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Abstract. The concept of uniform distribution in [0,1] is extended to a certain mutually singular
maximal (in the sense of cardinality) family {λt : t ∈ [0, 1]} of invariant extensions of the linear

Lebesgue measure λ in [0,1], and it is shown that the λ∞t measure of the set of all λt-uniformly

distributed sequences is equal to 1, where λ∞t denotes the infinite power of measure λt.

1. Introduction

The theory of uniform distribution is concerned with the distribution of real numbers in the unit
interval [0, 1] and its development started with Hermann Weyl’s celebrated paper [27]. This theory
gives a useful tool for exact numerical calculation of the one-dimensional Riemann integral over [0, 1].

More precisely, the sequence of real numbers {xn : n ∈ N} ∈ [0, 1]∞ is uniformly distributed in
[0,1] if and only if for every real-valued Riemann integrable function f on [0,1] the equality

lim
n→∞

n∑
k=1

f(xk)

n
=

1∫
0

f(x)dx (1.1)

holds (see, e.g., [16, Corollary 1.1, p. 2]). Main corollaries of this assertion were successfully used in
Diophantine approximations and widely applied to Monte-Carlo integration (cf. [2, 3, 16, 27]). Note
that the set U of all uniformly distributed sequences in [0,1], viewed as a subset of [0, 1]∞, has the λ∞t
measure of the set of all λt-uniformly distributed sequences equal to 1, where λ∞t denotes the infinite
product of the measure λt. (cf. [16, Theorem 2.2 (Hlawka), p. 183]). For a fixed Lebesgue integrable
function f in [0,1], one can put a question asking what is a maximal subset Uf of U each element of
which can be used for calculation of its Lebesgue integral over [0,1] by formula (1.1) and whether this
subset a the full λ∞-measure. This question has been resolved positively by Kolmogorov’s Strong Law
of Large Numbers. There naturally arises another question asking whether an analogous methodology
can be developed for invariant extensions of the Lebesgue measure in [0,1] and whether the main
results of the uniform distribution theory hold true in such a situation. In the present paper, we
consider this question for a certain mutually singular maximal (in the sense of cardinality) family of
invariant extensions of the linear Lebesgue measure in [0,1]. In our investigations, we essentially use
the methodology developed in [10,16,24].

The rest of the present paper is organized as follows.
In Section 2, we consider some auxiliary facts from the theory of invariant extensions of the Lebesgue

measure and from the probability theory. In Section 3, we present our main results. Section 4 presents
historical background of the theory of invariant extensions of the n-dimensional Lebesgue measure.

2. Some Auxiliary Notions and Facts from the Theory of Invariant Extensions of
the Lebesgue Measure

Throughout this article, we use the following standard notation:
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R is the set of all real numbers;
N is the set of all natural numbers;
ω is the first infinite cardinal number (i.e.,ω = card(N));
c is the cardinality of the continuum (i.e., c = 2ω);
λ is the linear Lebesgue measure on R.
dom(µ) is the domain of a given measure µ;
µ1 ⊃ µ - a measure µ1 is an extension of the given measure µ.

Lemma 2.1 ([10, Lemma 6, p. 174]). Let K be a shift-invariant σ-ideal of subsets of the real axis R
such that

(∀Z)(Z ∈ K ⇒ λ∗(Z) = 0),

where λ∗ denotes inner measure generated by the linear Lebesgue measure λ.
Then the functional µ defined by

µ((X ∪ Z
′
) \ Z

′′
) = λ(X),

where X is a Lebesgue measurable subset of R and Z
′

and Z
′′

are elements of the σ-ideal K, is a
shift-invariant extension of the Lebesgue measure λ.

Lemma 2.2 ([10, Lemma 4, p. 164]). There exists a family {Yi : i ∈ [0, 1]} of subsets of the real line
R such that:

(1) (∀i)(∀i′)(i ∈ [0, 1], i′ ∈ [0, 1], i 6= i′ ⇒ Yi ∩ Yi′ = ∅);
(2) (∀i)(∀F )(i ∈ [0, 1], F is a closed subset of the real line R with λ(F ) > 0 ⇒ card(Xi ∩F ) = c);

(3) (∀I ′
)(∀g)(I

′ ⊆ [0, 1], g ∈ R⇒ card((g + (∪i∈I′Yi))4(∪i∈I′Yi)) < c).

Lemma 2.3 ([10, Lemma 5, p. 166]). There exists a family {Xi : i ∈ [0, 1]} of subsets of the real line
R such that:

(a) for any sequence {ik : k ∈ N} ⊂ [0, 1], the intersection

∩k∈NXik ,

where

Xik = Xik ∨Xik = R \Xik ,

is almost invariant set.
(b) for any sequence {ik : k ∈ N} ⊂ [0, 1] and for any closed subset F of the real line R with

λ(F ) > 0, we have

card((∩k∈NXik) ∩ F ) = c.

Lemma 2.4 ([10, Corollary 5, p. 174]). There exists a family {µt : t ∈ [0, 1]} of measures defined on
some shift-invariant σ-algebra S(R) of subsets of the real axis R such that:

(1) (∀t)(t ∈ [0, 1] ⇒ the measure µt is a shift-invariant extension of the linear Lebesgue
measure λ);

(2) (∀t)(∀t′)(t ∈ [0, 1], t
′ ∈ [0, 1], t 6= t

′ ⇒ µt and µt′ are mutually singular measures.
Moreover, µt(R \Xt) = 0 for each t ∈ [0, 1], where {Xt : t ∈ [0, 1]} comes from Lemma 2.2.

Remark 2.5. Let us consider the family {µt : t ∈ [0, 1]} of shift-invariant extensions of the measure
λ which comes from Lemma 2.4. We denote by λt the restriction of the measure µt to the class

S[0, 1] = {Y ∩ [0, 1] : Y ∈ S(R)},

where S(R) comes from Lemma 2.4. It is obvious that for each t ∈ [0, 1], the measure λt is concentrated
on the set Ct = Xt ∩ [0, 1], provided that

λt([0, 1] \ Ct) = 0.

The next proposition is useful for our further consideration.
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Lemma 2.6 (Kolmogorov Strong Law of Large Numbers, [24, Theorem 3, p. 379]). Let (Ω, S, P ) be
a probability space and {ξk : k ∈ N} be a sequence of independent equally distributed random variables
for which mathematical expectation m of ‖ξ1‖ is finite. Then the following condition

P

({
ω : ω ∈ Ω ∧ lim

n→∞

n∑
k=1

ξk(ω)

n
= m

})
= 1

holds.

3. Uniform Distribution for Invariant Extensions of the Lebesgue Measure Defined
by Remark 2.5

Let us consider the family of probability measures {λt : t ∈ [0, 1]} and the family {Ct : t ∈ [0, 1]}
of subsets of [0,1] which come from Remark 2.5.

Lemma 3.1. For t ∈ [0, 1] we denote by L([0, 1], λt) the class of λt-integrable functions. Then for
f ∈ L([0, 1], λt), we have

λ∞t ({{xk : k ∈ N} ∈ [0, 1]∞ : lim
n→∞

n∑
k=1

f(xk)

n
=

∫
[0,1]

f(x)dλt(x)}) = 1.

Proof. For fixed t ∈ [0, 1], we set

(Ω, S, P ) = (C∞t , F (C∞t ), ν∞t ),

where
i) F (Ct) = {Ct ∩ Y : Y ∈ S[0, 1]}, where S[0, 1] comes from Remark 2.5.
ii) νt = λt|F (Ct), where λt|F (Ct) denotes restriction of the measure λt to the σ-algebra F (Ct).
For k ∈ N and {xk : k ∈ N} ∈ C∞t , we put

ξk({xk : k ∈ N}) = f(xk).

Then all conditions of Lemma 2.6 are satisfied which implies that

ν∞t ({{xk : k ∈ N} ∈ C∞t : lim
n→∞

n∑
k=1

ξk{xk : k ∈ N}

n

=

∫
C∞

t

ξ1({xi : i ∈ N}dν∞t ({(xk : k ∈ N}) = 1,

equivalently,

ν∞t ({{xk : k ∈ N} ∈ C∞t : lim
n→∞

n∑
k=1

f(xk)

n
=

∫
Ct

f(x)dνt(x)}) = 1.

The latter relation implies that

λ∞t ({{xk : k ∈ N} ∈ [0, 1]∞, lim
n→∞

n∑
k=1

f(xk)

n
=

∫
[0,1]

f(x)dλt(x)})

≥ ν∞t ({{xk : k ∈ N} ∈ C∞t : lim
n→∞

n∑
k=1

f(xk)

n
=

∫
Ct

f(x)dνt(x)}) = 1. �
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Definition 3.2. A sequence of real numbers {xk : k ∈ N} ∈ [0, 1]∞ is said to be λ-uniformly
distributed sequence (abbreviated λ-u.d.s.) if for each c, d with 0 ≤ c < d ≤ 1, we have

lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [c, d])

n
= d− c.

We denote by S the set of all real-valued sequences from [0, 1]∞ which are λ-u.d.s. It is well known
that {αn : n ∈ N} ∈ S for each irrational number α, where {·} denotes the fractional part of the real
number (cf. [16, Exercise 1.12, p. 16]).

Definition 3.3. A sequence of real numbers {xk : k ∈ N} ∈ R∞ is said to be uniformly distributed
module 1 if the sequence of its fractional parts {xk : k ∈ N} is λ-u.d.s.

Remark 3.4. It is obvious that {xk : k ∈ N} ∈ [0, 1]∞ is uniformly distributed module 1 if and only
if {xk : k ∈ N} is λ-u.d.s.

Definition 3.5. A sequence of real numbers {xk : k ∈ N} ∈ [0, 1]∞ is said to be λt-uniformly
distributed sequence (abbreviated λt-u.d.s.) if for each c, d with 0c < d1, we have

lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [c, d] ∩ Ct)
n

= d− c.

We denote by St the set of all real valued sequences from [0, 1]∞ which are λt-u.d.s.

In order to construct λt-u.d.s. for each t ∈ [0, 1], we need the following lemma.

Lemma 3.6 ([16, Theorem 1.2, p. 3]). If the sequence {xn : n ∈ N} is u.d. mod 1, and if {yn : n ∈ N}
is a sequence with the property

lim
n→∞

(xn − yn) = α

for some real constant α , then {yn : n ∈ N} is u.d. mod 1.

Theorem 3.7. For each t ∈ [0, 1] there exists λt-u.d.s.

Proof. Let us consider a sequence {xk : k ∈ N} ∈ [0, 1]∞ which is λ-u.d.s. For each n ∈ N , we choose
such an element yn from the set Ct ∩ (0, xn) that

‖xn − yn‖ <
1

n
.

This we can do because Ct is everywhere dense in (0, 1). Now it is obvious that

lim
n→∞

(xn − yn) = 0.

By Lemma 3.6, we deduce that {yn : n ∈ N} is λ-u.d.s. Let us show that {yn : n ∈ N} is λt-u.d.s.
Indeed, since yk ∈ Ct for each k ∈ N and {yn : n ∈ N} is λ-u.d.s., for each c, d with 0 ≤ c < d ≤ 1,
we have

lim
n→∞

card({yk : 1 ≤ k ≤ n} ∩ [c, d] ∩ Ct)
n

= lim
n→∞

card({yk : 1 ≤ k ≤ n} ∩ [c, d])

n
= d− c. �

Theorem 3.8. For each t ∈ [0, 1] λt-u.d.s. is λ-u.d.s..

Proof. Let {xk : k ∈ N} be λt-u.d.s. On the one hand, for each c, d with 0 ≤ c < d ≤ 1, we have

limn→∞
card({xk : 1 ≤ k ≤ n} ∩ [c, d])

n

≥ lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [c, d] ∩ Ct)
n

= d− c.

Since {xk : k ∈ N} is λt-u.d.s., we have

lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [0, 1] ∩ Ct)
n

= 1.
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It is obvious that

lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [0, 1])

n
= 1.

The last two conditions imply that

lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ ([0, 1] \ Ct))
n

= lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [0, 1])

n

− lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ Ct)
n

= 1− 1 = 0.

The last relation implies that for each c, d with 0 ≤ c < d ≤ 1

lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [c, d] ∩ ([0, 1] \ Ct))
n

≤ lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ ([0, 1] \ Ct))
n

= 0.

Finally, for each c, d with 0 ≤ c < d ≤ 1 we get

limn→∞
card({xk : 1 ≤ k ≤ n} ∩ [c, d])

n

≤ lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [c, d] ∩ Ct)
n

+ lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [c, d] ∩ ([0, 1] \ Ct))
n

= (d− c) + 0 = d− c.
This ends the proof of theorem. �

Remark 3.9. Note that the converse to the result of Theorem 3.8 is not valid. Indeed, for fixed
t ∈ [0, 1], let {yn : n ∈ N} be λt-u.d.s. which comes from Theorem 3.7. By Theorem 3.8, {yn : n ∈ N}
is λ-u.d.s. Let us show that {yn : n ∈ N} is not λs-u.d.s. for each s ∈ [0, 1] \ t. Indeed, since yk ∈ Cs
for each k ∈ N , we deduce that yk 6∈ Cs for each s ∈ [0, 1] \ t. The latter relation implies that for
each s ∈ [0, 1] \ t and for each c, d with 0 ≤ c < d ≤ 1, we have

lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [c, d] ∩ Ct)
n

= 0 < d− c.

Remark 3.10. For each λ-u.d.s. {yn : n ∈ N}, there exists a countable subset T ⊂ [0, 1] such that
{yn : n ∈ N} is not λt-u.d.s for each t ∈ [0, 1] \ T . Indeed, since {Ct : t ∈ [0, 1]} is the partition of the
[0, 1], for each k ∈ N there exists a unique tk ∈ [0, 1] such that yk ∈ Ctk . Now we can put

T =
⋃
k∈N

{tk}.

Theorem 3.11. There exists λ-u.d.s which is not λt-u.d.s. for each t ∈ [0, 1].

Proof. Let us consider a sequence {xn : n ∈ N} ∈ (0, 1)∞ which is λ-u.d.s. Since {Ct : t ∈ [0, 1]} is
the partition of the [0, 1], for each k ∈ N, there exists a unique tk ∈ [0, 1] such that yk ∈ Ctk . Now we
can put

T =
⋃
k∈N

{tk}.

Let S0 = {s1, s2, . . .} be a countable subset of the set [0, 1] \ T . For each n ∈ N, we choose the
element yn from the set Csn ∩ (0, xn) such that

|xn − yn| <
1

n
.

This can be done because Ct is every where dense in (0, 1) for each t ∈ [0, 1]. Now it is obvious
that
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lim
n→∞

(xn − yn) = 0.

By Lemma 3.6, we deduce that {yn : n ∈ N} is λ-u.d.s.. Let us show that {yn : n ∈ N} is not
λt-u.d.s. for each t ∈ [0, 1]. This follows from the fact that card({yn : n ∈ N} ∩ Ct) ≤ 1 for each
t ∈ [0, 1]. By this reason, for each t ∈ [0, 1] and for each c, d with 0 ≤ c < d ≤ 1, we have

lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [c, d] ∩ Ct)
n

≤ lim
n→∞

1

n
= 0 < d− c. �

Theorem 3.12. Si ∩ Sj = ∅ for each different i, j ∈ [0, 1].

Proof. Assume the contrary and let {xk : k ∈ N} ∈ Si ∩ Sj . On the one hand, for each c, d with
0 ≤ c < d ≤ 1, we have

lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [c, d] ∩ Ci)
n

= d− c.

On the other hand, for same c, d, we have

lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [c, d] ∩ Cj)
n

= d− c.

By Theorem 3.8, we know that {xk : k ∈ N} is λ-u.d.s. which implies that for same c, d, we have

lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [c, d])

n
= d− c. (3.1)

But (3.1) is not possible because Ci ∩ Cj = ∅ which implies

d− c = lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [c, d])

n

≥ lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [c, d] ∩ Ci)
n

+ lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [c, d] ∩ Cj)
n

= 2(d− c). �

4. Historical Background for Invariant Extensions of the Haar Measure

4.1. On the Waclaw Sierpiniski problem. By Vitali’s celebrate theorem about the existence of the
linear Lebesgue non-measurable subset, it has been shown that the domain of the Lebesgue measure
in R diers from the power set of the real axis R. In this context, there naturally appears the following
question:

“How far can we extend Lebesgue measure and what properties may preserve such an extension?”
In 1935, E. Marczewski applied Sierpinski construction of an almost invariant set, obtained a proper

invariant extension of the Lebesgue measure in which the extended σ-algebra contained new sets of
positive finite measures. In connection with this result, Waclaw Sierpiniski in 1936 posed the following
question:

Problem. Let Dn denote the group of all isometrical transformations of the Rn. Does there exist
any maximal Dn-invariant measure?

The first result in this direction was obtained by Andrzej Hulanicki [6] as follows:

Proposition (Andrzej Hulanicki (1962)). If the continuum 2ω is not real-valued measurable cardinal
then there does not exist any maximal invariant extension of the Lebesgue measure.

Using similar methods, this result has been obtained independently by SH. Pkhakadze [23].
In 1977, A. B. Kharazishvili got the same answer in the one-dimensional case without any set-

theoretical assumption (see [9, 10]).
Finally, in 1982, Krzysztof Ciesielski and Andrzej Pelc generalized Kharazishvili’s result to all n-

dimensional Euclidean spaces (see [1]). Following Solovay [25], if the system of axioms ZFC and the
existing inaccessible cardinal are consistent, then the systems of axioms ZF and DC and every set
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of reals are Lebesgue measurable and also consistent. This result implies that the answer to Waclaw
Sierpiniski’s problem is armative. Taking Solovay’s result on the one hand, and Krzysztof Ciesielski
and Andrzej Pelc (or A. Hulanicki or Pkhakadze) result on the other hand, we deduce that the Waclaw
Sierpiniski’s question is not solvable within the theory ZF and DC.

4.2. On Lebesgue measure’s invariantly extension methods in ZFC. Nowadays, there exists
a vast methodology assigned for constructing invariant extensions of the Lebesgue measure in Rn and
the Haar measure in a locally compact Hausdor topological group. Let us briefly consider the main
one.

Method I (E. Marczewski). Let K be a shift-invariant σ-ideal in the n-dimensional Euclidean
space Rn such that

(∀Z)(Z ∈ K ⇒ λ∗(Z) = 0)

where λ∗ denotes the inner measure defined by the n-dimensional Lebesgue measure λ. Then the
functional λ̄ defined by

λ̄((X ∪ Z ′) \ Z ′′) = λ(X)

where X is a Lebesgue measurable subset of Rn and Z ′ and Z ′′ are elements of the σ-ideal K, λ̄ is
an Dn-invariant extension of the Lebesgue measure λ.

Method III (J. Oxtoby and S.Kakutani). Some methods of combinatorial set theory have
lately been successfully used in the measure extension problem. Among them, special mention should
be made of the method of constructing a maximal (in the sense of cardinality) family of independent
families of sets in arbitrary infinite base spaces. The question of the existence of a maximal (in the
sense of cardinality) ω-independent family of subsets of an uncountable set E has beed considered by
A. Tarski. He proved that this cardinality is equal to 2card(E).

This result found an interesting application in a general topology. For ex-ample, it was proved that

in an arbitrary infinite space E the cardinality of the class of all ultrafilters is equal to 22
card(E)

(see,
e.g., [17]).

The combinatorial question of the existence of a maximal (in the sense of cardinality) strict ω-
independent family of subsets of a set E with cardinality of the continuum also was investigated
and it was proved that this cardinality is equal to 2c. This combinatorial result found an interesting
application in the Lebesgue measure theory. For example, Kakutani and Oxtoby [8] firstly constructed
a family A of almost invariant subsets of the circle in such a way that⋂

n∈N

Afnn

has outer measure 1 for an arbitrary sequence {An : n ∈ N} of sets from A and arbitrary sequence
{fn : n ∈ N}, (fn = 0, 1). After making some assumtions they obtained an extension of the Lebesgue
measure on the circle to an invariant measure λ̄ such that L2(λ̄) has the Hilbert space dimensional
equal to 2c.

Using the same combinatorial result, A.B. Kharazishvili constructed a maximal (in the sense of
cardinality) mutually singular family of elementary Dn-invariant extensions of the Lebesgue measure
(see [10]).

The combinatorial question of the existence of a maximal (in the sense of cardinality) strict ω-
independent family of subsets of a set E with card(Eω) = card(E) was investigated in [20] and it
was shown that this cardinality is equal to 2card(E). Using this result, G.Pantsulaia [18] extended
Kakutani and Oxtoby’s [8] method to construction a maximal (in the sense of cardinality) family
of orthogonal elementary H-invariant extensions of the Haar measure defined in a locally compact
σ-compact topological group with card(Hω) = card(H).

Method IV (K. Kodaira and S. Kakutani). Kodaira and Kakutani [15] elaborated the method
extending the Lebesgue measure on the circle to an invariant measure as follows:

Let us produce a character π of the circle, i.e., a homomorphism ϕ : T → T in such a way that
the outer Lebesgue measure of its graph Gϕ is equal to 1 in T × T . Then the extended σ-algebra
S consists of sets AM = {x : (x, ϕ(x)) ∈ M}, where M is a Lebesgue measurable set in T × T and
the extended measure λ̄ is λ̄(AM ) = (λ × λ)(M). Note that the discontinuous character becomes
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S-measurable. Later, it has been noticed [5] that one can produce 2c characters such that all of them
become measurable and L2(λ̄) is of Hilbert space dimension 2c.

This method has been modified for the n-dimensional Euclidean space in [20] for constructing the
invariant extension λ̄ of the n-dimensional Lebesgue measure such that there exists a λ̄-measurable
set with only one density point. This result answered positively to a certain question stated by A. B.
Kharazishvili (cf. [11, Problem 9, p. 200]). Knowing this result, A. B. Kharazishvili considered similar,
but originally modified method and extended previous result in [11] as follows:

there exists an invariant extension λ̄ of the classical Lebesgue measure such that λ̄ has the uniqueness
property and there exists a λ̄-measurable set with only one density point.

Method ?. More lately, Kodaira and Kakutani’s method has been modified for an uncountable
locally compact σ-compact topological group H with card(Hω) = card(H) in [21] as follows: Let E be
a set with 2 ≤ card(E) ≤ card(H) and let µ be a probability measure in E such that each X ∈ dom(µ)
for which card(X) < card(E). Let us find a function f : H → E in such a way that the following two
conditions:

(1) (∀e)(∀F )(e ∈ E and (F is a closed subset of the H with λ(F ) > 0) ⇒ card(f−1(e) ∩ F ) =
card(E));

(2) (∀E)(∀g)(E ⊆ E and g ∈ H ⇒ card(g(∪e∈Ef−1(e))4(∪e∈Ef−1(e)) < card(H) hold true.

Then the extended σ-algebra S consists of the sets AM = {x : (x, f(x)) ∈ M}, where M ∈
dom(λ) × dom(µ) and the extended measure λµ is defined by λµ(AM ) = (λ × µ)(M). Note that λµ
is a non-elementary invariant extension of the measure λ, if and only if the measure µ is diffused. It
has been noticed that one can produce 2card(H) functions such that they all become measurable and
L2(λµ) is of Hilbert space dimension 2card(H).

Method V (A. Kharazishvili). This approach, as usual, can be used for uncountable commu-
tative groups and is based on the purely algebraic properties of those groups, which are not assumed
to be endowed with any topology, but only are equipped with a nonzero σ-finite invariant measures.
Here, essentially is used Kulikov’s well known theorem about covering of any commutative group by
increasing (in the sense of inclusion) countable sequence of subgroups of G which are direct sum of
cyclic groups (finite or infinite) (see, e.g., [13, 14]).

Definition 4.1. Let E be a base space, G be a group of transformations of E and let X be a subset
of the space E. X is called a G-absolutely negligible set if for any G-invariant σ-finite measure µ,
there exists its G - invariant extension µ̄ such that X ∈ dom(µ̄) and µ̄(X) = 0.

A geometrical characterization of absolutely negligible subsets, due to A. Kharazishvili, is presented
in the next proposition.

Theorem 4.2. Let (G,+) be a commutative group and Y be a subset of G. The following two
assertions are equivalent:

1) Y is G-absolutely negligible in G;
2) for any countable family {gn : n < ω} of elements from G, there exists a countable family

{fm : m < ω} of elements from G such that⋂
m<ω

(fm +
⋃
n<ω

(gn + Y )) = ∅.

For the proof of the above-mentioned theorem, see [10].

It is of interest that the class of all countable G-configurations of the fixed G-absolutely negligible
subset constitutes a G-invariant σ-ideal such that the inner measure of each element of this class is
zero with respect to any σ-finite G-invariant measure in E. Hence, by using the natural modification
of Method I, one can obtain G-invariant extension of an arbitrary σ-finite G-invariant measure in E.

In 1977, A. B. Kharazishvili constructed the partition of the real axis R into a countable family of
D1-absolutely negligible sets and got the negative answer to the question of Waclaw Sierpiniski in the
one-dimensional case without any set-theoretical assumption (see [9]).

Finally, in 1982, Krzysztof Ciesielski and Andrzej Pelc generalized Kharazishvili’s result to all n-
dimensional Euclidean spaces, more precisely, they constructed the partition of the Euclidean space Rn



ON UNIFORM DISTRIBUTION FOR INVARIANT EXTENSIONS OF THE LEBESGUE MEASURE 399

into the countable family of Dn-absolutely negligible sets and got the negative answer to the question
of Waclaw Sierpiniski in the n-dimensional case without any set-theoretical assumption (see [1]).

By using the method of absolutely negligible sets elaborated by A. Kharazishvili [10],
P. Zakrzewski [28] answered positively to a question of Ciesielski asking whether an isometrically
invariant σ-finite countably additive measure on Rn admits a strong countably additive isometri-
cally invariant extension. It is obvious that this question is a generalization of the above-mentioned
W. Sierpiniski’s problem.

Acknowledgement

This work was supported by the Shota Rustaveli National Science Foundation of Georgia (SRNSFG),
Grant FR-18-6190.

References

1. K. Ciesielski, A. Pelc, Extensions of invariant measures on Euclidean spaces. Fund. Math. 125 (1985), no. 1, 1–10.
2. G. Hardy, J. Littlewood, Some problems of diophantine approximation. Acta Math. 37 (1914), no. 1, 193–239.

3. G. Hardy, J. Littlewood, Some problems of Diophantine approximation. Acta Math. 37 (1914), no. 1, 155–191.

4. E. Hlawka, Folgen auf kompakten Rumen. (German) Abh. Math. Sem. Univ. Hamburg 20 (1956), 223–241.
5. A. Hulanicki, On subsets of full outer measure in products of measure spaces. Bull. Acad. Polon. Sci. Sr. Sci. Math.

Astr. Phys. 7 (1959), 331–335.

6. A. Hulanicki, Invariant extensions of the Lebesgue measure. Fund. Math. 51 (1962/63), 111–115.
7. A. Hulanicki, C. Ryll-Nardzewski, Invariant extensions of the Haar measure. Colloq. Math. 42 (1979), 223–227.

8. S. Kakutani, J. Oxtoby, Construction of a non-separable invariant extension of the Lebesgue measure space. Ann.

of Math. (2) 52 (1950), 580–590.
9. A. B. Kharazishvili, On Sierpinski’s problem concerning strict extendability of an invariant measure. Soviet. Math.

Dokl. 18 (1977), no. 1, 71–74.

10. A. B. Kharazishvili, Invariant Extensions of the Lebesgue Measure. (Russian) Tbilis. Gos. Univ. Tbilisi, 1983.
11. A. B. Kharazishvili, Some remarks on density points and the uniqueness property for invariant extensions of the

Lebesgue measure. Acta Univ. Carolin. Math. Phys. 35 (1994), no. 2, 33–39.
12. A. B. Kharazishvili, Selected Topics of Point Set Theory. Wydawnictwo Uniwersytetu Lodzkiego, 1996.

13. A. B. Kharazishvili, On absolutely negligible sets in uncountable solvable groups. Georgian Math. J. 12 (2005),

no. 2, 255–260.
14. A. B. Kharazishvili, On thick subgroups of uncountable σ-compact locally compact commutative groups. Topology

Appl. 156 (2009), no. 14, 2364–2369.

15. K. Kodaira, S. Kakutani, A non-separable translation invariant extension of the Lebesgue measure space. Ann. of
Math. (2) 52 (1950), 574–579.

16. L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences. Pure and Applied Mathematics. Wiley-Interscience

[John Wiley & Sons], New York-London-Sydney, 1974.
17. K. Kuratowski, A. Mostowski, Set Theory. (Russian) Nauka, Moscow, 1980.

18. G. R. Pantsulaia, Independent families of sets and some of their applications to measure theory. (Russian) Soobshch.

Akad. Nauk Gruzin. SSR 134 (1989), no. 1, 29–32.
19. G. R. Pantsulaia, On non-elementary extensions of the Haar measure. Semin. I. Vekua Inst. Appl. Math. 9 (1994),

40–43.
20. G. R. Pantsulaia, Density points and invariant extensions of the Lebesgue measure. (Russian) Soobshch. Akad.

Nauk Gruzii 151 (1995), no. 2, 216–219 (1996).

21. G. R. Pantsulaia, An application of independent families of sets to the measure extension problem. Georgian Math.
J. 11 (2004), no. 2, 379–390.

22. G. R. Pantsulaia, Invariant and Quasiinvariant Measures in Infinite-Dimensional Topological Vector Spaces. Nova

Science Publishers, Inc., New York, 2007.
23. Sh. Pkhakadze, The theory of Lebesgue measure. (Russian) Akad. Nauk Gruzin. SSR. Trudy Tbiliss. Mat. Inst.

Razmadze 25 (1958), 3–271.

24. A. N. Shiryaev, Probability. (Russian) Nauka, Moscow, 1980.
25. R. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable. Ann. of Math. (2) 92 (1970),

1–56.

26. E. Szpilrajn (E. Marczewski), On problems of the theory of measure. (Russian) Uspekhi Mat. Nauk, 12 (1946),
no. 2, 179–188 .
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