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SOME APPROXIMATION RESULTS IN SUBSPACE OF
WEIGHTED GRAND LEBESGUE SPACES

Let T = [−π, π], 1 < p < ∞ and θ > 0. The weighted grand Lebesgue
space of L

p),θ
w (T) is defined as a set of measurable functions for which the

norm

‖f‖Lp),θ,w = sup
0<ε<p−1


 εθ

2π

∫

T

|f(x)|p−εw(x)dx




1
p−ε

< ∞.

Here w is a 2π-periodic weight function, i.e. an almost everywhere positive
integrable function.

L
p),θ
w (T) is the Banach function space, non-reflexive, non-separable and

non-rearrangement. It is easy to check that the following continuous em-
beddings hold

Lp
w ↪→ Lp),θ

w ↪→ Lp−ε
w , 0 < ε < p− 1.

Grand Lebesgue spaces on the bounded subsets of Rn were introduced
by T. Iwaniec and C. Sbordone [1]. The closure of Lp

w (1 < p < ∞) by the
norm of the grand Lebesgue spaces does not coincide with the latter space.
Let us denote this closure by L̃

p),θ
w . It is known that this subspace of L

p),θ
w

is a set of functions for which

lim
ε→0

εθ

∫

T

|f(x)|p−εw(x)dx = 0.

A weight function w is said to be of the Muckenhoupt class Ap (1 < p < ∞)
if

sup


 1
|I|

∫

I

w(x)dx





 1
|I|

∫

I

w1−p′(x)dx




p−1

< ∞,

where the supremum is taken over all intervals with length less than 2π,
p′ = p

p−1 .
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We set f ∈ L
p),θ
w and

Ahf (x) :=
1
h

x+h/2∫

x−h/2

f (t) dt, x ∈ T.

If 1 < p < ∞, θ > 0 and w ∈ Ap, then Ah is bounded in L
p),θ
w . This follows,

for example, from the boundedness of the Hardy-Littlewood maximal oper-
ator in weighted grand Lebesgue spaces due to A. Fiorenza, B. Gupta and
P. Jain [2]. Consequently if x, h ∈ T , 0 ≤ r, then we define, via Binomial
expansion, that

σr
hf (x) := (I −Ah)r

f (x) =
∞∑

k=0

(−1)k Γ (r + 1)
Γ (k + 1)Γ(r − k + 1)

(Ah)k

where f ∈ L
p),θ
w , Γ is gamma function and I is the identity operator.

For 0 ≤ r we define the fractional moduli of smoothness for w ∈ Ap and
f ∈ L

p),θ
w as

Ωr (f, δ)p),θ,w := sup
0<hi,t≤δ

∥∥∥∥
[r]∏

i=1

(I −Ahi
)σ

{r}
t f

∥∥∥∥
p),θ,w

, δ ≥ 0,

where Ω0 (f, δ)p),θ,w := ‖f‖p),θ,w and
0∏

i=1

(I −Ahi)σr
t f := σr

t f for 0 < r <

1; [r] denotes the integer part of the real number r and {r} := r − [r] .
Let the Fourier series of a function f ∈ L

p),θ
w be written as

f (x) v a0 (f)
2

+
∞∑

k=1

(ak (f) cos kx + bk (f) sin kx) =
∞∑

k=0

Ak (x, f) .

We will say that a function f ∈ L
p),θ
w , 1 < p < ∞, θ > 0 and w ∈ Ap,

has a (α,ϕ)-derivative fϕ
α if, for a given sequence ϕ (k), k = 1, 2, . . . , and a

number α ∈ R, the transformed trigonometric series
∞∑

k=1

1
ϕ (k)

(
ak (f) cos k

(
x +

απ

2k

)
+ bk (f) sin k

(
x +

απ

2k

))

is the Fourier series of function fϕ
α .

We emphasize that the notion of generalized, so called (α, ϕ) derivatives
was introduced and studied by A. I. Stepanets (see e.g. [3]) in view of
approximation problems of periodic functions in classical Lebesgue spaces.

Let H be the set of some functions ϕ(t) convex downwards for any t ≥ 1
and satisfying the condition limt→∞ ϕ(t) = 0.

We associate every function ϕ ∈ H with a pair of functions η(τ) =
ϕ−1 (ϕ (τ) /2) and µ (τ)=τ/ (η (τ)−τ) . We set H0 :={ϕ∈H :0<µ (τ)≤M}.

The following theorem states the Bernstein type inequality.
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Theorem 1. Let 1 < p < ∞, θ > 0 and w ∈ Ap. Suppose that ϕ(k) is
a nonincreasing sequence of non-negative numbers such that ϕ(k) → 0 as
k →∞ and 1

ϕ(k)kr be nondecreasing. Then the following inequality

‖ (Tn)ϕ
r ‖p),θ,w ≤

c

ϕ (n)
Ωr/2(Tn, 1/n)p),θ,w.

holds with a constant independent of Tn.

For f ∈ L̃
p),θ
w by En(f)p),θ,w we denote the best approximation by

trigonometric polynomials

En(f)p),θ,w = inf ‖f − T‖p),θ,w,

where the infimum is taken over all trigonometric polynomials T of order
not greater than n. For f ∈ L̃p),θ,w, w ∈ Ap, 1 < p < ∞ and θ > 0 we have

lim
n→∞

En(f)p),θ,w = 0.

The following simultaneous approximation theorem is valid.

Theorem 2. Let 1 < p < ∞, θ > 0 and w ∈ Ap. Suppose that α ∈ [0,∞)
and fϕ

α ∈ L̃
p),θ
w . If ϕ ∈ H0, then there exists a T ∈ Tn, n = 1, 2, 3, . . . and a

constant c > 0 depending only on α and p such that

‖fϕ
α − Tϕ

α ‖p),θ,w ≤ cEn (fϕ
α )p),θ,ω

holds.

Theorem 3. Let 1 < p < ∞, θ > 0, r > 0 and w ∈ Ap. Let Tn be the
best approximating trigonometric polynomial for f ∈ L̃

p),θ
w (T). Then there

exists two positive constants c1 and c2, independent of f and n, such that
the following chain of inequalities holds

c1Ωr

(
f,

1
n

)

p),θ,w

≤ ‖f − Tn‖p),θ,w + n−2r‖T (2r)
n ‖p),θ,w ≤

≤ c2Ωr

(
f,

1
n

)

p),θ,w

.

We claim that the following inverse theorem for (α, ϕ) differentiable func-
tions in weighted grand Lebesgue spaces is true.

Theorem 4. Let 1 < p < ∞, θ > 0. Suppose that α ∈ R and f ∈ L̃
p),θ
w .

If ϕ ∈ H0, r ∈ (0,∞) and
∞∑

ν=1

(νϕ (ν))−1
Eν (f)p),θ,w < ∞,
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then fϕ
α ∈ L̃p),θ,w and the following inequality

Ωr

(
fϕ

α ,
1
n

)
p)θ,w

≤ c

(
1

n2r

n∑
ν=1

ν2r−1(ϕ(ν))−1Eν(f)p),θ,w+

+
∞∑

ν=n+1

(νϕ(ν))−1Eν(f)p),θ,w

)

holds with a constant c > 0 independent of f and n ∈ N.

Proofs of above-mentioned results are based on the following statements.

Theorem 5. Let 1 < p < ∞, θ > 0 and w ∈ Ap. Then the conjugate
operator f −→ f̃ is bounded in Lp),θ,w (T).

Theorem 6 (Marcinkiewicz type multiplier theorem). Let 1 < p < ∞,
θ > 0 and w ∈ Ap. Suppose that {λn}∞n=1 is a sequence of numbers satisfying
the following conditions: there exists a positive number M > 0, such that

|λn| ≤ M and
2n+1∑

k=2n

|λk+1 − λk| ≤ M

for arbitrary n ∈ N.
Suppose f ∈ L

p),θ
w and

f (x) v a0 (f)
2

+
∞∑

k=1

(ak (f) cos kx + bk (f) sin kx)

then the trigonometric series

f (x) v λ0a0 (f)
2

+
∞∑

k=1

λk (ak (f) cos kx + bk (f) sin kx)

is the Fourier trigonometric series of some function F ∈ L
p),θ
w and the

following inequality holds

‖F‖p),θ,w ≤ cM‖f‖p),θ,w

with a constant c > 0 independent of f .

It should be noted that the statements analogous to the Theorems 1, 2
and 4 in weighted variable exponent Lebesgue spaces where obtained in the
paper [4]. For a particular case of Theorem 4 we refer to the paper [5].
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