A NOTE ON EXTRAPOLATION AND MODULAR INEQUALITIES

V. KOKILASHVILI

ABSTRACT. In this note we present the Orlicz modular version of the well-known Littlewood-Paley's theorem. The result is based on a certain extrapolation theorem established in the given paper.

რეზიუმე. სტატიაში მოყვანილია ლიტვულდ–პელის ცნობილი თეორემის ანალოგი ორლიჩის მოდულარებით. ეს შედეგი ეყრდნობა გარკვეული ექსტრაპოლაციის თეორემას, რომელიც დამტკიცებულია წარმოდგენილ სტატიაში.

1. Some Definitions and Auxiliary Statements

By the symbol Φ we denote a set of all functions $\varphi : \mathbb{R}^1 \to \mathbb{R}^1$ which are nonnegative, even, increasing on $[0,\infty)$ and such that $\varphi(0+) = 0$, $\lim_{t\to\infty} \varphi(t) = \infty$.

Definition 1. A function $\varphi \in \Phi$ is said to be the Young function if φ is convex and

$$\lim_{t \to 0+} \frac{\varphi(t)}{t} = \lim_{t \to \infty} \frac{t}{\varphi(t)} = 0.$$

Definition 2. A nonnegative function $\varphi : [0, \infty) \to [0, \infty)$ is quasiconvex if there exists a Young function ω and a constant $c \ge 1$ such that

$$\omega(t) \le \varphi(t) \le c \,\omega(c \, t), \quad t \ge 0.$$

A quasiconvex function can be associated with its complementary function, that is the function $\widetilde{\varphi}$ defined by

$$\widetilde{\varphi}(t) = \sup_{s \ge 0} \left(s t - \varphi(s) \right).$$

The subadditivity of a supremum implies that $\tilde{\varphi}$ is always a Young function. Moreover, $\tilde{\tilde{\varphi}} \leq \varphi$. The equality holds if φ itself is a Young function.

²⁰⁰⁰ Mathematics Subject Classification. Primary 42B35, 46E30. Secondary 42B30, 42B25.

 $Key\ words\ and\ phrases.$ Extrapolation, Orlicz modular, maximal function, Young function, Littlewood-Palley theorem.

Definition 3. A function $\varphi \in \Phi$ satisfies the Δ_2 condition ($\varphi \in \Delta_2$) if there exists c > 0 such that

$$\varphi(2t) \le c \,\varphi(t), \quad t > 0.$$

In the sequel, we will need the following propositions.

Proposition 1. Let $h \in \Phi$. Then the following two conditions are equivalent:

(i) h^{α} is quasiconvex for some $\alpha \in (0, 1]$;

(ii) $h \in \Delta_2$ and h is quasiconvex.

(See [1], [2], Lemma 6.1.6.)

Proposition 2. Let $\varphi \in \Phi$. Then the following statements are equivalent:

(i) φ is quasiconvex on $[0,\infty)$;

(ii) the inequality

$$\varphi(tx_1 + (1-t)x_2) \le c_1(t_1\varphi(c_1x_1) + (1-t)\varphi(c_1x_2))$$

holds for all $x_1, x_2 \in [0, \infty)$ and all $t \in (0, 1)$ with a constant c_1 independent of x_1, x_2 and t.

(See [1], Lemma 1.1.1.)

Proposition 3. Let $\varphi \in \Phi$. The following conditions are equal:

(i) φ is quasiconvex;

(ii) there is a positive constant ε such that

$$\widetilde{\varphi}\left(\varepsilon \frac{\varphi(t)}{t}\right) \le \varphi(t), \quad t > 0.$$

When φ is convex, the inequality holds with $\varepsilon = 1$. (See [2], Lemma 1.1.1.)

Let (X, d, μ) be a quasimetric measure space satisfying the following socalled doubling condition: There exists a positive constant c > 0 such that

$$\mu B(x, 2r) \le c \,\mu B(x, r)$$

for an arbitrary ball with center at x, of radius r. Let

$$M f(x) = \sup_{r>0} \frac{1}{\mu B(x,r)} \int_{B(x,r)} |f(y)| \, d\mu$$

be the Hardy-Littlewood maximal function defined for an arbitrary locally $\mu\text{-integrable function.}$

Theorem A ([1], Theorem 1.2.1). Let $\varphi \in \Phi$. Then the following statements are equivalent:

(i) there exists a positive constant c_1 such that the inequality

$$\int_{X} \varphi(M f(x)) d\mu \le c_1 \int_{X} \varphi(c_1 f(x)) d\mu$$

92

93

holds;

(ii) the function φ^{α} is quasiconvex for some $\alpha \in (0, 1)$. (See also [2], Theorem 6.4.4 for $w \equiv 1$.)

Definition 4. A nonnegative locally integrable function w is said to be of the class A_1 if

$$M w(x) \le c w(x)$$

for almost all $x \in X$ in a μ -measure sense.

2. Main Results

By \mathcal{F} we denote a family of ordered pairs (f, g) of μ -measurable nonnegative functions defined on the measure space (X, d, μ) .

Theorem 1. Let $\varphi(t^{\frac{1}{p_0}})$ be a Young function satisfying the Δ_2 condition for some $p_0 > 1$.

Let there exist a constant c > 0 such that for arbitrary pairs $(f,g) \in \mathcal{F}$ and arbitrary weight function $w \in A_1$ the inequality

$$\int_{X} f^{p_0}(x) w(x) d\mu \le C \int_{X} g^{p_0}(x) w(x) d\mu$$
(1)

holds when the left-hand side is finite.

Then there exists a constant C_1 such that

$$\int_{X} \varphi(f)(x) \, d\mu \le C \int_{X} \varphi(g)(x) \, d\mu \tag{2}$$

for any $(f,g) \in \mathcal{F}$ such that the left-hand side is finite. Let \mathbb{T} be the interval $[-\pi,\pi]$ and $F \in L^1(\mathbb{T})$.

$$F(x) \sim \frac{1}{2}a_0 + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

be the Fourier series.

We introduce the notations:

$$A_k(x) := (a_k \cos kx + b_k \sin kx), \quad \delta_0 := \frac{1}{2} a_0$$

and

$$\delta_k := \sum_{j=2^{k-1}}^{2^k - 1} A_j(x).$$

Theorem 2. Let $\varphi(t^{\frac{1}{p_0}})$ be a Young function for some $p_0 > 1$ satisfying the Δ_2 condition. Then there exist two positive constants c_1 and c_2 such that

$$c_1 \int_{\mathbb{T}} \varphi(F)(x) \, dx \le \int_{\mathbb{T}} \varphi\left(\left(\sum_{k=0}^{\infty} \delta_k^2\right)^{1/2}\right) dx \le c_2 \int_{\mathbb{T}} \varphi(F)(x) \, dx \qquad (3)$$

for arbitrary $F \in L^1(\mathbb{T}) \cap L^{\varphi}(\mathbb{T})$.

3. Proofs

Proof of Theorem 1. We will essentially use the idea of proving Theorem 3.1 from [3] which in its turn is based on the well-known extrapolation method of J. L. Rubio de Francia [4]. In fact, we present a modification of the above-mentioned proof.

Let

$$\psi := \varphi \left(u^{\frac{1}{p_0}} \right).$$

Under our notation

$$\widetilde{\psi}(t) = \sup_{s>0} \left(ts - \psi(s) \right)$$

is the complementary function to ψ . We supposed that $\psi \in \Delta_2$. According to Propositions 1 and 2, we find that $\tilde{\psi}^{\alpha}$ is quasiconvex for some α , $0 < \alpha < 1$ and

$$\widetilde{\psi}(\theta t) = \left[\widetilde{\psi}^{\alpha}(\theta t + (1 - \theta) \cdot \theta)\right]^{1/\alpha} \le a_1^{1/\alpha} \theta^{1/\alpha} \widetilde{\psi}(a_1 t) \tag{4}$$

for $0 < \theta < 1$ and some $a_1 \ge 1$.

On the other hand, by Theorem A we have

$$\int_{X} \widetilde{\psi}(M f(x)) d\mu \le a_2 \int_{X} \widetilde{\psi}(a_2 f)(x) d\mu,$$

since $\tilde{\psi}^{\alpha}$ is quasiconvex.

Let $a_0 = \max \{a_1, a_1^{1/\alpha}, a_2\}$. It is clear that $a_0 \ge 1$. Therefore we have two estimates:

$$\int_{X} \widetilde{\psi}\left(\frac{M f(x)}{a_0}\right) d\mu \le a_0 \int_{X} \widetilde{\psi}(f)(x) d\mu$$
(5)

and

$$\widetilde{\psi}(\theta t) \le a_0 \, \theta^{1/\alpha} \, \widetilde{\psi}(a_0 t). \tag{6}$$

Let θ , $0 < \theta < 1$ to be chosen later on. Let

$$0 \le h(x) = \frac{\theta \,\psi(f^{p_0})}{a_0 \, f^{p_0}}.$$

Define now the function

$$Rh(x) := \frac{2a_0 - 1}{2a_0} \sum_{k=0}^{\infty} \frac{1}{(2a_0)^k} \frac{M^k h(x)}{a_0},$$

where M^k is the k-th iteration of the Hardy-Littlewood function M.

Arguing similarly to the arguments given in [3], we can easily see that R(h) satisfies the following conditions:

(i)
$$h(x) \le \frac{2a_0}{2a_0 - 1} R h(x);$$
 (7)

(ii)
$$\int_{X} \widetilde{\psi}(Rh)(x) \le \frac{2a_0 - 1}{2a_0} \int_{X} \psi(h)(x); \tag{8}$$

(iii)
$$M(Rh)(x) \le 2a_0^2 R h(x).$$
 (9)

The last property means that $R(h) \in A_1$ with a constant, independent of f.

By virtue of (7), we have

$$\int_{X} \varphi(f)(x) d\mu = \int_{X} \psi(f^{p_0})(x) d\mu = \frac{a_0}{\theta} \int_{X} f^{p_0}(x) h(x) dx \leq \\ \leq \frac{2a_0^2}{(2a_0 - 1)\theta} \int_{X} f^{p_0}(x) R h(x) d\mu.$$
(10)

Let us now prove that

$$\int_{X} f^{p_0}(x) R h(x) d\mu < \infty.$$
(11)

Using the Young inequality, we obtain

$$\int_{X} f^{p_0}(x) R h(x) d\mu \leq \int_{X} \psi(f(x)) d\mu + \int_{X} \widetilde{\psi}(R h(x)) dx.$$

But according to our assumption, the first term on the right-hand side is finite. Taking into account (8) and (6), for the second summand we have

$$\begin{split} \int\limits_X \overline{\psi}(R\,h(x))\,d\mu &\leq \frac{2a_0-1}{a_0} \int\limits_X \overline{\psi}(h(x))d\mu \!=\! \frac{2a_0-1}{a_0} \int\limits_X \overline{\psi}\!\left(\frac{\theta\,\psi(f^{p_0})(x)}{a_0f^{p_0}(x)}\right)d\mu \leq \\ &\leq \frac{2a_0-1}{a_0}\,a_0\,\theta^{1/\alpha} \int\limits_X \overline{\psi}\!\left(\frac{\psi(f^{p_0})(x)}{a_0\,f^{p_0}(x)}\right)d\mu. \end{split}$$

Applying Proposition 3, the latter estimate implies

$$\int_{X} \overline{\psi}(Rh(x)) \, d\mu \le (2a_0 - 1) \, \theta^{1/\alpha} \int_{X} \psi(f^{p_0})(x) \, d\mu.$$

95

Thus

$$\int_{X} \overline{\psi}(Rh(x)) \, d\mu \le (2a_0 - 1) \, \theta^{1/\alpha} \int_{X} \varphi(f)(x) \, d\mu \tag{12}$$

and hence the proof of inequality (11) is complete.

Taking into account the assumption of the theorem and the condition $Rh \in A_1$, we obtain

$$\int_{X} \varphi(f^{p_0})(x) \, d\mu \le \frac{2a_0^2}{(2a_0 - 1)\,\theta} \, C \int_{X} g^{p_0}(x) \, R \, h(x) \, d\mu.$$

Using the Young inequality on the right-hand side of the latter inequality, we can conclude that

$$\int_{X} \psi(f^{p_0}) \, d\mu \le \frac{2a_0^2}{(2a_0 - 1)\,\theta} \, C\bigg(\int_{X} \psi(g^{p_0})(x) \, d\mu + \int_{X} \widetilde{\psi}(R\,h)(x) \, d\mu\bigg).$$

Then by virtue of (12), we have

$$\int_{X} \psi(f^{p_0})(x) \, d\mu \leq \frac{2a_0^2}{(2a_0 - 1) \, \theta} C \int_{X} \psi(g^{p_0})(x) \, d\mu + + 2a_0^2(C + 1) \, \theta^{\frac{1 - \alpha}{\alpha}} \int_{X} \varphi(f)(x) \, d\mu.$$

Choose now $\theta = (4a_0^2(C+1))^{-\frac{\alpha}{1+\alpha}}$. It is clear that $0 < \theta < 1$. Therefore

$$\int_{X} \varphi(f)(x) \, d\mu \leq \frac{2a_0^2}{(2a_0 - 1) \, \theta} \, C \int_{X} \varphi(g)(x) \, d\mu + \frac{1}{2} \int_{X} \varphi(f)(x) \, d\mu.$$

The last inequality provides us with a desired result.

Proof of Theorem 2. We need the following result due to D. S. Kurtz (see [5], [6]).

Let $w \in A_p$, 1 , then

$$c_1 \|f\|_{L^p_w} \le \left\| \left(\sum_{k=0}^\infty \delta_k^2\right)^{1/2} \right\|_{L^p_w} \le c_2 \|f\|_{L^p_w}.$$

But arbitrarily $w \in A_1$ belongs to the A_p class, too.

Now we derive the right part of a chain of desired inequalities taken in Theorem 1,

$$f := \left(\sum_{k=0}^{\infty} \delta_k^2\right)^{1/2}$$
 and $g := |F|.$

As for the left part, we have to change the role of the functions. $\hfill \Box$

96

Remark. It is evident that in a similar way we can derive modular inequalities for various operators of harmonic analysis.

Acknowledgement

The present work was supported by the grant GNSF/ST07/3-169.

References

- V. Kokilashvili and M. Krbec, Weighted inequalities in Lorentz and Orlicz spaces. World Scientific Publishing Co., Inc., River Edge, NJ, 1991.
- I. Genebashvili, A. Gogatishvili, V. Kokilashvili, and M. Krbec, Weight theory for integral transforms on spaces of homogeneous type. *Pitman Monographs and Surveys* in Pure and Applied Mathematics, 92, Longman, Harlow, 1998.
- G. P. Curbera, J. Garcia-Cuerva, J. M. Martell, and C. Perez, Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals. Adv. Math. 203 (2006), No. 1, 256–318.
- 4. J. L. Rubio de Francia, Factorization theory and A_p weights. Amer. J. Math. 106 (1984), No. 3, 533–547.
- D. S. Kurtz, Littlewood–Paley and multiplier theorems in weighted L^p spaces. PhD. Dissertation, Rutgers University, 1978.
- D. S. Kurtz, Littlewood–Paley and multiplier theorems on weighted L^p spaces. Trans. Amer. Math. Soc. 259 (1980), No. 1, 235–254.

(Received 13.01.2009)

Author's address:

A. Razmadze Mathematical Institute 1, M. Aleksidze St., Tbilisi 0193 Georgia