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In this paper we present the necessary and sufficient conditions ensur-
ing two-weight uniform boundedness for Cesáro summability means with
variable order for univariate and multiple Fourier trigonometric series. We
give two-weight uniform estimates criteria for above-mentioned Fourier op-
erators in general case when we have different weights and exponents of
classical Lebesgue spaces on both sides of inequalities.

Let T be the interval [−π, π]. Let w be a 2π-periodic almost everywhere
non-negative integrable function. We denote by Lp

w(T), 1 ≤ p < ∞ the
Banach function space of all measurable 2π-periodic functions f , for which
the norm

∥f∥p,w =

(∫
T

|f(x)|pw(x)dx
)1/p

< ∞.

The uniform boundedness problem of Cesáro and Abel-Poisson means of
functions from weighted Lebesgue space was studied by M. Rosenbloom [1]
and B. Muckenhoupt [2]. In the paper [1] a characterization of the weights w
for which the Cesáro (C, 1) and Abel-Poisson means are uniformly bounded
in weighted Lebesgue space Lp

w (1 < p < ∞) has been done. Later on B.
Muckenhoupt [2] established that the condition referred in [2] is equivalent
to the condition Ap, that is

sup
I

1

|I|

∫
I

w(x)dx

(
1

|I|

∫
I

w1−p′
(x)dx

)p−1

< ∞,

where p′ = p/(p−1) and supremum is taken over all intervals whose lengths
are not greater than 2π. In two weight setting by B. Muckenhoupt [3]
has been proved that the necessary and sufficient condition for the uniform
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boundedness of the Abel-Poisson means as operators from Lp
w to Lp

v is

sup
I

1

|I|

∫
I

v(x)dx

(
1

|I|

∫
I

w1−p′
(x)dx

)p−1

< ∞. (1)

Let

f (x) ∼ a0
2

+

∞∑
k=1

(ak cos kx+ bk sin kx) (2)

be the Fourier series of the function f ∈ L1 (T) . Let σα
n (·, f) (α > 0) be the

Cesáro means of the series (2) , that is

σα
n (x, f) =

1

π

∫
T

f (x+ t)Kα
n (t) dt,

where

Kα
n (t) =

n∑
k=0

Aα−1
n−kDk (t)

Aα
n

, α > 0

is the Fejer kernel and

Dk (t) =
sin

(
k + 1

2

)
t

2 sin t
2

is the Dirichlet kernel, with

Aα
n =

(
n+ α
α

)
≈ nα

Γ (α+ 1)
.

In the paper [4] by the second author and A. Guven has been proved
Theorem A. Let 1 < p ≤ q < ∞. Then the inequality

∥σα
n (·, f)∥q,v ≤ c n

1
p−

1
q ∥f∥p,w , α > 0 (3)

holds for arbitrary f ∈ Lp
w (T), where the constant c does not depend on n

and f , if and only if (v, w) ∈ Ap,q (T) i. e.

sup
I

 1

|I|

∫
I

v(x)dx

 1
q (

1

|I|

∫
I

w1−p′
(x)dx

) 1
p′

< ∞.

The latter condition is appeared in the papers [3], [4] by B. Muckenhoupt.
In present paper we study the Cesáro means of variable order

σαn
n (x, f) =

1

π

∫
T

f (x+ t)Kαn
n (t) dt,

where

Kαn
n (t) =

n∑
k=0

Aαn−1
n−k Dk (t)

Aαn
n

, αn > 0
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with the condition lim
n→∞

αn = α, α > 0.
It is evident that when αn ≡ 0 we have σ0

n(x, f) = Sn(x, f)-partial sums
of Fourier trigonometric series.

It should be stressed that an idea to introduce and study of linear meth-
ods of summability of variable orders comes from D. E. Menshov (see e. g.
[6]). For the considerable results on divergence problems of summability
means of variable order in the spaces C and L1, we refer to the papers by
Sh. Tetunashvili [7], [8].

One of main result of this paper is

Theorem 1. Let 1 < p ≤ q < ∞. The the inequality

∥σαn
n (·, f)∥q,v ≤ c n

1
p−

1
q ∥f∥p,w , α > 0 (4)

holds with a constant c independent of n, αn and f , if and only if (v, w) ∈
Ap,q (T) .

Let us now discuss the two-dimensional case.
Let T2 = T×T and w be a weight function on T2. We denote by Lp

w

(
T2

)
,

1 ≤ p < ∞, the space of functions f (x, y) which are 2π−periodic with
respect to each variable, such that

∥f∥p,w =

(∫
T2

|f (x, y)|p w (x, y) dxdy

)1/p

< ∞.

Let the function f ∈ L1
(
T2

)
has the Fourier series

f (x, y) ∼
∞∑

m,n=0

λmn (amn cosmx cosny + bmn sinmx cosny+

+cmn cosmx sinny + dmn sinmx sinny) , (5)

where

λmn =


1

4
, m = n = 0,

1

2
, m = 0, n > 0 or m > 0, n = 0,

1, m > 0, n > 0.

Let also

σ(αm,βn)
mn (x, y, f) =

m∑
i=0

n∑
j=0

Aαm−1
m−i Aβn−1

n−j Sij (x, y, f)

Aαm
m Aβn

n

, (αm > 0, βn > 0)

and lim
m→∞

αm = α, lim
n→∞

βn = β, α > 0, β > 0.
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Definition 1. The pair (v, w) is said to belong to the class Ap,q

(
T2

)
if

the condition

sup
J

(
1

|J |

∫
J

v (x, y) dxdy

)1/q(
1

|J |

∫
J

w1−p′
(x, y) dxdy

)1/p′

< ∞ (6)

holds, where the supremum is taken over all rectangles J with sides parallel
to the coordinate axes and with lengths not greater than 2π.

Theorem 2. Let 1 < p ≤ q < ∞. Then the condition (v, w) ∈ Ap,q

(
T2

)
is necessary and sufficient for the validity of the inequality∥∥∥σ(αm,βn)

mn (·, ·, f)
∥∥∥
q,v

≤ c (mn)
1
p−

1
q ∥f∥p,w , αm > 0, βn > 0 (7)

for every f ∈ Lp
w

(
T2

)
, where the constant c is independent of m, n, αm,

βn and f.

On the base of Theorems 1 and 2 we derive the following norm summa-
bility theorems in two-weighted setting

Theorem 3. Let 1 < p < ∞ and (v, w) ∈ Ap,p(T). Then we have

lim
n→∞

∥f − σαn
n (·, f)∥p,v = 0

for arbitrary f ∈ Lp
w(T).

Theorem 4. Let 1 < p < ∞. (v, w) ∈ Ap,p(T2). Then

lim
m,n→∞

∥f − σ(αm,βn)
mn (·, f)∥p,v = 0

for all f ∈ Lp
w(T2).

Example. Let w(x) = |x|p−1 lnp 2π
|x| and v(x) = |x|p−1. Then for the

pair (v, w) Theorem 1 is valid with p = q. The same pair governs also
validity of Theorem 3.
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