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We begin with some definitions. Let T be the interval [−π, π]. Let P
be the class of Lebesgue measurable functions p : T → (1,∞) such that
1 < p∗ := essinf

x∈T
p (x) ≤ p∗ := esssup

x∈T
p (x) < ∞. The conjugate exponent of

p (x) is defined as p′ (x) := p (x) / (p (x)− 1). We define a class L
p(·)
2π of 2π

periodic measurable functions f : T → R satisfying the condition
∫

T

|f (x)|p(x)
dx < ∞

for p ∈ P.
The class L

p(·)
2π is a Banach space with the norm

‖f‖p(·) := inf
{

α > 0 :
∫

T

∣∣∣∣
f (x)

α

∣∣∣∣
p(x)

dx ≤ 1
}

.

A function ω : T→ [0,∞] will be called a weight if ω is measurable and
almost everywhere positive. We will denote by L

p(·)
ω , the class of Lebesgue

measurable functions f : T → R satisfying ωf ∈ L
p(·)
2π . L

p(·)
ω is called

weighted variable exponent Lebesgue space and is a Banach space with the
norm ‖f‖p(·),ω := ‖ωf‖p(·).

For given p ∈ P the class of weights ω satisfying the condition
∥∥∥ωp(x)

∥∥∥
Ap(·)

:= sup
B∈B

1
|B|pB

∥∥∥ωp(x)
∥∥∥

L1(B)

∥∥∥∥
1

ωp(x)

∥∥∥∥
B,(p′(·)/p(·))

< ∞

will be denoted by Ap(·). Here pB :=
(

1
|B|

∫
B

1
p(x)dx

)−1

and B is the class

of all intervals in T .
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The variable exponent p (x) is said to be satisfy local log-Hölder conti-
nuity condition if there is a positive constant c such that

|p (x1)− p (x2)| ≤ c

log 1/|x1 − x2| for all x1, x2 ∈ T . (1)

We will denote by P log the class of those p ∈ P satisfying (1). For f ∈
L

p(·)
w (T) now we can define the generalized moduli of smoothness for p ∈
P log, ω ∈ Ap(·) and f ∈ L

p(·)
ω as

Ω (f, δ)p(·),ω := sup
0<h≤δ

‖ (I −Ah) f‖p(·),ω, δ ≥ 0.

Let

f(x) ∼ a0

2
+

∞∑

k=1

(ak cos kx + bk sin kx)

be the Fourier series of the function f ∈ L1(T). Let σα
n(·, f) (α > 0) be the

Cesaro means of the series, that is

σα
n(x, f) =

1
π

∫

T

f(x + t)Kα
n (t)dt,

where

Kα
n (t) =

n∑

k=0

Aα−1
n−kDk(t)

Aα
n

is the Fejér kernel and

Dk(t) =
sin

(
k + 1

2

)
t

2 sin t
2

is the Dirichlet kernel, with

Aα
n =

(
n + α

α

)
≈ nα

Γ(α + 1)
.

Let also Ur(·, f) (0 ≤ r < 1) be the Abel-Poisson means of the function
f , that is

Ur(x, f) =
1
2π

π∫

−π

Pr(x− t)f(t)dt,

where

Pr(t) =
1− r2

1− 2r cos t + r2

is the Poisson kernel.

Theorem 1. Let us suppose that p ∈ P log, ω−p0 ∈ A(
p(·)
p0

)′ for some

p0 ∈ (1, p∗). Then the following estimates hold:

‖σα
n(·, f)− f‖p(·),ω ≤ cnΩ

(
1
n

, f

)

p(·),ω
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and
‖Ur(·, f)− f‖ ≤ c

1− r
Ω(f, 1− r)p(·),ω ,

where a constant c does not depend on n, rand f .

Theorem 2. Let us suppose that p ∈ P log, ω ∈ A(p(·))′ then for arbitrary
trigonometric polynomial tn(x) the Bernstein type inequality holds

‖t′n‖p(·),ω ≤ cn‖tn‖p(·),ω,

where a constants c does not depend on n and tn.

When p(x) is a constant and the weight w belongs to the Muckenhoupt
Ap class, for the estimates presented above we refer the readers to [1].
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