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Let  ,T     and let  p x  be 2 -periodic function continuous on the real line. We suppose that

 p x  satisfies the local log-continuity condition, i. e. there exists a positive constant A such that for all

,x y R , 
1
2

x y   the inequality

   
log

Ap x p y
x y

 
 

holds.
In the sequel the class of 2 -periodic functions satisfying the log-continuity condition ia denoted by

logP . Further, we say that p P  if  inf 1
T

p p x   . Also, for logp P P   the notation  sup
T

p p x 

will be used.

The variable exponent Lebesgue spaces  pL   of 2 -periodic functions are defined by the norm
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When logp P P   these spaces are reflexive, separable, non-rearrangement invariant Banach function
spaces (for these spaces we refer e. g. [1, 2]).



8 Vakhtang Kokilashvili

Bull. Georg. Natl. Acad. Sci., vol. 9, no. 1, 2015

For    pf L T  we consider the fractional moduli of smoothness:
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For similar structural characterization we refer the reader to [3; 4: Section 3.16], etc.
For further use, we need to make the following definition of fractional derivative in the Weyl sense. Let

 f x ~  
1

cos sin ,ikx
k k k

k k Z

a kx b kx c e




 

  

where  1, 2,Z      .

If 0  , then  -th order fractional integral of f  is defined as

   , ikx
k

k Z

I x f c ik e








  ,

where

 
1 i signk
2ik : k e ,
 

    

For  0,1   let

     1: ,df x I x f
dx




and

         :
llf x f x   ,

if the right hand side exists, where ,l Z   see e. g. [5: Section 8].

For 0   let  pW 
  be the class of functions for which

   
 

 
.

pW p p
f f f



  
   

Further, by    n p
E f

  we denote the best approximations of  pf L   by trigonometric polynomilas of

degree not greater than n.
Now we are ready to give the main results of this paper.
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Theorem 1. Let 2 -periodic continuous on the real line functions  p x  and  q x  belong to logP P .

Suppose that

   
1 1 s

q x p x
  ,          x T ,

where s is a positive constant on T.

Let 
1p
s

   and
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  ,  min 2, .q 

Then    qf L T  and the following estimates hold:
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with a positive constant c independent of f  and n.

Corollary 1. Let
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Theorem 2. Let under the conditions of Theorem 1 for some 0   the condition
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is satisfied. Then  qf W 
  and
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with a positive constant c independent of f  and n.

The case    p x q x  was explored in [6, 7].

Now we consider the problem in more general setting, namely, in weighted variable exponent Lebesgue
spaces.

For a weight function w  by    p
wL T  we denote the Banach function space defined by the norm

   ,p w p
f fw

 
 .
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We will employ the weights of the class    ,p qA   .

A weight function w  is said to be of class    ,p qA    if there exists a positive constant c such that for every

interval I of the real line, the inequality

   
11 ,s

I Iq p
w w c I  

  
    

1 1s
p q

 
 

holds.

In the sequel by    ,p qA    we denote the set of weights, which are the restrictions of    ,p qA    class weights

on  5 ,5   with the condition     2w x w x   for all  3 ,3 .x   

The general moduli of smoothness and the best approximations by trigonometric polynomials in  p
wL   are

defined as
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where the infimum is taken with respect to all trigonometric polynomials  t x  of degree not greater than n.

Theorem 3. Let the functions  p x ,  q x  and numbers s, r satisfy the conditions of Theorem 2. Suppose

w    ,p qA    and for some 0   the series
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The proofs are based on the Littlewood-Paley decomposition theorem, Bernstein-Zygmund and Nikol’skii
inequalities in weighted variable exponent Lebesgue spaces.

We claim that analogous to Theorem 2 result is valid for more general type of derivatives, discussed e. g. in
[7, 8]. For the analogous results in the case of constant exponents p = q and w 1 we refer to [9]. The detailed
proofs and some applications we are going to give in the forthcoming paper in Georgian Math. J.
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