(x, y))1−γ
, (1)

where 0 < γ < 1. We suppose that

there exists a point x0 ∈ X such that µ(x0) = 0 (2)

and

µ(B(x0)\B(x0, r)) > 0 for all 0 < r < R < ∞. (3)

By means of the known results for constant p0, q0 ([2], p. 412) and extrapolation
Theorem 3.2 we obtain the following statement.

Theorem 4.1. Let X be a metric measure space with doubling measure satisfying

conditions (2)–(3), µX = ∞, let p ∈ P, 0 < γ < 1 and p+ < 1
γ
. The weighted estimate∥∥Iγ

Xf
∥∥

L
q(·)
ρ

≤ C ‖f‖
L

p(·)
ρ

with the limiting exponent q(·) defined by 1
q(x)

= 1
p(x)

− γ,

holds if ̺−q0 ∈ A( q(·)
q0

)′ (X) under any choice of q0 >
p−

1−γp−
.

Remark 4.2. With the help of Theorems 2.8 and 2.9, one can write down the cor-
responding statements on the validity of the Sobolev inequality in terms of the weights
used in Theorems 2.8 and 2.9. For potential operators in the case Ω = R

n one can find
more general statements of such a kind in [11] and [10] for power weights of the class
Vp(·)(R

n,Π) and for radial oscillating weights of the class V osc
p(·)

(Rn,Π), respectively.

The following theorems on multipliers are direct consequences of Theorem 4.1 and
may be given for weights of the class V osc

p(·)
(Ω, Π), but for simplicity of formulation we

give the theorems of this subsection for power type weights of the class Vp(·)(Ω,Π).



114

Theorem 4.3. Let a function m(x) be continuous everywhere in R
n, except for prob-

ably the origin, have the mixed distributional derivative ∂nm
∂x1x2···xn

and the derivatives

Dαm = ∂|α|m

∂x
α1
1 x

α2
2 ···x

αn
n

, α = (α1, . . . , αn) of orders |α| = α1 + · · · + αn ≤ n − 1 contin-

uous beyond the origin and |x||α||Dαm(x)| ≤ C, |α| ≤ n − 1, where the constant C > 0
does not depend on x. Then under conditions (3) and (1) with Ω = R

n, m is a Fourier

multiplier in L
p(·)
̺ (Rn).

Corollary 4.4. Let m satisfy the assumptions of Theorem 4.3 and let the exponent p

and the weight ̺ satisfy the assumptions p ∈ P(Rn) ∩ WL(Rn), p(x) = p∞ = const for

|x| ≥ R with some R > 0, ̺ ∈ V osc
p(·)

(Rn,Π), Π = {x1, . . . , xN} ⊂ R
n.

Corollary 4.5. Let a function m : R
n → R

1 satisfy the assumptions of Theorem

4.3 and let p and ρ satisfy conditions i) and ii) of Corollary 4.4. Then m is a Fourier

multiplier in L
p(·)
̺ (Rn).

Let ∆j = ∆j = [2j , 2j+1] or ∆j = [−2j+1,−2j ], j ∈ Z. By Tm, we denote the

operator defined on the Schwartz space by T̂mf = mf̂. We obtain a generalization of
theorems on Marcinkiewicz multipliers and Littlewood-Paley decompositions for trigono-
metric Fourier series to the case of weighted spaces with variable exponent. Let T = [π, π]

and f(x) ∼ a0
2

+
∞∑

k=0
(ak cos kx + bksinkx).

Theorem 4.6. Let a sequence λk satisfy the conditions |λk| ≤ A and
∑2j−1

k=2j−1 |λk −

λk+1| ≤ A, where A > 0 does not depend on k and j. Suppose that

p ∈ P(T) and ̺−p0 ∈ A(p̃)′(T), where p̃(·) =
p(·)

p0
(4)

with some p0 ∈ (1, p−(T)). Then there exists a function F (x) ∈ L
p(·)
̺ (T) such that

the series
λ0a0

2
+

∞∑
k=0

λk(ak cos kx + bk sin kx) is Fourier series for F and ‖F‖
L

p(·)
̺

≤

cA‖f‖
L

p(·)
̺

, where c > 0 does not depend on f ∈ L
p(·)
̺ (T).

Corollary 4.7. The statement of Theorem 4.6 remains valid in particular, if (4) is

replaced by the assumption that p ∈ P(T) ∩ WL(T) and

̺(x) =
N∏

k=1

wk(|x − xk|), xk ∈ T (5)

where

wk ∈ Ũ([0, 2π]) and −
1

p(xk)
< m(wk) ≤ M(wk) <

1

p′(xk)
. (6)

Theorem 4.8. Let Ak(x) = ak cos kx + bk sin kx, k = 0, 1, 2, . . . , A2−1 = 0. Under

conditions (4) there exist constants c1 > 0 and c2 > 0 such that

c1‖f‖
L

p(·)
̺

≤

∥∥∥∥∥

(
∞∑

j=0

∣∣∣∣
2j−1∑

k=2j−1

Ak(x)

∣∣∣∣
2
)∥∥∥∥∥

1
2

L
p(·)
̺

≤ c2‖f‖
L

p(·)
̺

. (7)

In particular, inequalities (7) hold for p ∈ P(T)∩WL(T) and weights ̺ of form (5)–(6).

Let S∗(f) = S∗(f, x) = sup
k≥0

|Sk(f, x)|, where Sk(f, x) =
k∑

j=0
Aj(x).
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Theorem 4.9. Under conditions (4), ‖S∗(f)‖
L

p(·)
̺

≤ c‖f‖
L

p(·)
̺

. In particular, this

inequality is valid, if p ∈ P(T) ∩ WL(T) and ̺ has form (5)–(6).

Let now Γ be a simple finite Carleson curve and ν the arc length and SΓf(t) =
1
πi

∫
Γ

f(τ) dν(τ)
τ−t

.

Theorem 4.10. Let p ∈ P(Γ) and ̺−p0 ∈ A(p̃)′(Γ), where p̃(·) = p(·)
p0

. Then the

operator SΓ is bounded in the space L
p(·)
̺ (Γ). In particular, SΓ is bounded, if p ∈

P(Γ) ∩ WL(Γ) and ̺(t) =
∏N

k=1 wk(|t − tk|), tk ∈ Γ, where

wk ∈ Ũ
(
[0, ν(Γ)]

)
and −

1

p(tk)
< m(wk) ≤ M(wk) <

1

p′(tk)
. (8)

Let [b, T ]f(x) = b(x)Tf(x) − T (bf)(x), x ∈ R
n be the commutator, generated by the

operator Tf(x) =
∫

Rn

K(x, y)f(y)dy and a function b ∈ BMO(Rn).

Theorem 4.11. Let the kernel K(x, y) fulfill assumptions: ∃ lim
ε→0

∫
y∈Ω:|x−y|>ε

K(x, y) dy

and T is bounded in L2(Ω), |K(x′, y) − K(x, y)| ≤ C
|x′−x|α

|x−y|n+α , |x′ − x| < 1
2
|x −

y|, |K(x, y′) − K(x, y)| ≤ C
|y′−y|α

|x−y|n+α , |y′ − y| < 1
2
|x − y|, α > 0, and let b ∈

BMO(Rn). Then under the conditions

p ∈ P(Rn) and ̺−p0 ∈ A(p̃)′(R
n) with p̃(·) =

p(·)

p0
(9)

the commutator [b, T ] is bounded in the space L
p(·)
̺ (Rn). In particular, the commutator

is bounded, if p ∈ P(Rn) ∩ WL(Rn) and p(x) ≡ p∞ = const outside some ball |x| < R,

and the weight ̺ has the form ̺(x) = w0(1 + |x|)
∏N

k=1 wk(|x − xk|), xk ∈ R
n, with

the factors wk, satisfying conditions (18)–(19).

Let fB = 1
|B|

∫
B

f(x) dx and M#f(x) = sup
B∈X

1
|B|

∫
B

|f(x) − fB | dx be the Fefferman-

Stein maximal function.

Theorem 4.12. Under condition (9), the inequality

∥∥Mf
∥∥

L
p(·)
̺ (Rn)

≤ C
∥∥M#f

∥∥
L

p(·)
̺ (Rn)

(10)

is valid. In particular, inequality (10) is valid, if p ∈ P(Rn)∩WL(Rn) and p(x) ≡ p∞ =
const outside some ball |x| < R, ̺ ∈ V osc

p(·)
(Rn,Π).

Let f = (f1, · · · , fk, · · · ), where fi : R
n → R

1 are locally integrable functions.

Theorem 4.13. Let 0 < θ < ∞. Under conditions (9), the inequality

∥∥∥∥∥

( ∞∑

j=1

(Mfj)
θ

) 1
θ

∥∥∥∥∥
L

p(·)
̺ (Rn)

≤ C

∥∥∥∥∥

( ∞∑

j=1

|fj |
θ

) 1
θ

∥∥∥∥∥
L

p(·)
̺ (Rn)

(11)

is valid. In particular, inequality (11) is valid, if p ∈ P(Rn)∩WL(Rn) and p(x) ≡ p∞ =
const outside some ball |x| < R, ̺ ∈ V osc

p(·)
(Ω, Π).
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