## V. KOKILASHVILI AND S. SAMKO

## A REFINED INVERSE INEQUALITY OF APPROXIMATION IN WEIGHTED VARIABLE EXPONENT LEBESGUE SPACES

(Reported on 15.03.2009)

Let  $\mathbb{T}=[-\pi,\pi)$  and  $w:\mathbb{T}\to\mathbb{R}^1$  be an almost everywhere positive, integrable function.

By  $P(\mathbb{T})$  we denote the class of measurable,  $2\pi-$  periodic functions on  $\mathbb{T}$  such that

$$1 < p_{-} \le p(x) \le p_{+} < \infty$$

where

$$p_{-} = \underset{x \in \mathbb{T}}{\operatorname{essinf}} p(x)$$
 and  $p_{+} = \underset{x \in \mathbb{T}}{\operatorname{esssup}} p(x)$ .

By  $L_w^{p(\cdot)}(\mathbb{T})$  we denote the weighted Banach function space of measurable  $2\pi$ -periodic functions  $f:\mathbb{T}\to\mathbb{R}^1$  such that

$$||f||_{p(\cdot),w} = \inf \left\{ \lambda > 0 : \int_{\mathbb{T}} \left| \frac{f(x)w(x)}{\lambda} \right|^{p(x)} dx \le 1 \right\} < \infty.$$

**Definition 1.** A variable exponent  $p \in \widetilde{P}(\mathbb{T})$  if  $p \in P(\mathbb{T})$  and

$$|p(x_1) - p(x_2)| \le \frac{c}{|\ln|x_1 - x_2||}$$
 for all  $x_1, x_2 \in \mathbb{T}$ .

**Definition 2.** By the symbol  $A_{p(\cdot)}$  we denote the class of weights satisfying the condition

$$\sup_{I \in J} \frac{1}{|I|^{p_I}} \|w^{p(\cdot)}\|_1 \Big\| \frac{1}{w^{p(\cdot)}} \Big\|_{p'(\cdot)/p(\cdot)} < \infty,$$

where

$$p_I = \left(\frac{1}{|I|} \int_I \frac{dx}{p(x)}\right)^{-1}$$

<sup>2000</sup> Mathematics Subject Classification: 42A10, 45B25, 46E30.

Key words and phrases. Best approximation, trigonometric polynomials, weighted variable exponent Lebesgue spaces.

and J is the class of all intervals in  $\mathbb{T}$ .

Note that in [2] it was proved that when  $p \in \widetilde{P}$  and  $w \in A_{p(\cdot)}$ , then the Hardy–Littlewood maximal function is bounded in  $L_w^{p(\cdot)}$ .

By  $E_n(f)_{p(\cdot),w}$  we denote the best approximation of  $f \in L_w^{p(\cdot)}$  by trigonometric polynomials of degree  $\leq n$ , i.e.

$$E_n(f)_{p(\cdot),w} = \inf \|f - T_k\|_{p(\cdot),w},$$

where the infimum is taken with respect to all trigonometric polynomials of degee  $\leq n$ .

The generalized modulus of a function  $f \in L_w^{p(\cdot)}$  is defined as

$$\Omega_l(f,\delta) = \sup_{0 < h_i < \delta} \left\| \Pi_{i=j}^l (I - A_{h_j}) f \right\|_{p(\cdot),w}, \quad \delta > 0,$$

where I is the identity operator and

$$(A_{h_j}(f))(x) = \frac{1}{2h_j} \int_{x-h_j}^{x+h_j} f(u)du.$$

Note that if  $w \in A_{p(\cdot)}$ , then  $\Omega_l(f, \delta)$  is well-defined [2].

**Theorem 1.** Let  $p \in \widetilde{P}(I)$  and let  $w^{-p_0} \in A_{(p(\cdot)/p_0)'}$  for some  $p_0$ ,  $1 < p_0 < p_-$ . Then there exists a positive constant c such that

$$\Omega_{l}\left(f, \frac{1}{n+1}\right) \le \frac{c}{(n+1)^{l}} \left(\sum_{\nu=0}^{n} (\nu+1)^{\gamma l-1} E_{\nu}^{\gamma}(f)_{p(\cdot), w}\right)^{1/\gamma}, \tag{1}$$

where  $\gamma = \min(2, p_{-})$ .

**Theorem 2.** Under the conditions of Theorem 1, if

$$\sum_{\nu=1}^{\infty} \nu^{\gamma r-1} E_{\nu}^{\gamma}(f)_{p(\cdot),w} < \infty,$$

for some  $r \in \mathbb{N}$  with  $\gamma = \min(2, p_-)$ , then f(x) has the absolutely continuous derivative  $f^{(r-1)}(x)$  and  $f^{(r)} \in L_w^{p(\cdot)}$  and there exists a positive constant c such that

$$\Omega_{l}\left(f^{(r)}, \frac{1}{n+1}\right)_{p(\cdot), w} \leq \frac{c}{(n+1)^{r}} \left(\sum_{\nu=0}^{n} (\nu+1)^{\gamma r-1} E_{\nu}^{\gamma}(f)_{p(\cdot), w}\right)^{1/\gamma} + c \left(\sum_{\nu=1}^{\infty} \nu^{\gamma r-1} E_{\nu}^{\gamma}(f)_{p(\cdot), w}\right)^{1/\gamma}, \tag{2}$$

where  $\gamma = \min(2, p_{-})$ .

The proofs are based on our results on the weighted extrapolation theorem [4] and its corollaries, in particular on an analogue of the Littlewood–Paley theorem in weighted variable Lebesgue spaces

**Theorem A** [4]. Let f be a  $2\pi$ -periodic function and

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} A_k(x), \quad A_k(x) = a_k \cos kx + b_k \sin kx.$$

Let  $w^{-p_0} \in A_{(p(\cdot)/p_0)'}$  for some  $p_0$ ,  $1 < p_0 < p_-$ . Then there exist constants  $c_1$  and  $c_2$  such that

$$c_1 \|f\|_{p(\cdot),w} \le \left\| \left( \sum_{\nu=0}^{\infty} \left| \sum_{k=2\nu-1}^{2^{\nu}-1} A_k(x) \right|^2 \right)^{1/2} \right\|_{p(\cdot),w} \le c_2 \|f\|_{p(\cdot),w}.$$

In the previous theorem we assume that  $A_{2^{-1}}(x) = 0$ .

The following two simple lemmas are needed in the proof.

**Lemma 1.** Let  $1 < p_{-} \le 2$ . Then for an arbitrary system of functions  $\{\varphi_{j}(x)\}_{j=1}^{m}$ ,  $\varphi_{j} \in L_{w}^{p(\cdot)}$  we have

$$\left\| \left( \sum_{j=1}^{m} \varphi_j^2 \right)^{1/2} \right\|_{p(\cdot), w} \le c \left( \sum_{j=1}^{m} \|\varphi_j\|_{p(\cdot), w}^{p_-} \right)^{1/p_-}$$

with a constant c independent of  $\varphi_i$  and m.

**Lemma 2.** Let  $p_- > 2$ . Then for an arbitrary system of functions  $\{\varphi_j(x)\}_{j=1}^m$ ,  $\varphi_j \in L_w^{p(\cdot)}$  we have

$$\left\| \left( \sum_{j=1}^{m} \varphi_j^2 \right)^{1/2} \right\|_{p(\cdot), w} \le c \left( \sum_{j=1}^{m} \|\varphi_j\|_{p(\cdot), w}^2 \right)^{1/2}.$$

Estimates (1) and (2) are sharper versions of the estimates obtained in [3]; they completely recover results known for the constant exponent case (see [1], [5]).

The weight function

$$w(x) = \prod_{k=1}^{n} |x - x_k|^{\beta_k}, \ x_k \in \mathbb{T}, \ x_j \neq x_k \ \text{if } j \neq k,$$

where

$$-\frac{1}{p(x_k)} < \beta_k < \frac{1}{p'(x_k)}$$

satisfies the conditions of Theorems 1 and 2. For more general weights we refer to [4].

Sketch of the proof of Theorem 1. Let  $2^m \le n+1 < 2^{m+1}$ . By  $S_n(f,x)$  we denote the partial sums of  $f \in L_w^{p(\cdot)}$ . We have

$$\Omega_{l}\left(f, \frac{1}{n+1}\right) \leq \Omega_{l}\left(f - S_{2^{m}}, \frac{1}{n+1}\right)_{p(\cdot), w} + \Omega_{l}\left(S_{2^{m}}, \frac{1}{n+1}\right)_{p(\cdot, w} \leq cE_{2^{m}}(f)_{p(\cdot), w} + \Omega_{l}\left(S_{2^{m}}, \frac{1}{n+1}\right)_{p(\cdot), w}.$$

Thus

$$\Omega_{l}\left(S_{2^{m}}, \frac{1}{n+1}\right) \leq \frac{c}{(n+1)^{l}} \left\{ \|S_{1}^{(l)} - S_{0}^{(l)}\|_{p(\cdot), w} + \left\| \sum_{i=0}^{m-1} \left(S_{2^{i+1}}^{(l)} - S_{2^{i}}^{(l)}\right) \right\|_{p(\cdot), w} \right\}.$$
(3)

For the first term on the right side we have

$$||S_1^{(l)} - S_0^{(l)}||_{p(\cdot),w} \le c(|a_1| + |b_1|) \le cE_0(f)_{p(\cdot),w}.$$
(4)

Let now

$$B_{k,\mu} := a_k \cos\left(k + \mu \frac{\pi}{2}\right) x + b_k \sin\left(k + \mu \frac{\pi}{2}\right) x.$$

Applying Theorem A, we get

$$\Big\| \sum_{i=0}^{m-1} \{S_{2^{i=1}}^{(l)} - S_{2^{i}}^{(l)}\} \Big\|_{p(\cdot),w} \leq \Big\| \Big(\sum_{i=0}^{m-1} \Big| \sum_{k=2^{i}+1}^{2^{i=1}} k^{l} B_{k,l}(x) \Big|^{2} \Big)^{1/2} \Big\|_{p(\cdot),w}.$$

Now by using Lemmas 1 and 2 we conclude that

$$\left\| \sum_{i=0}^{m-1} \left\{ S_{2^{i=1}}^{(l)} - S_{2^{i}}^{(l)} \right\} \right\|_{p(\cdot),w} \le \left\| \left( \sum_{i=0}^{m-1} \left| \sum_{k=2^{i+1}}^{2^{i=1}} k^{l} B_{k,l}(x) \right|^{\gamma} \right)^{1/\gamma} \right\|_{p(\cdot),w}, \quad (5)$$

where  $\gamma = \min(2, p_{-})$ .

By means of the Abel transformation and the estimate

$$||f(x) - S_k(f, \cdot)||_{p(\cdot), w} \le cE_n(f)_{p(\cdot), w}$$

we derive the inequality

$$\left\| \sum_{k=2^{i+1}}^{2^{i+1}} k^l B_{k,l}(x) \right\|_{p(\cdot),w} \le c 2^{il} E_{2^j}(f)_{p(\cdot,w}. \tag{6}$$

Finally from (3) - (6) we obtain the desired estimate (1).

## References

- 1. O. V. Besov, On some conditions belonging derivatives of periodic functions to  $L^p$ . (Russian) Nauchnie Doklady Visshei Shkoli 1 (1959), 13–17.
- 2. L. Diening and P. Hästö, Muckenhoupt weights in variable exponent spaces. Preprint, Albert Ludwigs Universität Freiburg, Mathematische Fakultät, http://www.helsinki.fi/pharjule/varsob/publicatios.shtml.
- D. M. Israfilov, V. Kokilashvili and S. Samko, Approximation in weighted lebesgue and Smirnov spaces with variable exponent. Proc. A. Razmadze Math. Inst. 143 (2007), 45–55.
- V. Kokilashvili and S. Samko, Operators of harmonic analysis in weighted spaces with non-standard growth. J. Math. anal. Appl. 352 (2009), 15–34.
- M. F. Timan, Best approximation and modulus of smoothness of functions prescribed on entire real axis. (Russian) *Izv. Vyssh. Uchebn. Zaved. Matematica* 6(25) (1961), 108–120.

## Authors' Addresses:

V. Kokilashvili:

A. Razmadze Mathematical Institute

1, M. Aleksidze St., Tbilisi 0193

Georgia

E-mail: kokil@rmi.acnet.ge

S. Samko:

Faculdade de Cincias e Tecnologia Universidade do Algarve Faro 8005-139,

Portugal

E-mail: ssamko@ualg.pt