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APPROXIMATION IN WEIGHTED LEBESGUE AND

SMIRNOV SPACES WITH VARIABLE EXPONENTS

D. ISRAFILOV, V. KOKILASHVILI AND S. SAMKO

Abstract. The paper deals with the approximation problems for pe-
riodic and analytic functions in weighted Lebesque spaces with vari-
able exponents.

îâäæñéâ. ïð�ðæ�öæ à�êýæèñèæ� ìâîæëáñèæ á� �ê�èæäñîæ òñ-

êóùæâ�æï �ìîëóïæé�ùææï ìîë�èâéâ�æ ûëêæ�ê èâ�âàæï ïæãîùââ�öæ

ùã�èâ��áæ é�øãâêâ�èæå.

In this survey paper we present the basic theorems of approximation
theory for weighted Lebesgue spaces with variable exponents in the one-
dimensional periodic setting. These spaces have been studied intensively by
many mathematicians (see e.g. the papers [28], [22], [26] and the surveys
[7], [21] and [27]). The study of these spaces has been stimulated by various
problems of elasticity, fluid mechanics, calculus of variation and differential
equations with nonstandard growth conditions. Nowadays both the problem
of denseness of nice functions in variable Sobolev spaces and the problem
of boundedness of integral operators in Lebesgue spaces are solved (see for
example the above mentioned surveys). The approximation problems in the
spaces with nonstandard growth conditions are studied not so much. We
refer to the pioneering paper of I. I. Sharapudinov [29], see also [30].

Let T := [0, 2π] and ω: T → R
1be a weight function, i. e., almost every-

where positive and integrable function on T.

In the sequel the set of all measurable functions p : T → (1,∞) , for which

p := ess inf
x∈T

p (x) > 1 and p := ess sup
x∈T

p (x) <∞

is denoted by ℘.
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For a given p ∈ ℘ and weight ω, by L
p(·)
ω (T) we denote the set of mea-

surable functions f, for which
∫

T

|f (x)ω (x)|p(x) dx <∞;

equipped with the norm

‖f‖
L

p(·)
ω (T)

:= inf

{

λ > 0 :

∫

T

∣

∣

∣

f (x)ω (x)

λ

∣

∣

∣

p(x)

dx ≤ 1

}

it is a Banach space.
It is known [19] that the set of trigonometric polynomials is dense in

L
p(·)
ω (T) , if [ω (x)]p(x) is integrable on T.
Let p (x) and ω (x) be the functions, such that the Hardy-Littlewood

maximal operator

Mf (x) := sup
0<h<π

1

2h

x+h
∫

x−h

|f (t)| dt

is bounded in L
p(·)
ω (T) . By ℜ we denote the class of such pairs.

In particular, we consider the weight

ω (x) :=
n

Π
i=1

(

sin
∣

∣

∣

x− xk

2

∣

∣

∣

)αk

,

where xk, k = 1, 2, . . . are the distinct points on T and

−
1

p (xk)
< αk <

1

p′ (xk)
, k = 1, 2, . . . , n.

for some p ∈ ℘. It is known [17] that if there exists a positive constant c > 0
such that

|p (x) − p (y)| ≤
c

ln (1/ |x− y|)

for arbitrary x and y on T with the condition |x− y| < 1/2, then (p, ω) ∈ ℜ.

Definition 1. For f ∈ L
p(·)
ω (T) and (p, ω) ∈ ℜ we define the k-th

generalized modulus of continuity Ωp(δ),ω,k (f, ·) in the space L
p(·)
ω (T) as

Ωp(·),ω,k (f, δ) := sup
0<hi<δ

∥

∥

∥

∥

k

Π
i=1

(E − σhi
) f

∥

∥

∥

∥

L
p(·)
ω (T)

,

where

σhi
f (x) :=

1

2hi

x+hi
∫

x−hi

f (t) dt.
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Since (p, ω) ∈ ℜ, it is clear that Ωp(·),ω,k (f, ·) is well defined.

For f ∈ L
p(·)
ω (T) we set

En(f)
L

p(·)
ω (T)

:= inf ‖f − Pk‖L
p(·)
ω (T)

, n = 1, 2, . . .

where inf is taken over all trigonometric polynomials of degree not exceeding
n.

The order of approximation by trigonometric polynomials have been
studied by several authors. The elegant presentation of the corresponding
results in the nonweighted and weighted (for some special weights) Lebesgue
spaces Lp, 1 ≤ p ≤ ∞, can be found in [31], [4] and [25]. Problems of
best approximation by trigonometric polynomials in weighted spaces with
weights satisfying the Muckenhoupt Ap (T)−condition were investigated in
the papers [10], [23], [24]. In particular, using Lp (T,ω) version of the k−th
modulus of continuity Ωp(·),ω,k (f, ·) some direct and inverse theorems in
weighted Lebesgue spaces were obtained in [10].

The order of polynomial approximation were also considered in the com-
plex domain, in the weighted and nonweighted Smirnov spaces. In particu-
lar, Walsh and Russel [32] obtained such results when Γ is an analytic curve.
For domains with sufficiently smooth boundary these problems were consid-
ered by S. Y. Alper [1]. The results obtained in this direction in nonweighted
and weighted Smirnov spaces were later extended to the more general do-
mains by several authors (see for example: [15], [2], [3] in nonweighted cases
and [11], [8], [12], [13] and [14],in weighted cases).

In this paper we consider the above mentioned approximation problems
in the weighted Lebesgue and Smirnov spaces with variable exponents.

Let W r
p(·) (T,ω) (r = 1, 2, . . .) be the linear space of functions for which

f (r−1) is absolutely continuous on T and f (r) ∈ L
p(·)
ω (T) . It becomes a

Banach spaces with respect to the norm:

‖f‖W r
p(·)

(T,ω) := ‖f‖
L

p(·)
ω (T)

+ ‖f (r)‖
L

p(·)
ω (T)

.

The weighted Lebesgue spaces with variable exponents may be also de-
fined on a Jordan rectifiable curve Γ, see [16], [20]. For any measurable
bounded exponent p (z) ≥ 1 and any weight ρ ≥ 0, such that

ν {t ∈ Γ : ρ (t) = 0} = 0,

the space Lp(·) (Γ, ρ) is defined as the set of functions f, for which

Ip (f) :=

∫

Γ

|f (z)ρ (z)|
p(z)

dν (z) <∞,
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where ν(z) is the arc-length measure on Γ. The norm in this space is defined
as

‖f‖Lp(·)(Γ,ρ) := inf

{

λ > 0 :

∫

Γ

∣

∣

∣

∣

f (z)ρ (z)

λ

∣

∣

∣

∣

p(z)

dν (z) ≤ 1

}

.

If
1 ≤ p (z) ≤ p1 <∞

and
|ρ (z)|

p(z)
∈ L1 (Γ) ,

then the set C∞ (Γ) (and the set of bounded rational functions on Γ) is
dense in Lp(·) (Γ, ρ) [18].

In the case 1 < p0 ≤ p (z) ≤ p1 < ∞, the space Lp(·) (Γ) coincides with
the space of functions

{

f :

∣

∣

∣

∣

∫

Γ

f (z) g (z)dν (z)

∣

∣

∣

∣

<∞ for all g ∈ Lp
′

(·) (Γ)

}

,

where

p
′

(z) :=
p (z)

p (z) − 1
.

Let f ∈ E1 (G) . Then f has a nontangential limit a. e. on Γ and the
boundary function belongs to L1 (Γ). This boundary function will be also
denoted by f .

Definition 2. The set

Er
p(·) (G, ρ) :=

{

f ∈ E1 (G) : f (r) ∈ Lp(·) (Γ, ρ)
}

is called the ρ− weighted Smirnov class of variable exponent p (·) .

In case of r = 0 and p (·) = p we have the usual weighted Smirnov space
Ep (G, ρ) . The space Ep(·) (G, ρ) becomes a Banach spaces with respect to
the norm:

‖f‖Er
p(·)

(G,ρ) := ‖f‖Lp(·)(Γ,ρ) +
∥

∥

∥
f (r)

∥

∥

∥

Lp(·)(Γ,ρ)
.

In this paper we present basic theorems of approximation theory in the
spaces W r

p(·) (T,ω) and Er
p(·) (G, ρ) (r = 1, 2, . . .), respectively.

New results

The following theorems hold.

Theorem 1. Let W r
p(·) (T,ω) (r = 1, 2, . . .) be the space with the pair

(p, ω) ∈ ℜ. Then for every f ∈W r
p(·) (T,ω) the estimate

En(f)
L

p(·)
ω (T)

≤ crn
−rΩp(·),ω,k

(

f (r),
1

n

)

, k = 1, 2, . . . ,

holds with a constant cr > 0 independent of n.
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The inverse results are the following.

Theorem 2. Let W r
p(·) (T,ω) (r = 0, 1, 2, . . .) be the space with the pair

(p, ω) ∈ ℜ, . Then for f ∈ W r
p(·) (T,ω) and for every natural number n the

estimate

Ωp(·),ω,k

(

f,
1

n

)

≤

≤ c

{

1

n2k

n
∑

m=1

m2k−r−1Em

(

f (r)
)

L
p(·)
ω (T)

+

∞
∑

m=n+1

kr−1Ek

(

f (r)
)

L
p(·)
ω (T)

}

holds for a constant c > 0 independent of n.

Theorem 3. Let W r
p(·) (T,ω) (r = 1, 2, . . .) be the space with the pair

(p, ω) ∈ ℜ. If f ∈W r
p(·) (T,ω) then

En

(

f (r)
)

L
p(·)
ω (T)

≤ c

{

nrEn (f)
L

p(·)
ω (T)

+

∞
∑

k=n+1

kr−1Ek (f)
L

p(·)
ω (T)

}

,

with a constant c = c (r) .

Theorem 4. Let L
p(·)
ω (T,ω) (r = 1, 2, . . .) be the space with the pair

(p, ω) ∈ ℜ. If for f ∈ L
p(·)
ω (T,ω) the inequality

∞
∑

m=1

mr−1Em (f)
L

p(·)
ω (T)

<∞

holds for some r = 1, 2, . . . , then f ∈W r
p(·) (T,ω) and

Ωp(·),ω,k

(

f (r),
1

n

)

≤

≤ c

{

1

n2k

n
∑

m=0

(m+ 1)
2k+r−1

Em (f)
L

p(·)
ω (T)

+

∞
∑

k=n+1

kr−1Ek (f)
L

p(·)
ω (T)

}

.

From Theorem 2, in case of r = 0, we obtain the following Corollary.

Corollary 1. Under the conditions of Theorem 2, if f ∈ L
p(·)
ω (T) satisfies

the inequality

Em(f)
L

p(·)
ω (T)

= O
(

m−α
)

, m = 1, 2, . . . ,

for some α > 0, then for any natural number k and δ > 0,

Ωp(·),ω,k (f, δ) =







O (δα) , k > α/2,
O (δα log (1/δ)) , k = α/2,
O

(

δ2k
)

, k < α/2.
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Hence if we define the generalized Lipschitz class Lip α (p (·) , ω) for α > 0
and k := [α/2] + 1 as

Lip α (p (·) , ω) :=
{

f ∈ Lp(·)
ω (T) : Ωp(·),ω,k (f, δ) ≤ cδα, δ > 0

}

,

then from Corollary 1 we obtain the following

Corollary 2. Under the conditions of Theorem 2, if f ∈ L
p(·)
ω (T) satisfies

the inequality

Em(f)
L

p(·)
ω (T)

= O
(

m−α
)

, m = 1, 2, . . . ,

for some α > 0, then f ∈ Lip α (p (·) , ω) .
Combining this Corollary with Theorem 1 we obtain the following con-

structive description of the classes Lip α (p (·) , ω).

Theorem 5. Let L
p(·)
ω (T) be the space with the pair (p, ω) ∈ ℜ. Then

for α > 0 the following assertions are equivalent:

(i) f ∈ Lip α (p (·) , ω) ;
(ii) Em(f)

L
p(·)
ω

= O (m−α) , m = 1, 2, . . . .

Let G be a finite domain in the complex plane bounded by a rectifiable
Jordan curve L, and let D be the unit disk, T := ∂D, G− := ext L, D− :=
ext T. We denote by ϕ the conformal mapping of G− onto D− normalized
by the conditions

ϕ (∞) = ∞ and lim
z→∞

ϕ (z) /z > 0.

Let ψ be the inverse mapping to ϕ.
We assume that Γ is a smooth Jordan curve and θ (s) , the angle between

the tangent and the positive real axis expressed as a function of the arc
length s has modulus of continuity Ω (θ, s) satisfying the Dini condition

δ
∫

0

Ω (θ, s)

s
ds <∞, δ > 0. (1)

For f ∈ Lp(·) (Γ, ρ) we define the function

f0 (w) := (f ◦ ψ) (w) , w ∈ T.

It is clear that under the condition (1) , if f ∈ Lp(·) (Γ, ρ), then f0 (w) ∈
Lp(·) (T, ρ0) with ρ0 := ρ◦ψ. It is also easy to show that under the condition
(1) the conditions (p, ρ) ∈ ℜ and (p0, ρ0) ∈ ℜ are equivalent.

We define the k−th modulus of smoothess of the function f ∈ Lp(·) (Γ, ρ)
by

Ωk
p(·),Γ,ρ (f, δ) := Ωk

p(·),ρ0

(

f+
0 , δ

)

, δ > 0,
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where the function

f+
0 (w) :=

1

2πi

∫

T

f0 (τ)

τ − w
dτ, w ∈ D,

has nontangential boundary values a. e. on T.
For f ∈ Ep(·)(G, ρ) we set

En(f)Lp(·)(Γ,ρ) := inf ‖f − Pk‖Lp(·)(Γ,ρ) , n = 1, 2, . . . ,

where inf are taken over all algebraic polynomials of degree not exceeding
n.

The Er
p(·)(G, ρ) versions of the above presented results are formulated as

follows.

Theorem 6. Let G be a simply connected domain with the boundary,

satisfying condition (1). Let also Er
p(·)(G, ρ) be the space with the pair

(p0, ρ0) ∈ ℜ. If f ∈ Er
p(·)(G, ρ), then

En(f)Lp(·)(Γ,ρ) ≤ crn
−rΩk

p(·),Γ,ρ

(

f (r),
1

n

)

, k = 1, 2, . . .

with a constant cr > 0.

Theorem 7. Let G be a simply connected domain with the boundary,

satisfying condition (1). Let also Er
p(·)(G, ρ) (r = 0, 1, 2, . . .) be the spaces

with the pair (p, ρ) ∈ ℜ. If f ∈ Er
p(·)(G, ρ), then

Ωk
p(·),Γ,ρ

(

f,
1

n

)

≤ c

{

1

n2k

n
∑

m=1

m2k−r−1Em

(

f (r)
)

Lp(·)(Γ,ρ)
+

+
∞
∑

m=n+1

mr−1Em

(

f (r)
)

Lp(·)(Γ,ρ)

}

.

Theorem 8. Let G be a simply connected domain with the boundary,

satisfying condition (1). Let also Er
p(·)(G, ρ) (r = 1, 2, . . . )be the space with

the pair (p, ρ) ∈ ℜ.If f ∈ Er
p(·)(G, ρ) then

En

(

f (r)
)

Lp(·)(Γ,ρ)
≤

≤ cr

{

nrEn (f)Lp(·)(Γ,ρ) +

∞
∑

k=n+1

kr−1Ek (f)Lp(·)(Γ,ρ)

}

,

with a constant cr > 0.
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Theorem 9. Let G be a simply connected domain with the boundary,

satisfying condition (1) . Let also Ep(·)(G, ρ) (r = 1, 2, . . .) be the space with

the pair (p, ρ) ∈ ℜ. If for f ∈ Ep(·)(G, ρ) holds

∞
∑

m=1

mr−1Em (f)Lp(·)(Γ,ρ) <∞

for some r = 1, 2, . . ., then f ∈ Er
p(·)(G, ρ) and

Ωk
p(·),Γ,ρ

(

f (r),
1

n

)

≤

≤ c

{

1

n2k

n
∑

m=0

(m+ 1)
2k+r−1

Em (f)Lp(·)(Γ,ρ) +

+

∞
∑

m=n+1

mr−1Em (f)Lp(·)(Γ,ρ)

}

with a constant c > 0.
From Theorem 7 in case of r = 0 we obtain the following result.

Corollary 3. Let G be a simply connected domain with the bound-

ary, satisfying condition (1). Let also Ep(·)(G, ρ) be the space with the pair

(p, ρ) ∈ ℜ. If f ∈ Ep(·)(G, ρ) satisfies the inequality

Em(f)Lp(·)(Γ,ρ) = O
(

m−α
)

, m = 1, 2, . . . ,

for some α > 0, then for any natural number k and δ > 0,

Ωk
p(·),Γ,ρ (f, δ) =







O (δα) , k > α/2,
O (δα log (1/δ)) , k = α/2,
O

(

δ2k
)

k < α/2.

If we define the generalized Lipschitz class Lip
Γ
α (p (·) , ρ) for some α > 0

and k := [α/2] + 1 as

Lip Γα (p (·) , ρ) :=
{

f ∈ Ep(·)(G, ρ) : Ωk
p(·),Γ,ρ (f, δ) ≤ cδα, δ > 0

}

,

then, taking Corollary 3 into account, we have the following result.

Corollary 4. Under the conditions of Corollary 3, if f ∈ Ep(·)(G, ρ)
satisfies the inequality

Em(f)Ep(·)(G,ρ) = O
(

m−α
)

, m = 1, 2, . . . ,

for some α > 0, then f ∈ Lip
Γ
α (p (·) , ρ) .

Now combining this corollary with Theorem 6 we obtain the following
constructive description of the classes Lip Γα (p (·) , ρ) .
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Theorem 10. Let G be a simply connected domain with the boundary,

satisfying condition (1). Let also Ep(·)(G, ρ) be the spaces with the pair

(p, ρ) ∈ ℜ. If α > 0, then the following statements are equivalent:

(i) f ∈ Lip Γα (p (·) , ρ) ,
(ii) Em(f)Ep(·)(G,ρ) = O (m−α) , m = 1, 2, . . . .

The statement of Theorem 11 for the nonweighted Smirnov spaces Ep(G),
and constant p > 1, in terms of the usual modulus of continuity in the spaces
Lp(T) of f ◦ ψ, was obtained by Alper in [1] .
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