SOME APPROXIMATION PROBLEMS FOR (α, ψ)-DIFFERENTIABLE FUNCTIONS IN WEIGHTED VARIABLE EXPONENT LEBESGUE SPACES

R. Akgün
Balikesir University
10145, Balikesir, Turkey
rakgun@balikesir.edu.tr
V. Kokilashvili *
A. Razmadze Mathematical Institute
I. Javakhishvili Tbilisi State University
2, University Str., Tbilisi 0186, Georgia
kokil@rmi.ge

UDC 517.9

We prove direct and inverse theorems for (α, ψ)-differentiable functions in weighted variable exponent Lebesgue spaces. We also define a Besov type space and obtain some properties of this space. Bibliography: 29 titles.

1 Statement of the Problem

Variable exponent Lebesgue spaces $L^{p(x)}$ were mentioned in the literature for the first time by Orlicz [1]. These spaces were systematically studied by Nakano [2, 3]. In the appendix of [2, p. 284], Nakano explicitly indicated variable exponent Lebesgue spaces as an example of modular spaces. Also, under the condition

$$
\underset{x \in \boldsymbol{T}}{\operatorname{ess} \sup } p(x)<\infty,
$$

the space $L^{p(x)}$ is a particular case of Musielak-Orlicz spaces [4]. Topological properties of $L^{p(x)}$ were studied by Sharapudinov [5] (cf. also [6]-[8] and the monograph [9]). The spaces $L^{p(x)}$ have many applications in elasticity theory, fluid mechanics, differential operators [10, 11], nonlinear Dirichlet boundary value problems [6], nonstandard growth, and variational calculus [12]. For $p(x):=p, 1<p<\infty$, the space $L^{p(x)}$ coincides with the classical Lebesgue space L^{p}. Unlike L^{p}, the space $L^{p(x)}$ is not $p(\cdot)$-continuous and is not invariant under translations [6]. This fact causes some difficulties for defining the smoothness moduli. Using the Steklov means, Gadjieva [13] introduced the smoothness moduli in the case of weighted Lebesgue spaces. These moduli

[^0]Translated from Problems in Mathematical Analysis 66, August 2012, pp. 3-14.
1072-3374/12/1862-0139 © 2012 Springer Science+Business Media, Inc.
turned out to be also suitable for the weighted spaces $L^{p}(x)$. For example, some inequalities on trigonometric approximation in the weighted spaces $L^{p}(x)$ were proved in [14]-[19]. We note that the inverse inequalities were obtained by S. Stechkin for the space C and by A. Timan and M. Timan for the spaces $L^{p}(1 \leqslant p<\infty)$. We emphasize the results of Stepanets [20]-[23], in particular, a Bernstein type inequality in unweighted classical Lebesgue spaces was proved in [23] for the derivatives in general sense. Stepanets developed the approximation theory for functions in the spaces C and L^{p} that are differentiable in the general sense.

In [19], the authors proved the following assertion.
Theorem 1.1 (cf. [19]). If $p \in \mathscr{P}^{\log }(\boldsymbol{T}), \omega^{-p_{0}} \in A_{\left(p(\cdot) / p_{0}\right)^{\prime}}$ for some $p_{0} \in\left(1, p_{*}\right), \alpha \in \mathbb{R}$, $\psi \in \mathfrak{M}_{0}, r \in(0, \infty), f \in L_{\omega}^{p(\cdot)}$ and

$$
\begin{equation*}
\sum_{\nu=1}^{\infty} \frac{E_{\nu}(f)_{p(\cdot), \omega}}{\nu \psi(\nu)}<\infty, \tag{1.1}
\end{equation*}
$$

then there exists a constant $c>0$, depending only on ψ, r, and p, such that

$$
\begin{equation*}
\Omega_{r}\left(f_{\alpha}^{\psi}, \frac{1}{n}\right)_{p(\cdot), \omega} \leqslant c\left\{\frac{1}{n^{r}} \sum_{\nu=1}^{n} \frac{\nu^{r} E_{\nu}(f)_{p(\cdot), \omega}}{\nu \psi(\nu)}+\sum_{\nu=n+1}^{\infty} \frac{E_{\nu}(f)_{p(\cdot), \omega}}{\nu \psi(\nu)}\right\} . \tag{1.2}
\end{equation*}
$$

In this paper, we improve Theorem 1.1. We show that r can be replaced with $2 r$ on the right-hand side of (1.2). For this purpose, we refine the converse inequality.

Theorem 1.2 (cf. [15]). If $p \in \mathscr{P}^{\log }(\boldsymbol{T}), \omega^{-p_{0}} \in A_{\left(p(\cdot) / p_{0}\right)^{\prime}}$ for some $p_{0} \in\left(1, p_{*}\right), f \in L_{\omega}^{p(\cdot)}$, and $r \in \mathbb{R}^{+}$, then

$$
\Omega_{r}\left(f, \frac{1}{n+1}\right)_{p(\cdot), \omega} \leqslant \frac{c}{(n+1)^{r}} \sum_{\nu=0}^{n} \frac{(\nu+1)^{r} E_{\nu}(f)_{p(\cdot), \omega}}{\nu+1}, \quad n=0,1,2,3, \ldots
$$

where the constant $c>0$ depends only on r and p.
We also give a characterization of weighted variable exponent Besov spaces [24].
Let a function $\omega: \boldsymbol{T} \rightarrow[0, \infty]$ be a weight on \boldsymbol{T}. Let \mathscr{P} denote the class of Lebesgue measurable functions $p(x): \boldsymbol{T} \rightarrow(1, \infty)$ such that

$$
1<p_{*}:=\underset{x \in \boldsymbol{T}}{\operatorname{essinf}} p(x) \leqslant p^{*}:=\underset{x \in \boldsymbol{T}}{\operatorname{ess} \sup } p(x)<\infty .
$$

Then we introduce the class $L^{p(x)}$ of 2π-periodic measurable functions $f: \boldsymbol{T} \rightarrow \mathbb{R}$ such that

$$
\int_{\boldsymbol{T}}|f(x)|^{p(x)} d x<\infty
$$

for $p \in \mathscr{P}$. It is known that $L^{p(x)}$ is a Banach space [6] equipped with the norm

$$
\|f\|_{p(\cdot)}:=\inf \left\{\alpha>0: \int_{\boldsymbol{T}}\left|\frac{f(x)}{\alpha}\right|^{p(x)} d x \leqslant 1\right\}
$$

We denote by $L_{\omega}^{p(\cdot)}$ the class of Lebesgue measurable functions $f: \boldsymbol{T} \rightarrow \mathbb{R}$ such that $\omega f \in$ $L^{p}(x)$. The weighted variable exponent Lebesgue space $L_{\omega}^{p(\cdot)}$ is a Banach space equipped with the norm $\|f\|_{p(\cdot), \omega}:=\|\omega f\|_{p(\cdot)}$.

For a given $p \in \mathscr{P}$ we denote by $A_{p(\cdot)}$ the class of weights ω satisfying the condition [25]

$$
\left\|\omega \chi_{Q}\right\|_{p(\cdot)}\left\|\omega^{-1} \chi_{Q}\right\|_{p^{\prime}(\cdot)} \leqslant C|Q|
$$

for all balls Q in \boldsymbol{T}. Here, $p^{\prime}(x):=p(x) /(p(x)-1)$ is the conjugate exponent of $p(x)$. The variable exponent $p(x)$ is said to be log-Hölder continuous on \boldsymbol{T} if there exists a constant $c \geqslant 0$ such that

$$
\left|p\left(x_{1}\right)-p\left(x_{2}\right)\right| \leqslant \frac{c}{\log \left(e+1 /\left|x_{1}-x_{2}\right|\right)} \quad \text { for all } x_{1}, x_{2} \in \boldsymbol{T} .
$$

We denote by $\mathscr{P}^{\log }(\boldsymbol{T})$ the class of exponents $p \in \mathscr{P}$ such that $1 / p: \boldsymbol{T} \rightarrow[0,1]$ is \log-Hölder continuous on \boldsymbol{T}.

If $p \in \mathscr{P}^{\log }(\boldsymbol{T})$ and $f \in L_{\omega}^{p(\cdot)}$, then it was proved in [25] that the $L_{\omega}^{p(\cdot)}$-norm of the HardyLittlewood maximal function \mathscr{M} is bounded if and only if $\omega \in A_{p(\cdot)}$.

We set $f \in L_{\omega}^{p(\cdot)}$ and

$$
\mathscr{A}_{h} f(x):=\frac{1}{h} \int_{x-h / 2}^{x+h / 2} f(t) d t, \quad x \in \boldsymbol{T}
$$

If $p \in \mathscr{P}^{\log }(\boldsymbol{T})$ and $\omega \in A_{p(\cdot)}$, then \mathscr{A}_{h} is bounded in $L_{\omega}^{p(\cdot)}$. Consequently if $x, h \in \boldsymbol{T}$ and $0 \leqslant r$, we define, via the binomial expansion,

$$
\sigma_{h}^{r} f(x):=\left(I-\mathscr{A}_{h}\right)^{r} f(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} \Gamma(r+1)}{\Gamma(k+1) \Gamma(r-k+1)}\left(\mathscr{A}_{h}\right)^{k},
$$

where $f \in L_{\omega}^{p(\cdot)}, \Gamma$ is the Gamma function, and I is the identity operator.
For $0 \leqslant r$ we define the fractional moduli of smoothness for $p \in \mathscr{P}^{\log }(\boldsymbol{T}), \omega \in A_{p(\cdot)}$ and $f \in L_{\omega}^{p(\cdot)}$ by the formula

$$
\Omega_{r}(f, \delta)_{p(\cdot), \omega}:=\sup _{0<h_{i}, t \leqslant \delta}\left\|\prod_{i=1}^{[r]}\left(I-\mathscr{A}_{h_{i}}\right) \sigma_{t}^{\{r\}} f\right\|_{p(\cdot), \omega}, \quad \delta \geqslant 0
$$

where

$$
\Omega_{0}(f, \delta)_{p(\cdot), \omega}:=\|f\|_{p(\cdot), \omega}, \quad \prod_{i=1}^{0}\left(I-\mathscr{A}_{h_{i}}\right) \sigma_{t}^{r} f:=\sigma_{t}^{r} f, \quad 0<r<1,
$$

and $[r]$ denotes the integer part of a real number r and $\{r\}:=r-[r]$.
If $p \in \mathscr{P}^{\log }(\boldsymbol{T})$ and $\omega \in A_{p(\cdot)}$, then $\omega^{p(x)} \in L^{1}(\boldsymbol{T})$. This implies that the set of trigonometric polynomials is dense [26] in the space $L_{\omega}^{p(\cdot)}$. On the other hand, if $p \in \mathscr{P}^{\log }(\boldsymbol{T})$ and $\omega \in A_{p(\cdot)}$, then $L_{\omega}^{p(\cdot)} \subset L^{1}(\boldsymbol{T})$.

For a given $f \in L_{\omega}^{p(\cdot)}$ we consider the Fourier series

$$
f(x) \backsim \frac{a_{0}(f)}{2}+\sum_{k=1}^{\infty}\left(a_{k}(f) \cos k x+b_{k}(f) \sin k x\right)
$$

and the conjugate Fourier series

$$
\widetilde{f}(x) \backsim \sum_{k=1}^{\infty}\left(a_{k}(f) \sin k x-b_{k}(f) \cos k x\right) .
$$

We say that a function $f \in L_{\omega}^{p(\cdot)}, p \in \mathscr{P}, \omega \in A_{p(\cdot)}$, has a (α, ψ)-derivative f_{α}^{ψ} if for a given sequence $\psi(k), k=1,2, \ldots$, and a number $\alpha \in \mathbb{R}$ the series

$$
\sum_{k=1}^{\infty} \frac{1}{\psi(k)}\left(a_{k}(f) \cos k\left(x+\frac{\alpha \pi}{2 k}\right)+b_{k}(f) \sin k\left(x+\frac{\alpha \pi}{2 k}\right)\right)
$$

is the Fourier series of the function f_{α}^{ψ}. For $\psi(k)=k^{-\alpha}, k=1,2, \ldots, \alpha \in \mathbb{R}^{+}$, we have the fractional derivative $f^{(\alpha)}$ of f in the sense of Weyl [27]. For $\psi(k)=k^{-\alpha} \ln ^{-\beta} k, k=1,2, \ldots$, $\alpha, \beta \in \mathbb{R}^{+}$we have the power logarithmic-fractional derivative $f^{(\alpha, \beta)}$ of f (cf. [28]).

Let \mathfrak{M} be the set of functions $\psi(v)$ that are convex downwards for any $v \geqslant 1$ and satisfy the condition $\lim _{v \rightarrow \infty} \psi(v)=0$. We associate every function $\psi \in \mathfrak{M}$ with a pair of functions $\eta(t)=\psi^{-1}(\psi(t) / 2), \mu(t)=t /(\eta(t)-t)$ and $\bar{\eta}(t)=\psi^{-1}(2 \psi(t))$. We set $\mathfrak{M}_{0}:=$ $\{\psi \in \mathfrak{M}: 0<\mu(t) \leqslant K\}$. These classes were intensively studied in [20]-[22].

Definition 1.3. A function $\psi(t)$ is said to be quasiincreasing (respectively, quasidecreasing) on $(0, \infty)$ if there exists a constant c such that $\psi\left(t_{1}\right) \leqslant c \psi\left(t_{2}\right)$ (respectively, $\left.\psi\left(t_{1}\right) \geqslant c \psi\left(t_{2}\right)\right)$ for any $t_{1}, t_{2} \in(0, \infty), t_{1} \leqslant t_{2}$.

Definition 1.4. Let φ be a nondecreasing function on $(0, \infty)$ such that $\varphi(0)=0$ and
(i) there exists $\beta>0$ such that $\varphi(t) t^{-\beta}$ is quasiincreasing,
ii) there exists $\beta_{1}>0$ such that $k>\beta_{1}$ and $\varphi(t) t^{\beta_{1}-k}$ is quasidecreasing.

The class of such functions is denoted by $U(k)$.
The properties of this class were studied, for example, in [29].
Definition 1.5. Suppose that $\varphi \in U(k)$ and $1 \leqslant \gamma<\infty$. The collection $B_{p(\cdot), \gamma}^{k, \varphi}$ of functions $f \in L_{\omega}^{p(\cdot)}$ satisfying the condition

$$
\int_{0}^{1} \Omega_{k}^{\gamma}(f, t)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t<+\infty
$$

is referred to as the weighted variable exponent Besov spaces.
The norm in $B_{p(\cdot), \gamma}^{k, \varphi}$ can be defined by the formula

$$
\begin{equation*}
\|f\|_{p(\cdot), \gamma}^{k, \varphi}=\|f\|_{p(\cdot), \omega}+\left\{\int_{0}^{1} \Omega_{k}^{\gamma}(f, t)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t\right\}^{1 / \gamma} \tag{1.3}
\end{equation*}
$$

We refer to [24] for more information about Besov spaces.
In this paper, we prove the following inequalities of trigonometric approximation.

Theorem 1.6. Suppose that $p \in \mathscr{P}^{\log }(\boldsymbol{T}), \omega^{-p_{0}} \in A_{\left(p(\cdot) / p_{0}\right)^{\prime}}$ for some $p_{0} \in\left(1, p_{*}\right), \alpha \in \mathbb{R}$, $r \in \mathbb{R}^{+}$and $f \in L_{\omega}^{p(\cdot)}$. Then for every natural number n the following estimate holds:

$$
\Omega_{r}\left(f, \frac{1}{n}\right)_{p(\cdot), \omega} \leqslant \frac{c}{n^{2 r}}\left\{E_{0}(f)_{p(\cdot), \omega}+\sum_{k=1}^{n} \frac{k^{2 r} E_{k}(f)_{p(\cdot), \omega}}{k}\right\}
$$

where the constant $c>0$ is independent of n.
Theorem 1.7. If $p \in \mathscr{P}^{\log }(\boldsymbol{T}), \omega^{-p_{0}} \in A_{\left(p(\cdot) / p_{0}\right)^{\prime}}$ for some $p_{0} \in\left(1, p_{*}\right), \alpha \in \mathbb{R}, \psi \in \mathfrak{M}_{0}$, $r \in(0, \infty), f \in L_{\omega}^{p(\cdot)}$, and (1.1) is satisfied, then there exist constants $c, C>0$, depending only on ψ, r, and p, such that

$$
\Omega_{r}\left(f_{\alpha}^{\psi}, \frac{1}{n}\right)_{p(\cdot), \omega} \leqslant \frac{c}{n^{2 r}} \sum_{\nu=1}^{n} \frac{\nu^{2 r} E_{\nu}(f)_{p(\cdot), \omega}}{\nu \psi(\nu)}+C \sum_{\nu=n+1}^{\infty} \frac{E_{\nu}(f)_{p(\cdot), \omega}}{\nu \psi(\nu)} .
$$

Theorem 1.8. Suppose that $1 \leqslant \gamma<+\infty, \varphi \in U(k), k \in \mathbb{R}^{+}$, and $f \in L_{\omega}^{p(\cdot)}$. Then there exist constants $c, C>0$ such that

$$
c \int_{0}^{1} \Omega_{k}^{\gamma}(f, t)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t \leqslant \sum_{i=0}^{\infty} E_{2^{i}}^{\gamma}(f)_{p(\cdot), \omega} \varphi^{\gamma}\left(2^{i}\right) \leqslant C \int_{0}^{1} \Omega_{k}^{\gamma}(f, t)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t
$$

Theorem 1.9. Suppose that $1 \leqslant \gamma<+\infty$ and $\varphi \in U(k)$. The space $B_{p(\cdot), \gamma}^{k, \varphi}$ is a Banach space with respect to the norm (1.3).

Theorem 1.10. Suppose that $1 \leqslant \gamma<+\infty, \varphi \in U(k)$, and $f \in B_{p(\cdot), \gamma}^{k, \varphi}$. Then

$$
\lim _{h \rightarrow 0}\left\|f-\mathscr{A}_{h} f\right\|_{p(\cdot), \gamma}^{k, \varphi}=0
$$

In particular, Theorem 1.8 implies the following assertion.
Corollary 1.11. Suppose that $1 \leqslant \gamma<+\infty, f \in L_{\omega}^{p(\cdot)}, \varphi(x):=x^{\alpha}$, and $k:=1+[\alpha]$. Then there exist constants $c, C>0$ such that

$$
c \int_{0}^{1} \Omega_{1+[\alpha]}^{\gamma}(f, t)_{p(\cdot), \omega} t^{-\alpha \gamma-1} d t \leqslant \sum_{i=0}^{\infty} E_{2^{i}}^{\gamma}(f)_{p(\cdot), \omega} 2^{i \alpha \gamma} \leqslant C \int_{0}^{1} \Omega_{1+[\alpha]}^{\gamma}(f, t)_{p(\cdot), \omega} t^{-\alpha \gamma-1} d t .
$$

Theorem 1.12. Suppose that $p \in \mathscr{P}^{\log }(\boldsymbol{T}), \omega^{-p_{0}} \in A_{\left(p(\cdot) / p_{0}\right)^{\prime}}$ for some $p_{0} \in\left(1, p_{*}\right), \alpha \in \mathbb{R}$, $f, f_{\alpha}^{\psi} \in L_{\omega}^{p(\cdot)}$, and $\beta:=\max \left\{2, p^{*}\right\}$. If $\psi(k),(k \in \mathbb{N})$ is an arbitrary nonincreasing sequence of nonnegative numbers such that $\psi(k) \rightarrow 0$ as $k \rightarrow \infty$, then for every $n=0,1,2,3, \ldots$ there exists a constant $c>0$ independent of n such that

$$
\begin{equation*}
\Omega_{r}\left(f_{\alpha}^{\psi}, \frac{1}{n}\right)_{p(\cdot), \omega} \geqslant \frac{c}{n^{2 r}}\left(\sum_{\nu=1}^{n} \frac{\nu^{2 \beta r} E_{\nu}^{\beta}(f)_{p(\cdot), \omega}}{\nu \psi^{\beta}(\nu)}\right)^{1 / \beta} . \tag{1.4}
\end{equation*}
$$

Theorem 1.12 is a refinement of the following assertion.
Theorem 1.13 (cf. [19]). Let $p \in \mathscr{P}^{\log }(\boldsymbol{T}), \omega^{-p_{0}} \in A_{\left(p(\cdot) / p_{0}\right)^{\prime}}$ for some $p_{0} \in\left(1, p_{*}\right), \alpha \in \mathbb{R}$, $r \in \mathbb{R}^{+}$and $f, f_{\alpha}^{\psi} \in L_{\omega}^{p(\cdot)}$. If $\psi(k),(k \in \mathbb{N})$ is an arbitrary nonincreasing sequence of nonnegative numbers such that $\psi(k) \rightarrow 0$ as $k \rightarrow \infty$, then for every $n=1,2,3, \ldots$ there exists a constant $c>0$ independent of n such that

$$
E_{n}(f)_{p(\cdot), \omega} \leqslant c \psi(n) \Omega_{r}\left(f_{\alpha}^{\psi}, \frac{1}{n}\right)_{p(\cdot), \omega} .
$$

Indeed,

$$
\frac{c}{n^{2 r}}\left(\sum_{\nu=1}^{n} \frac{\nu^{2 \beta r} E_{\nu}^{\beta}(f)_{p(\cdot), \omega}}{\nu \psi^{\beta}(\nu)}\right)^{1 / \beta} \geqslant \frac{E_{n}(f)_{p(\cdot), \omega}}{\psi(n)} .
$$

On the other hand, the term on the left-hand side of (1.4) is often important: it defines the order of estimation from below. For the sake of simplicity, we set $r=1$ and $\psi(n):=n^{-\alpha}$. Then for

$$
E_{\nu}(f)_{p(\cdot), \omega} \sim \nu^{-2-\alpha}
$$

the left-hand side of (1.4) is $\sim n^{-2}(\ln n)^{1 / \beta}$ and (1.4) implies

$$
\begin{equation*}
\Omega_{1}\left(f, \frac{1}{n}\right)_{p(\cdot), \omega} \geqslant \frac{c}{n^{2}}(\ln n)^{1 / \beta} . \tag{1.5}
\end{equation*}
$$

On the other hand,

$$
\left(\sum_{\nu=n+1}^{\infty} \nu^{\alpha \beta-1} E_{\nu}^{\beta}(f)_{p(\cdot), \omega}\right)^{1 / \beta} \sim n^{-2} \quad \text { and } \quad \Omega_{1}\left(f, \frac{1}{n}\right)_{p(\cdot), \omega} \geqslant \frac{c}{n^{2}}
$$

Thus, the estimate (1.5) is better.
Remark 1.14. It was M. Timan who first noted the influence of the metric on the direct and inverse inequalities in the classical Lebesgue spaces $L^{p}(1<p<\infty)$.

In the particular case $\psi(k)=k^{-\alpha} \ln ^{-\beta} k, k=1,2, \ldots, \alpha, \beta \in \mathbb{R}^{+}$, from Theorem 1.7 we obtain the following new result for power logarithmic-fractional derivatives.

Theorem 1.15. If $p \in \mathscr{P}^{\log }(\boldsymbol{T}), \omega^{-p_{0}} \in A_{\left(p(\cdot) / p_{0}\right)^{\prime}}(\boldsymbol{T})$ for some $p_{0} \in\left(1, p_{*}\right), \alpha, \beta, r \in \mathbb{R}^{+}$, and

$$
\sum_{\nu=1}^{\infty} \frac{\nu^{\alpha} \ln ^{\beta} \nu E_{\nu}(f)_{p(\cdot), \omega}}{\nu}<\infty
$$

then there exist constants $c, C>0$, depending only on α, β, r, and p, such that

$$
\Omega_{r}\left(f^{(\alpha, \beta)}, \frac{1}{n}\right)_{p(\cdot), \omega} \leqslant \frac{c}{n^{2 r}} \sum_{\nu=1}^{n} \frac{\nu^{2 r+\alpha} \ln ^{\beta} \nu E_{\nu}(f)_{p(\cdot), \omega}}{\nu}+C \sum_{\nu=n+1}^{\infty} \frac{\nu^{\alpha} \ln ^{\beta} \nu E_{\nu}(f)_{p(\cdot), \omega}}{\nu} .
$$

In the particular case $\alpha, r \in \mathbb{Z}^{+}$and $\beta=0$, Theorem 1.15 was announced in [18].
Theorem 1.16. Suppose that $p \in \mathscr{P}^{\log }(\boldsymbol{T}), \omega^{-p_{0}} \in A_{\left(p(\cdot) / p_{0}\right)^{\prime}}$ for some $p_{0} \in\left(1, p_{*}\right), \alpha, \beta, r \in$ $\mathbb{R}^{+}, f, f^{(\alpha, \beta)} \in L_{\omega}^{p(\cdot)}$, and $\beta:=\max \left\{2, p^{*}\right\}$. Then for every $n=1,2,3, \ldots$ there exists a constant $c>0$ independent of n such that

$$
\Omega_{r}\left(f^{(\alpha, \beta)}, \frac{1}{n}\right)_{p(\cdot), \omega} \geqslant \frac{c}{n^{2 r}}\left(\sum_{\nu=1}^{n} \frac{\nu^{2 \beta r} E_{\nu}^{\beta}(f)_{p(\cdot), \omega}}{\nu \psi^{\beta}(\nu)}\right)^{1 / \beta} .
$$

2 Proof of the Main Results

We begin with the following assertion.
Theorem 2.1 (cf. [19]). Suppose that $p \in \mathscr{P}^{\log }(\boldsymbol{T}), \omega^{-p_{0}} \in A_{\left(p(\cdot) / p_{0}\right)^{\prime}}$ for some $p_{0} \in\left(1, p_{*}\right)$, $\alpha \in \mathbb{R}$, and $f, f_{\alpha}^{\psi} \in L_{\omega}^{p(\cdot)}$. If $\psi(k),(k \in \mathbb{N})$ is an arbitrary nonincreasing sequence of nonnegative numbers such that $\psi(k) \rightarrow 0$ as $k \rightarrow \infty$, then for every $n=0,1,2,3, \ldots$ there exists a constant $c>0$ independent of n such that

$$
E_{n}(f)_{p(\cdot), \omega} \leqslant c \psi(n) E_{n}\left(f_{\alpha}^{\psi}\right)_{p(\cdot), \omega} .
$$

The following Lemma was proved in the previous paper by the authors [19, Corollary 2.1], where we essentially used the idea due to Stepanets and Kushpel' [23].

Lemma 2.2. If $p \in \mathscr{P}^{\log }(\boldsymbol{T}), \omega^{-p_{0}} \in A_{\left(p(\cdot) / p_{0}\right)^{\prime}}$ for some $p_{0} \in\left(1, p_{*}\right), \alpha \in \mathbb{R}, \psi(k),(k \in \mathbb{N})$ is an arbitrary nonincreasing sequence of nonnegative numbers, and $T_{n} \in \mathscr{T}_{n}$, then

$$
\left\|\left(T_{n}\right)_{\alpha}^{\psi}\right\|_{p(\cdot), \omega} \leqslant c(\psi(n))^{-1}\left\|T_{n}\right\|_{p(\cdot), \omega} .
$$

Theorem 2.3 (cf. [19]). If $p \in \mathscr{P}^{\log }(\boldsymbol{T}), \omega^{-p_{0}} \in A_{\left(p(\cdot) / p_{0}\right)^{\prime}}$ for some $p_{0} \in\left(1, p_{*}\right), \alpha \in \mathbb{R}$, $\psi \in \mathfrak{M}_{0}, f \in L_{\omega}^{p(\cdot)}$, and (1.1) is satisfied, then $f_{\alpha}^{\psi} \in L_{\omega}^{p(\cdot)}$ and

$$
E_{n}\left(f_{\alpha}^{\psi}\right)_{p(\cdot), \omega} \leqslant c\left(\frac{E_{n}(f)_{p(\cdot), \omega}}{\psi(n)}+\sum_{\nu=n+1}^{\infty} \frac{E_{\nu}(f)_{p(\cdot), \omega}}{\nu \psi(\nu)}\right)
$$

where the constant $c>0$ depends only on α and p.
Proof of Theorem 1.6. We choose m satisfying $2^{m} \leqslant n \leqslant 2^{m+1}$. By the subadditivity of Ω_{r}, we have

$$
\begin{equation*}
\Omega_{r}(f, \delta)_{p(\cdot), \omega} \leqslant \Omega_{r}\left(f-T_{2^{m+1}}, \delta\right)_{p(\cdot), \omega}+\Omega_{r}\left(T_{2^{m+1}}, \delta\right)_{p(\cdot), \omega} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega_{r}\left(f-T_{2^{m+1}}, \delta\right)_{p(\cdot), \omega} \leqslant c\left\|f-T_{2^{m+1}}\right\|_{p(\cdot), \omega} \leqslant c E_{2^{m+1}}(f)_{p(\cdot), \omega} . \tag{2.2}
\end{equation*}
$$

By [15, Corollary 2.5], we have

$$
\begin{aligned}
\Omega_{r}\left(T_{2^{m+1}}, \delta\right)_{p(\cdot), \omega} & \leqslant c \delta^{2 r}\left\|T_{2^{m+1}}^{(2 r)}\right\|_{p(\cdot), \omega} \\
& \leqslant c \delta^{2 r}\left\{\left\|T_{1}^{(2 r)}-T_{0}^{(2 r)}\right\|_{p(\cdot), \omega}+\sum_{i=1}^{m}\left\|T_{2^{2+1}}^{(2 r)}-T_{2^{i}}^{(2 r)}\right\|_{p(\cdot), \omega}\right\} \\
& \leqslant c \delta^{2 r}\left\{E_{0}(f)_{p(\cdot), \omega}+\sum_{i=1}^{m} 2^{(i+1) 2 r} E_{2^{i}}(f)_{p(\cdot), \omega}\right\} \\
& \leqslant c \delta^{2 r}\left\{E_{0}(f)_{p(\cdot), \omega}+2^{2 r} E_{1}(f)_{p(\cdot), \omega}+\sum_{i=1}^{m} 2^{(i+1) 2 r} E_{2^{i}}(f)_{p(\cdot), \omega}\right\} .
\end{aligned}
$$

Using the inequality

$$
\begin{equation*}
2^{(i+1) 2 r} E_{2^{i}}(f)_{p(\cdot), \omega} \leqslant 2^{4 r} \sum_{k=2^{i-1}+1}^{2^{i}} k^{2 r-1} E_{k}(f)_{p(\cdot), \omega}, \quad i \geqslant 1, \tag{2.3}
\end{equation*}
$$

we get

$$
\begin{align*}
\Omega_{r}\left(T_{2^{m+1}}, \delta\right)_{p(\cdot), \omega} & \leqslant c \delta^{2 r}\left\{E_{0}(f)_{p(\cdot), \omega}+2^{2 r} E_{1}(f)_{p(\cdot), \omega}+2^{4 r} \sum_{k=2}^{2^{m}} k^{2 r-1} E_{k}(f)_{p(\cdot), \omega}\right\} \\
& \leqslant c \delta^{2 r}\left\{E_{0}(f)_{p(\cdot), \omega}+\sum_{k=1}^{2^{m}} k^{2 r-1} E_{k}(f)_{p(\cdot), \omega}\right\} \tag{2.4}
\end{align*}
$$

Since

$$
E_{2^{m+1}}(f)_{p(\cdot), \omega} \leqslant \frac{2^{4 r}}{n^{2 r}} \sum_{k=2^{m-1}+1}^{2^{m}} \frac{k^{2 r} E_{k}(f)_{M, \omega}}{k},
$$

we obtain the required relation from (2.1)-(2.4).
Proof of Theorem 1.7. Using Theorems 1.6 and 2.3, we find

$$
\Omega_{r}\left(f_{\alpha}^{\psi}, \frac{1}{n}\right)_{p(\cdot), \omega} \leqslant \frac{c}{n^{2 r}} \sum_{\nu=1}^{n} \frac{\nu^{2 r} E_{\nu}\left(f_{\alpha}^{\psi}\right)_{p(\cdot), \omega}}{\nu},
$$

which implies the required inequality

$$
\Omega_{r}\left(f_{\alpha}^{\psi}, \frac{1}{n}\right)_{p(\cdot), \omega} \leqslant \frac{c}{n^{2 r}} \sum_{\nu=1}^{n} \frac{\nu^{2 r} E_{\nu}(f)_{p(\cdot), \omega}}{\nu \psi(\nu)}+C \sum_{\nu=n+1}^{\infty} \frac{E_{\nu}(f)_{p(\cdot), \omega}}{\nu \psi(\nu)} .
$$

Proof of Theorem 1.8. Let

$$
\int_{0}^{1} \Omega_{k}^{\gamma}(f, t)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t<+\infty
$$

Using Jackson inequality [15, Theorem 1.4]

$$
E_{n}(f)_{p(\cdot), \omega} \leqslant c \Omega_{k}\left(f, \frac{1}{n}\right)_{p(\cdot), \omega}
$$

we find

$$
\begin{aligned}
& \sum_{i=0}^{n} E_{2^{i}}^{\gamma}(f)_{p(\cdot), \omega} \varphi^{\gamma}\left(2^{i}\right) \leqslant c \sum_{i=0}^{n} \Omega_{k}^{\gamma}\left(f, \frac{1}{2^{i}}\right)_{p(\cdot), \omega} \varphi^{\gamma}\left(2^{i}\right) \leqslant c \int_{0}^{n} \Omega_{k}^{\gamma}\left(f, \frac{1}{2^{u}}\right)_{p(\cdot), \omega} \varphi^{\gamma}\left(2^{u}\right) d u \\
& =\frac{c}{\ln 2} \ln 2 \int_{0}^{n} \Omega_{k}^{\gamma}\left(f, \frac{1}{2^{u}}\right)_{p(\cdot), \omega} \varphi^{\gamma}\left(2^{u}\right) d u \leqslant \frac{c}{\ln 2} \int_{0}^{1} \Omega_{k}^{\gamma}(f, t)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t<+\infty .
\end{aligned}
$$

Hence

$$
\sum_{i=0}^{\infty} E_{2^{i}}^{\gamma}(f)_{p(\cdot), \omega} \varphi^{\gamma}\left(2^{i}\right) \leqslant c \int_{0}^{1} \Omega_{k}^{\gamma}(f, t)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t
$$

For the other direction, we set $T_{1} \in \mathscr{T}_{1}, E_{1}(f)_{p(\cdot), \omega}=\left\|f-T_{1}\right\|_{p(\cdot), \omega}, f(x)-T_{1}(x)=F(x)$, and

$$
\sum_{i=0}^{\infty} E_{2^{i}}^{\gamma}(f)_{p(\cdot), \omega} \varphi^{\gamma}\left(2^{i}\right)<+\infty .
$$

Then

$$
\begin{aligned}
\int_{0}^{1} \Omega_{k}^{\gamma}(F, t)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t & =\ln 2 \int_{0}^{\infty} \Omega_{k}^{\gamma}\left(F, \frac{1}{2^{u}}\right)_{p(\cdot), \omega} \varphi^{\gamma}\left(2^{u}\right) d u \\
& \leqslant c \sum_{i=0}^{\infty} \varphi^{\gamma}\left(2^{i}\right) \Omega_{k}^{\gamma}\left(F, \frac{1}{2^{i}}\right)_{p(\cdot), \omega} .
\end{aligned}
$$

On the other hand,

$$
f(x)=T_{1}(x)+\sum_{i=1}^{\infty}\left\{T_{2^{i}}(x)-T_{2^{i-1}}(x)\right\}
$$

and we get

$$
\begin{aligned}
\left\|\sigma_{2^{-m}}^{k} F\right\|_{p(\cdot), \omega} & =\left\|\sigma_{2^{-m}}^{k}\left(\sum_{i=1}^{\infty}\left\{T_{2^{i}}(x)-T_{2^{i-1}}(x)\right\}\right)\right\|_{p(\cdot), \omega} \\
& =\left\|\sum_{i=1}^{\infty} \sigma_{2^{-m}}^{k}\left(T_{2^{i}}(x)-T_{2^{i-1}}(x)\right)\right\|_{p(\cdot), \omega} \leqslant \sum_{s=1}^{\infty}\left\|\sigma_{2^{-m}}^{k} Q_{s}\right\|_{p(\cdot), \omega},
\end{aligned}
$$

where $Q_{s}(x):=T_{2^{s}}(x)-T_{2^{s-1}}(x)$. Hence, by [15, Lemma 2.6], we have

$$
\begin{aligned}
\left\|\sigma_{2-m}^{k} F\right\|_{p(\cdot), \omega} & \leqslant \sum_{s=1}^{\infty}\left\|\sigma_{2^{-m}}^{k} Q_{s}\right\|_{p(\cdot), \omega} \leqslant 2^{-m k} \sum_{s=1}^{\infty}\left\|Q_{s}^{(k)}(x)\right\|_{p(\cdot), \omega} \\
& =2^{-m k} \sum_{s=1}^{m+1}\left\|Q_{s}^{(k)}(x)\right\|_{p(\cdot), \omega}+2^{-m k} \sum_{s=m+2}^{\infty} 2^{s k}\left\|Q_{s}(x)\right\|_{p(\cdot), \omega} \\
& \leqslant 2^{-m k} \sum_{s=1}^{m+1}\left\|Q_{s}^{(k)}(x)\right\|_{p(\cdot), \omega}+2^{-m k} 2^{(m+2) k} \sum_{s=m+2}^{\infty}\left\|Q_{s}(x)\right\|_{p(\cdot), \omega} \\
& \leqslant c\left\{2^{-m k} \sum_{s=0}^{m} 2^{s k} E_{2^{s}}(f)_{p(\cdot), \omega}+2^{k} \sum_{s=m+1}^{\infty} E_{2^{s}(f)_{p(\cdot), \omega}}\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \int_{0}^{1} \Omega_{k}^{\gamma}(F, t)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t \leqslant c\left\{\sum_{m=0}^{\infty} \varphi^{\gamma}\left(2^{m}\right) 2^{-m \gamma k}\left[\sum_{s=0}^{m} 2^{s k} E_{2^{s}}(f)_{p(\cdot), \omega}\right]^{\gamma}\right. \\
& \left.\quad+\sum_{m=0}^{\infty} \varphi^{\gamma}\left(2^{m}\right) 2^{k \gamma}\left[\sum_{s=m+1}^{\infty} E_{2^{s}}(f)_{p(\cdot), \omega}\right]^{\gamma}\right\}=: c\left(I_{1}+I_{2}\right)
\end{aligned}
$$

We estimate I_{1}. By Definition 1.4 (ii), we have

$$
I_{1}=\sum_{m=0}^{\infty} \varphi^{\gamma}\left(2^{m}\right) 2^{-m \gamma k}\left[\sum_{s=0}^{m} 2^{s k} E_{2^{s}}(f)_{p(\cdot), \omega}\right]^{\gamma}
$$

$$
\begin{aligned}
& =\sum_{m=0}^{\infty} \varphi^{\gamma}\left(2^{m}\right) 2^{-m \gamma k}\left[\sum_{s=0}^{m} E_{2^{s}}(f)_{p(\cdot), \omega} 2^{s k} \frac{2^{-s(k-\alpha)}}{\varphi\left(2^{s}\right)} \varphi\left(2^{s}\right) 2^{s(k-\alpha)}\right]^{\gamma} \\
& \leqslant C \sum_{m=0}^{\infty} \varphi^{\gamma}\left(2^{m}\right) 2^{-m \gamma k}\left[\sum_{s=0}^{m} E_{2^{s}}(f)_{p(\cdot), \omega} 2^{s k} \frac{2^{-s(k-\alpha)}}{\varphi\left(2^{m}\right)} \varphi\left(2^{s}\right) 2^{m(k-\alpha)}\right]^{\gamma} \\
& =C \sum_{m=0}^{\infty} 2^{-m \gamma \alpha}\left[\sum_{s=0}^{m} E_{2^{s}}(f)_{p(\cdot), \omega} 2^{\alpha s} \varphi\left(2^{s}\right)\right]^{\gamma} \\
& \leqslant C \sum_{m=0}^{\infty}\left[\sum_{s=0}^{m} E_{2^{s}}(f)_{p(\cdot), \omega} \varphi\left(2^{s}\right)\right]^{\gamma} \leqslant \sum_{s=0}^{\infty} E_{2^{s}}^{\gamma}(f)_{p(\cdot), \omega} \varphi^{\gamma}\left(2^{s}\right)
\end{aligned}
$$

For estimating I_{2} we use Definition 1.4 (i):

$$
\begin{aligned}
I_{2} & =\sum_{m=0}^{\infty} \varphi^{\gamma}\left(2^{m}\right)\left[\sum_{s=m+1}^{\infty} E_{2^{s}}(f)_{p(\cdot), \omega}\right]^{\gamma}=\sum_{m=0}^{\infty} \varphi^{\gamma}\left(2^{m}\right)\left[\sum_{s=m+1}^{\infty} E_{2^{s}}(f)_{p(\cdot), \omega} \frac{\varphi\left(2^{s}\right)}{\varphi\left(2^{s}\right)} \frac{2^{s \beta}}{2^{s \beta}}\right]^{\gamma} \\
& \leqslant C \sum_{m=0}^{\infty} \varphi^{\gamma}\left(2^{m}\right) \frac{2^{m \beta \gamma}}{\varphi^{\gamma}\left(2^{m}\right) 2^{(m+1) \beta \gamma}}\left[\sum_{s=m+1}^{\infty} E_{2^{s}}(f)_{p(\cdot), \omega} \varphi\left(2^{s}\right)\right]^{\gamma} \\
& \leqslant C \sum_{m=0}^{\infty}\left[\sum_{s=m+1}^{\infty} E_{2^{s}}(f)_{p(\cdot), \omega} \varphi\left(2^{s}\right)\right]^{\gamma} \leqslant C \sum_{s=0}^{\infty} E_{2^{s}}^{\gamma}(f)_{p(\cdot), \omega} \varphi^{\gamma}\left(2^{s}\right) .
\end{aligned}
$$

Summarizing the above estimates, we obtain the inequality

$$
\int_{0}^{1} \Omega_{k}^{\gamma}\left(f-T_{1}, t\right)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t \leqslant C \sum_{s=0}^{\infty} E_{2^{s}}^{\gamma}(f)_{p(\cdot), \omega} \varphi^{\gamma}\left(2^{s}\right)
$$

Hence

$$
\int_{0}^{1} \Omega_{k}^{\gamma}(f, t)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t \leqslant C \sum_{s=0}^{\infty} E_{2^{s}}^{\gamma}(f)_{p(\cdot), \omega} \varphi^{\gamma}\left(2^{s}\right)
$$

Proof of Theorem 1.9. We follow the arguments of [24]. For a given $F \in L_{\omega}^{p(\cdot)}$ we denote by $t_{k}(F) \in \mathscr{T}_{k}$ the best approximating polynomial for F. Then for arbitrary functions φ and ψ in $L_{\omega}^{p(\cdot)}$ we have

$$
\begin{equation*}
\left|E_{k}(\varphi)-E_{k}(\psi)\right| \leqslant\|\varphi-\psi\|_{p(\cdot), \omega} . \tag{2.5}
\end{equation*}
$$

Indeed,

$$
E_{k}(\psi)_{p(\cdot), \omega} \leqslant\left\|\psi-t_{k}(\varphi)\right\|_{p(\cdot), \omega}=\left\|\psi-\varphi+\varphi-t_{k}(\varphi)\right\|_{p(\cdot), \omega} \leqslant\|\psi-\varphi\|_{p(\cdot), \omega}+E_{k}(\varphi)_{p(\cdot), \omega} .
$$

On the other hand

$$
E_{k}(\varphi)_{p(\cdot), \omega} \leqslant\|\psi-\varphi\|_{p(\cdot), \omega}+E_{k}(\psi)_{p(\cdot), \omega} .
$$

Thus we have (2.5).

Let $\left\|f_{m}-f_{n}\right\|_{p(\cdot), \gamma}^{k, \varphi} \rightarrow 0$ as $m \rightarrow \infty, n \rightarrow \infty$. Consequently, for every $\varepsilon>0$ and N we have

$$
\left\|f_{m}-f_{n}\right\|_{p(\cdot), \omega}+\left(\sum_{i=0}^{N} E_{2^{i}}^{\gamma}\left(f_{m}-f_{n}\right)_{p(\cdot), \omega} \varphi^{\gamma}\left(2^{i}\right)\right)^{1 / \gamma}<\varepsilon
$$

if $m, n>M(\varepsilon)$, where $M(\varepsilon)$ is an increasing integer-valued function such that $M(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Since $\left\{f_{j}\right\}$ is a Cauchy sequence in the Banach space $L_{\omega}^{p(\cdot)}$, there exists $f \in L_{\omega}^{p(\cdot)}$ such that $\left\|f_{m}-f\right\|_{p(\cdot), \omega} \rightarrow 0$ as $m \rightarrow \infty$. We fix N and pass to the limit as $m \rightarrow \infty$. Then

$$
\left\|f-f_{n}\right\|_{p(\cdot), \omega}+\left(\sum_{i=0}^{N} E_{2^{i}}^{\gamma}\left(f-f_{n}\right)_{p(\cdot), \omega} \varphi^{\gamma}\left(2^{i}\right)\right)^{1 / \gamma} \leqslant \varepsilon, \quad n>M(\varepsilon)
$$

Again passing to the limit as $N \rightarrow \infty$, we get

$$
\left\|f-f_{n}\right\|_{p(\cdot), \omega}+\left(\sum_{i=0}^{\infty} E_{2^{i}}^{\gamma}\left(f-f_{n}\right)_{p(\cdot), \omega} \varphi^{\gamma}\left(2^{i}\right)\right)^{1 / \gamma} \leqslant \varepsilon, \quad n>M(\varepsilon) .
$$

Thus, we can conclude that $f \in B_{p(\cdot), \gamma}^{k,,}$ and

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{p(\cdot), \gamma}^{k, \varphi}=0
$$

Proof of Theorem 1.10. Let $f \in B_{p(\cdot), \gamma}^{k, \varphi}$. Since \mathscr{A}_{h} is bounded in $L_{\omega}^{p(\cdot)}$, we have $\mathscr{A}_{h} f \in$ $L_{\omega}^{p(\cdot)}$ and

$$
\begin{equation*}
\left\|f-\mathscr{A}_{h} f\right\|_{p(\cdot), \omega} \rightarrow 0 \quad \text { as } h \rightarrow 0 \tag{2.6}
\end{equation*}
$$

For any $\delta \in(0,1)$ we have

$$
\begin{aligned}
& \int_{0}^{1} \Omega_{k}^{\gamma}\left(\mathscr{A}_{h} f, t\right)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t \\
& \leqslant \int_{0}^{\delta} \Omega_{k}^{\gamma}\left(\mathscr{A}_{h} f, t\right)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t+\int_{\delta}^{1} \Omega_{k}^{\gamma}\left(\mathscr{A}_{h} f, t\right)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t \\
& \leqslant \int_{0}^{\delta} \Omega_{k}^{\gamma}\left(\mathscr{A}_{h} f, t\right)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t+(1-\delta) \varphi^{\gamma}(1 / \delta) \delta^{-1} \sup _{u<h} \Omega_{k}^{\gamma}\left(\mathscr{A}_{u} f, 1\right)_{p(\cdot), \omega} \\
& \leqslant \int_{0}^{\delta} \Omega_{k}^{\gamma}(f, t)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t+(1-\delta) \varphi^{\gamma}(1 / \delta) \delta^{-1} \sup _{u<h}\left\|\mathscr{A}_{u} f\right\|_{p(\cdot), \omega}^{\gamma}=: I_{1}+I_{2} .
\end{aligned}
$$

Since $f \in B_{p(\cdot), \gamma}^{k, \varphi}$ we have $I_{1}<\infty$. On the other hand, for fixed δ

$$
I_{2} \leqslant(1-\delta) \varphi^{\gamma}(1 / \delta) \delta^{-1} \sup _{u<h}\|f\|_{p(\cdot), \omega}^{\gamma}=C(\delta)\|f\|_{p(\cdot), \omega}^{\gamma}<\infty
$$

Hence $\mathscr{A}_{h} f \in B_{p(\cdot), \gamma}^{k, \varphi}$. Again, for any $\delta \in(0,1)$ we obtain

$$
\begin{aligned}
& \int_{0}^{1} \Omega_{k}^{\gamma}\left(\mathscr{A}_{h} f-f, t\right)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t \\
& \leqslant 2^{\gamma} \int_{0}^{\delta} \Omega_{k}^{\gamma}(f, t)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t+\int_{\delta}^{1} \Omega_{k}^{\gamma}\left(\mathscr{A}_{h} f-f, t\right)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t \\
& \leqslant 2^{\gamma} \int_{0}^{\delta} \Omega_{k}^{\gamma}(f, t)_{p(\cdot), \omega} \varphi^{\gamma}(1 / t) t^{-1} d t+(1-\delta) \varphi^{\gamma}(1 / \delta) \delta^{-1} \sup _{u<h} \Omega_{k}^{\gamma}\left(\mathscr{A}_{u} f-f, 1\right)_{p(\cdot), \omega}=: I_{1}^{\prime}+I_{2}^{\prime}
\end{aligned}
$$

Since $f \in B_{p(\cdot), \gamma}^{k, \varphi}$, the quantity I_{1}^{\prime} can be arbitrarily small with the choice of δ. Then for fixed δ

$$
I_{2}^{\prime} \leqslant(1-\delta) \varphi^{\gamma}(1 / \delta) \delta^{-1} \sup _{u<h}\left\|\mathscr{A}_{u} f-f\right\|_{p(\cdot), \omega}^{\gamma} \rightarrow 0 \quad \text { as } h \rightarrow 0
$$

Thus, by (2.6),

$$
\left\|f-\mathscr{A}_{h} f\right\|_{p(\cdot), \gamma}^{k, \varphi} \rightarrow 0 \quad \text { as } h \rightarrow 0
$$

Proof of Theorem 1.12. By [16, Theorem 1.1], we have

$$
\Omega_{r}\left(f_{\alpha}^{\psi}, \frac{1}{n}\right)_{p(\cdot), \omega} \geqslant \frac{c}{n^{2 r}}\left(\sum_{\nu=1}^{n} \frac{\nu^{2 \beta r} E_{\nu}^{\beta}\left(f_{\alpha}^{\psi}\right)_{p(\cdot), \omega}}{\nu}\right)^{1 / \beta}=: L .
$$

By [19, Theorem 1.1], we have

$$
L \geqslant \frac{c}{n^{2 r}}\left(\sum_{\nu=1}^{n} \frac{\nu^{2 \beta r} E_{\nu}^{\beta}(f)_{p(\cdot), \omega}}{\nu \psi^{\beta}(\nu)}\right)^{1 / \beta}
$$

Theorem 1.12 is proved.

References

1. W. Orlicz, "Über konjugierte Exponentenfolgen," Studia Math. 3, 200-211 (1931).
2. H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd., Tokyo (1950).
3. H. Nakano, Topology and Topological Linear Spaces, Maruzen Co., Ltd., Tokyo (1951).
4. J. Musielak, Orlicz Spaces and Modular Spaces, Springer, Berlin (1983).
5. I. I. Sharapudinov, "Topology of the space $L^{p(t)}([0,1])$," Math. Notes 26, No. 3-4, 796-806 (1979).
6. O. Kovácik and J. Ràkosník, "On spaces $L^{p(x)}$ and $W^{k, p(x)}$," Czech. Math. J. 41, No. 4, 592-618 (1991).
7. S. G. Samko, "Differentiation and integration of variable order and the spaces $L^{p(x)}$," Contemp. Math. 212, 203-219 (1998).
8. X. Fan and D. Zhao, "On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$," J. Math. Anal. Appl. 263, No. 2, 424-446 (2001).
9. L. Diening, P. Hästo, P. Harjulehto, and M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Berlin (2011).
10. M. Ružička, Elektroreological Fluids: Modelling and Mathematical Theory, Springer, Berlin (2000).
11. L. Diening and M. Ružička, "Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics," J. Reine Angew. Math. 563, 197-220 (2003).
12. S. G. Samko, "On a progress in the theory of Lebesgue spaces with variable exponent: Maximal and Singular operators," Integr. Transform. Spec. Funct. 16, No. 5-6, 461-482 (2005).
13. E. A. Gadjieva, Investigation of the Properties of Functions with Quasimonotone Fourier Coefficients in Generalized Nikolskii-Besov Spaces [in Russian], Ph. D. Thesis, Tbilisi (1986).
14. R. Akgün, "Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent," Ukrainian Math. J. 63, No. 1, 1-26 (2011).
15. R. Akgün, "Polynomial approximation of functions in weighted Lebesgue and Smirnov spaces with nonstandard growth," Georgian Math. J. 18, No. 2, 203-235 (2011).
16. R. Akgün and V. Kokilashvili, "The refined direct and converse inequalities of trigonometric approximation in weighted variable exponent Lebesgue spaces," Georgian Math. J. 18, No. 3, 399-423 (2011).
17. V. Kokilashvili and S. Samko, "Harmonic analysis in weighted spaces with nonstandard growth," J. Math. Anal. Appl. 352, No. 1, 15-34 (2009).
18. D. M. Israfilov, V. M. Kokilashvili, and S. Samko, "Approximation in weighted Lebesgue and Smirnov spaces with variable exponent," Proc. A. Razmadze Math. Inst. 143, 45-55 (2007).
19. R. Akgün and V. Kokilashvili, "Approximation by trigonometric polynomials of functions having (α, ψ)-derivatives in weighted variable exponent Lebesgue spaces" [in Russian] Probl. Mat. Anal. 65, 3-12 (2012); English transl.: J. Math. Sci., New York 184, No 4, 371-382 (2012).
20. A. I. Stepanets, Methods of Approximation Theory, VSP, Leiden (2005)
21. A. I. Stepanets, "Inverse theorems for the approximation of periodic functions" [in Russian], Ukrain. Mat. Zh. 47, No. 9, 1266-1273 (1995); English transl.: Ukr. Math. J. 47, No. 9, 1441-1448 (1996).
22. A. I. Stepanets and E. I. Zhukina, "Inverse theorems for the approximation of (ψ, β) differentiable functions" [in Russian], Ukrain. Mat. Zh. 41, No. 8, 1106-1112, 1151 (1989); English transl.: Ukr. Math. J. 41, No. 8, 953-958 (1990).
23. A. I. Stepanets and A. K. Kushpel', Best Approximations and Diameters of Classes of Periodic Functions [in Russian]. Preprint No. 15, Akad. Nauk Ukrain. SSR Inst. Mat. (1984).
24. O. V. Besov, "Investigation of a class of function spaces in connection with imbedding and extension theorems" [in Russian], Trudy. Mat. Inst. Steklov. 60, 42-81 (1961).
25. D. Cruz-Uribe, L. Diening, and P. Hästö, "The maximal operator on weighted variable Lebesgue spaces," Fract. Calc. Appl. Anal. 14, No. 3, 361-374 (2011).
26. V. Kokilashvili and S. Samko, "Singular integrals in weighted Lebesgue spaces with variable exponent," Georgian Math. J. 10, No. 1, 145-156 (2003).
27. H. Weyl, "Bemerkungen zum Begriff der Differentialquotienten gebrochener Ordnung," Viertel. Natur. Gessell. Zurich 62, 296-302 (1917).
28. D. L. Kudryavtsev, "Fourier series of functions that have a logaritmic fractional derivative" [in Russian], Dokl. Akad. Nauk SSSR 266, 274-276 (1982); English transl.: Sov. Math. Dokl. 26, 311-313 (1982).
29. N. K. Bari and S. B. Stečkin, "Best approximations and differential properties of two conjugate functions" [in Russian], Trudy Moskov. Mat. Ob-va 5, 483-522 (1956).

Submitted on July 4, 2012

[^0]: * To whom the correspondence should be addressed.

