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Let T = [—71',71'] and let p(x) be 27 -periodic function continuous on the real line. We suppose that

p(x) satisfies the local log-continuity condition, i. e. there exists a positive constant 4 such that for all

X, yER, |x— y| <% the inequality
A
— <=
|p(x) p(y)| “loglx—)]
holds.

In the sequel the class of 27 -periodic functions satisfying the log-continuity condition ia denoted by
Pt Further, we saythat pe P if p_ = il;f|p(x)| >1. Also, for p e P** (P the notation p, =sup p(x)
T
will be used.

The variable exponent Lebesgue spaces 1/ O of 27 -periodic functions are defined by the norm

p(x)
||f||p(.>=gqg{a:1\@ dm}.
T

1 . . . .
When p € P\ P"® these spaces are reflexive, separable, non-rearrangement invariant Banach function

spaces (for these spaces we refer e. g. [1, 2]).
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For f eI’V (T) we consider the fractional moduli of smoothness:

[]

Q,(£.6) )= sup [T(-4,)e"s] . r>0.5>0,
0<h; t<6 ("1 )
where
X+h/2
4f(x)=— [ flan  xer
x—h/2
and

e Ty e S DT D) k
onf (@)=~ 4) f(x)"zr(k+1)r(r—k+1)( W)

k=0

For similar structural characterization we refer the reader to [3; 4: Section 3.16], etc.
For further use, we need to make the following definition of fractional derivative in the Weyl sense. Let

f(x)~i(ak coskx+b, sinkx)= Y c.e™,
=

kez*
where Z* = {il,iZ,...} .

If a > 0, then ¢ -th order fractional integral of f is defined as

I, (x,f) = Z ¢ (ik)_a er ,

keZ*
where
(—ljm’asignk
(ik)™ =]k “ e 2 .

For o €(0,1) let

and

if the right hand side exists, where / € Z*, seee. g. [5: Section 8].

For o >0 let W;Z_) be the class of functions for which

_ (@)
71, =170, +17

< 00,
()

Further, by E, ( f )p we denote the best approximations of f e L’ 0 by trigonometric polynomilas of

)
degree not greater than n.

Now we are ready to give the main results of this paper.
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Theorem 1. Let 27 -periodic continuous on the real line functions p (x) and q (x) belongto P** N P.

Suppose that

where s is a positive constant on 7.

L1
Let p* <— and
s

iu”“EZ (/) <+, y=min(2,q_).

v=l
Then f € v (T) and the following estimates hold:

]

® 4
E,(f)yy Se|mE, (1), + (Zl o EN(f ),,(.)j

and
1

1 1 = r+s)— % N S= ’
Qr(f’ﬁj = (Z“m NEL( )p<->j {Zuy K (f)"“j
()

v=1 v=n+l
with a positive constant ¢ independent of f and n.

Corollary 1. Let

then

)}
1 (In n)%
Q| fi—| =0|—— i
v (f njq(_) ez ,  v= m1n(2, q,) .

Theorem 2. Let under the conditions of Theorem [ for some a >0 the condition

0

A (f)p(_) <400

v=l1

is satisfied. Then f e W;(‘) and

« 1 1 Z r+s+o)— % = a+s)— %
0, (f( )’;jq(.) <¢ F(ZUM ) IELI (f)l’(')j +( Z m( ) ‘Eg (f),,(.)j

v=l v=n+l
with a positive constant ¢ independent of f and .

The case p (x) =q (x) was explored in [6, 7].
Now we consider the problem in more general setting, namely, in weighted variable exponent Lebesgue

spaces.

For a weight function w by Lﬁ,(') (T) we denote the Banach function space defined by the norm

||f||p(-),w = ||fw||p() .
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We will employ the weights of the class Ap(_) e

»q

A weight function w is said to be of class Ap(_)’q(_) if there exists a positive constant ¢ such that for every

interval / of the real line, the inequality

1-s _
, 8=

1 1
p() a()

"WZI ||q() ||W_1%/ ||pv(.) < C|[

holds.
In the sequel by Zp(.),q(-) we denote the set of weights, which are the restrictions of A,,(.),q(.) class weights
on (—57,57) with the condition w(x+27)=w(x) forall x e(-37,37).

The general moduli of smoothness and the best approximations by trigonometric polynomials in 0 are

defined as

[r]
Q,(£:6) 0y, = sw ([ T(1-4, Jollf| . r>0.8>0,

0</y; ,t<8 i=l
p(-).w

and
E” (f)p(-),w = H}f ||f - t"p(-),w’
where the infimum is taken with respect to all trigonometric polynomials t(x) of degree not greater than n.
Theorem 3. Let the functions p (x) , q (x) and numbers s, r satisfy the conditions of Theorem 2. Suppose

we Zp(.),q(.) and for some a >0 the series

0

zuy(a+s)—1 Ez})/ (f)p(-),w’ y =min(2,q_),

v=1

converges. Then f e W;(‘_)M and

a 1 1 c r+s+o )= % > yla+s)— %
Qr (f( )’_j 0 < c{nzr (207(2 ) lEl}),*I (f)p(-),wj +( Z U/( ) IEL{ (f)p()nj .
q().w

n v=1 v=n+1

The proofs are based on the Littlewood-Paley decomposition theorem, Bernstein-Zygmund and Nikol’skii
inequalities in weighted variable exponent Lebesgue spaces.

We claim that analogous to Theorem 2 result is valid for more general type of derivatives, discussed e. g. in
[7, 8]. For the analogous results in the case of constant exponents p = g and w=1 we refer to [9]. The detailed
proofs and some applications we are going to give in the forthcoming paper in Georgian Math. J.
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