On the Unique Solvability of a Periodic Boundary Value Problem for Third-Order Linear Differential Equations

S. R. Baslandze and I. T. Kiguradze
Mathematical Institute, Academy of Sciences, Tbilisi, Georgia
Received June 1, 2005

DOI: 10.1134/S0012266106020029

We study the periodic boundary value problem

$$
\begin{align*}
u^{\prime \prime \prime} & =p_{1}(t) u+p_{2}(t) u^{\prime}+p_{3}(t) u^{\prime \prime}+q(t), \tag{1}\\
u^{(i-1)}(b) & =u^{(i-1)}(a)+c_{i} \quad(i=1,2,3), \tag{2}
\end{align*}
$$

where $-\infty<a<b<+\infty$, the $c_{i}(i=1,2,3)$ are real constants, and the $p_{i}:[a, b] \rightarrow \mathbb{R}(i=1,2,3)$ and $q:[a, b] \rightarrow \mathbb{R}$ are Lebesgue integrable functions.

By \tilde{C} we denote the space of absolutely continuous functions $x:[a, b] \rightarrow \mathbb{R}$, and by \tilde{C}^{1} we denote the space of functions $x:[a, b] \rightarrow \mathbb{R}$ absolutely continuous together with their first derivatives. We write $x(t) \not \equiv y(t)$ if functions x and y differ on a set of a positive measure.

In what follows, we consider the cases in which there exists a number $\sigma \in\{-1,1\}$ such that

$$
\begin{equation*}
\sigma p_{1}(t) \geq 0 \quad \text { for } \quad a \leq t \leq b, \quad p_{1}(t) \not \equiv 0, \tag{3}
\end{equation*}
$$

and one of the following four conditions is satisfied:

$$
\begin{array}{llll}
p_{2} \in \tilde{C}, & p_{3} \in \tilde{C}^{1}, & \sigma\left(p_{2}(b)-p_{2}(a)\right) \geq 0, \quad p_{3}(b)=p_{3}(a), \quad \sigma\left(p_{3}^{\prime}(b)-p_{3}^{\prime}(a)\right) \leq 0, \\
p_{1} \in \tilde{C}, & p_{3} \in \tilde{C}^{1}, & p_{1}(b) \geq p_{1}(a), \quad p_{3}(b)=p_{3}(a), \quad \sigma\left(p_{3}^{\prime}(b)-p_{3}^{\prime}(a)\right) \leq 0, \\
p_{1} \in \tilde{C}^{1}, & p_{2} \in \tilde{C}, & p_{1}(b)=p_{1}(a), \quad \sigma\left(p_{1}^{\prime}(b)-p_{1}^{\prime}(a)\right) \leq 0, \quad \sigma\left(p_{2}(b)-p_{2}(a)\right) \geq 0, \\
p_{1} \in \tilde{C}^{1}, & p_{2} \in \tilde{C}, & p_{1}(b)=p_{1}(a), \quad \sigma\left(p_{1}^{\prime}(b)-p_{1}^{\prime}(a)\right) \geq 0, \quad \sigma\left(p_{2}(b)-p_{2}(a)\right) \leq 0 . \tag{4}
\end{array}
$$

In these cases, we find earlier unknown (see [1-14] and the bibliography therein) and, in a sense, sharp criteria for the unique solvability of problem (1), (2).

Along with problem (1), (2), consider the corresponding homogeneous problem

$$
\begin{align*}
u^{\prime \prime \prime} & =p_{1}(t) u+p_{2}(t) u^{\prime}+p_{3}(t) u^{\prime \prime}, \tag{0}\\
u^{(i-1)}(b) & =u^{(i-1)}(a) \quad(i=1,2,3) . \tag{0}
\end{align*}
$$

Suppose that this problem has a nontrivial solution u. If we consecutively multiply both sides of Eq. $\left(1_{0}\right)$ by $\sigma u(t), \sigma u^{\prime \prime}(t)$, and $-u^{\prime}(t)$ and integrate from a to b, then, in view of (3), we obtain

$$
\begin{gather*}
\int_{a}^{b}\left|p_{1}(t)\right| u^{2}(t) d t+\sigma \int_{a}^{b} p_{2}(t) u^{\prime}(t) u(t) d t+\sigma \int_{a}^{b} p_{3}(t) u^{\prime \prime}(t) u(t) d t=0, \tag{5}\\
\sigma \int_{a}^{b} p_{3}(t) u^{\prime \prime 2}(t) d t+\sigma \int_{a}^{b} p_{2}(t) u^{\prime}(t) u^{\prime \prime}(t) d t+\int_{a}^{b}\left|p_{1}(t)\right| u(t) u^{\prime \prime}(t) d t=0, \tag{6}
\end{gather*}
$$

$$
\begin{equation*}
\int_{a}^{b} u^{\prime \prime 2}(t) d t+\int_{a}^{b} p_{1}(t) u(t) u^{\prime}(t) d t+\int_{a}^{b} p_{2}(t) u^{\prime 2}(t) d t+\int_{a}^{b} p_{3}(t) u^{\prime \prime}(t) u^{\prime}(t) d t=0 \tag{7}
\end{equation*}
$$

On the other hand, if $i \in\{1,2,3\}, j \in\{1,2\}$, and $p_{i} \in \tilde{C}$, then

$$
\int_{a}^{b} p_{i}(t) u^{(j-1)}(t) u^{(j)}(t) d t=\frac{1}{2}\left(p_{i}(b)-p_{i}(a)\right)\left[u^{(j-1)}(a)\right]^{2}-\frac{1}{2} \int_{a}^{b} p_{i}^{\prime}(t)\left[u^{(j-1)}(t)\right]^{2} d t
$$

If $i \in\{1,3\}, p_{i} \in \tilde{C}^{1}$, and $p_{i}(b)=p_{i}(a)$, then

$$
\int_{a}^{b} p_{i}(t) u(t) u^{\prime \prime}(t) d t=\frac{1}{2}\left(p_{i}^{\prime}(a)-p_{i}^{\prime}(b)\right) u^{\prime 2}(a)+\frac{1}{2} \int_{a}^{b} p_{i}^{\prime \prime}(t) u^{2}(t) d t-\int_{a}^{b} p_{i}(t) u^{\prime 2}(t) d t
$$

Therefore, if condition $\left(4_{1}\right)$ is satisfied, then, from (5) and (6), we obtain

$$
\begin{align*}
\int_{a}^{b}\left(\left|p_{1}(t)\right|-\frac{\sigma}{2} p_{2}^{\prime}(t)+\frac{\sigma}{2} p_{3}^{\prime \prime}(t)\right) u^{2}(t) d t & \leq \sigma \int_{a}^{b} p_{3}(t) u^{\prime 2}(t) d t \tag{1}\\
\sigma \int_{a}^{b} p_{3}(t) u^{\prime \prime 2}(t) d t & \leq \frac{\sigma}{2} \int_{a}^{b} p_{2}^{\prime}(t){u^{\prime 2}}^{2}(t) d t-\int_{a}^{b}\left|p_{1}(t)\right| u(t) u^{\prime \prime}(t) d t \tag{1}
\end{align*}
$$

and if condition $\left(4_{2}\right)$ is satisfied, then relations (5) and (7) imply that

$$
\begin{align*}
\int_{a}^{b}\left(\left|p_{1}(t)\right|+\frac{\sigma}{2} p_{3}^{\prime \prime}(t)\right) u^{2}(t) d t & \leq-\sigma \int_{a}^{b} p_{2}(t) u^{\prime}(t) u(t) d t+\sigma \int_{a}^{b} p_{3}(t) u^{\prime 2}(t) d t \tag{2}\\
\int_{a}^{b} u^{\prime \prime 2}(t) d t & \leq \frac{1}{2} \int_{a}^{b} p_{1}^{\prime}(t) u^{2}(t) d t-\int_{a}^{b}\left[p_{2}(t)-\frac{1}{2} p_{3}^{\prime}(t)\right] u^{\prime 2}(t) d t \tag{2}
\end{align*}
$$

Likewise, if condition $\left(4_{3}\right)$ is satisfied, then it follows from (5) and (6) that

$$
\begin{align*}
\int_{a}^{b}\left(\left|p_{1}(t)\right|-\frac{\sigma}{2} p_{2}^{\prime}(t)\right) u^{2}(t) d t & \leq-\sigma \int_{a}^{b} p_{3}(t) u^{\prime \prime}(t) u(t) d t \tag{3}\\
\sigma \int_{a}^{b} p_{3}(t) u^{\prime \prime 2}(t) d t & \leq \int_{a}^{b}\left(\left|p_{1}(t)\right|+\frac{\sigma}{2} p_{2}^{\prime}(t)\right) u^{\prime 2}(t) d t-\frac{\sigma}{2} \int_{a}^{b} p_{1}^{\prime \prime}(t) u^{2}(t) d t \tag{3}
\end{align*}
$$

If condition $\left(4_{4}\right)$ holds, then from (6), we obtain

$$
\begin{equation*}
\int_{a}^{b}\left(\left|p_{1}(t)\right|+\frac{\sigma}{2} p_{2}^{\prime}(t)\right) u^{\prime 2}(t) d t-\frac{\sigma}{2} \int_{a}^{b} p_{1}^{\prime \prime}(t) u^{2}(t) d t-\sigma \int_{a}^{b} p_{3}(t) u^{\prime \prime 2}(t) d t \leq 0 \tag{4}
\end{equation*}
$$

Now let us show that

$$
\begin{equation*}
\int_{a}^{b} u^{\prime \prime 2}(t) d t>0 \tag{10}
\end{equation*}
$$

Indeed, otherwise we would have $u(t) \equiv c_{0}=$ const $\neq 0$ by condition $\left(2_{0}\right)$ and hence $p_{1}(t) c_{0} \equiv 0$. But this contradicts condition (3).

We have thereby proved the following assertion.

Lemma 1. Let p_{1} satisfy condition (3), and let problem $\left(1_{0}\right),\left(2_{0}\right)$ have a nontrivial solution u. If, in addition, condition $\left(4_{k}\right)$ is satisfied for some $k \in\{1,2,3\}$, then u satisfies inequalities $\left(8_{k}\right)$, $\left(9_{k}\right)$, and (10). If condition $\left(4_{4}\right)$ holds, then u satisfies inequalities $\left(9_{4}\right)$ and (10).

We introduce the notation

$$
d=\frac{b-a}{2 \pi}
$$

to be used throughout the following.
Theorem 1. Let conditions (3) and (41) be satisfied. In addition, suppose that either

$$
\begin{align*}
& \sigma\left(p_{2}^{\prime}(t)-p_{3}^{\prime \prime}(t)\right) \leq 2\left|p_{1}(t)\right|, \\
& \sigma p_{3}(t) \leq 0 \quad \text { for } \quad a<t<b, \tag{11}\\
& p_{2}^{\prime}(t)-p_{3}^{\prime \prime}(t) \not \equiv 2 p_{1}(t)
\end{align*}
$$

or there exist constants $\delta \in] 0,1], \ell_{1}>0, \ell_{2} \geq 0, \ell_{3}>0$, and $\left.\left.\ell \in\right] 0, \ell_{3}\right]$ such that

$$
\begin{align*}
\sigma\left(p_{2}^{\prime}(t)-p_{3}^{\prime \prime}(t)\right) & \leq 2(1-\delta)\left|p_{1}(t)\right|, \quad\left|p_{1}(t)\right|<\ell_{1} \quad \text { for } a<t<b, \tag{12}\\
\sigma p_{2}^{\prime}(t) & \leq 2 \ell_{2}, \quad \ell \leq \sigma p_{3}(t) \leq \ell_{3} \quad \text { for } a<t<b, \tag{13}\\
d\left(\ell_{1} \ell_{3} / \delta\right)^{1 / 2}+d^{2} \ell_{2} & \leq \ell . \tag{14}
\end{align*}
$$

Then problem (1), (2) has exactly one solution.
Proof. Suppose the contrary. Then the homogeneous problem $\left(1_{0}\right),\left(2_{0}\right)$ has a nontrivial solution u, which satisfies inequalities $\left(8_{1}\right),\left(9_{1}\right)$, and (10) by Lemma 1.

If, along with (3) and $\left(4_{1}\right)$, condition (11) is satisfied, then inequality $\left(8_{1}\right)$ leads to a contradiction:

$$
0<\int_{a}^{b}\left(\left|p_{1}(t)\right|-\frac{\sigma}{2} p_{2}^{\prime}(t)+\frac{\sigma}{2} p_{3}^{\prime \prime}(t)\right) u^{2}(t) d t \leq 0 .
$$

Let us proceed to the case in which, along with (3) and (41), conditions (12)-(14) are satisfied. Then from $\left(8_{1}\right)$, we obtain the inequality

$$
\delta \int_{a}^{b}\left|p_{1}(t)\right| u^{2}(t) d t \leq \ell_{3} \int_{a}^{b} u^{\prime 2}(t) d t
$$

This, together with the Wirtinger theorem [15, Th. 258], implies that

$$
\begin{equation*}
\int_{a}^{b}\left|p_{1}(t)\right| u^{2}(t) d t \leq \frac{\ell_{3}}{\delta} d^{2} \int_{a}^{b} u^{\prime \prime 2}(t) d t . \tag{15}
\end{equation*}
$$

If, along with (10) and (12)-(15), we use the Schwartz and Wirtinger inequalities, then from (9_{1}), we obtain

$$
\begin{aligned}
\ell \int_{a}^{b} u^{\prime \prime 2}(t) d t & \leq \ell_{2} \int_{a}^{b} u^{\prime 2}(t) d t+\left(\int_{a}^{b} p_{1}^{2}(t) u^{2}(t) d t\right)^{1 / 2}\left(\int_{a}^{b} u^{\prime \prime 2}(t) d t\right)^{1 / 2} \\
& <\ell_{2} \int_{a}^{b} u^{\prime 2}(t) d t+\ell_{1}^{1 / 2}\left(\int_{a}^{b}\left|p_{1}(t)\right| u^{2}(t) d t\right)^{1 / 2}\left(\int_{a}^{b} u^{\prime \prime 2}(t) d t\right)^{1 / 2} \\
& \leq\left[d^{2} \ell_{2}+d\left(\frac{\ell_{1} \ell_{3}}{\delta}\right)^{1 / 2}\right] \int_{a}^{b} u^{\prime \prime 2}(t) d t \leq \ell \int_{a}^{b} u^{\prime \prime 2}(t) d t
\end{aligned}
$$

The resulting contradiction completes the proof of the theorem.

If $p_{i}(t) \equiv p_{i}=$ const ($i=2,3$), i.e., Eq. (1) has the form

$$
\begin{equation*}
u^{\prime \prime \prime}=p_{1}(t) u+p_{2} u^{\prime}+p_{3} u^{\prime \prime}+q(t), \tag{1}
\end{equation*}
$$

then Theorem 1 implies the following assertion.
Corollary 1. Let condition (3) be satisfied. In addition, suppose that either $\sigma p_{3} \leq 0$ or

$$
\begin{equation*}
\sigma p_{3}>0, \quad\left|p_{1}(t)\right|<d^{-2}\left|p_{3}\right| \quad \text { for } \quad a<t<b . \tag{16}
\end{equation*}
$$

Then problem (1 $)$, (2) has exactly one solution.
Remark 1. If

$$
\begin{equation*}
p_{1}(t) \equiv d^{-2} p_{3}, \quad p_{2}(t) \equiv-d^{-2}, \quad p_{3}(t) \equiv p_{3} \neq 0 \tag{17}
\end{equation*}
$$

then conditions (3), (41), (13), and (14) are satisfied, where $\sigma=\operatorname{sgn} p_{3}, \delta=1, \ell_{1}=d^{-2}\left|p_{3}\right|, \ell_{2}=0$, and $\ell=\ell_{3}=\left|p_{3}\right|$, and, instead of (12) and (16), we have

$$
\begin{align*}
\sigma\left(p_{2}^{\prime}(t)-p_{3}^{\prime \prime}(t)\right) & \leq 2(1-\delta)\left|p_{1}(t)\right|, \quad\left|p_{1}(t)\right| \leq \ell_{1} \quad \text { for } \quad a<t<b, \tag{12'}\\
\sigma p_{3} & >0, \quad\left|p_{1}(t)\right| \leq d^{-2} p_{3} \quad \text { for } \quad a<t<b,
\end{align*}
$$

respectively. Nevertheless, the homogeneous problem $\left(1_{0}\right),\left(2_{0}\right)$ has the nontrivial solution

$$
u(t)=\sin \frac{2 \pi(t-a)}{b-a}
$$

Consequently, condition (12) [respectively, (16)] in Theorem 1 (respectively, Corollary 1) is sharp in the sense that it cannot be replaced by condition (12') [respectively, (16')].

Theorem 2. Let conditions (3) and $\left(4_{2}\right)$ be satisfied. In addition, suppose that there exist constants $\delta \in] 0,1]$ and $\ell_{i} \geq 0(i=1,2,3), \ell \geq 0$, such that

$$
\begin{align*}
p_{1}^{\prime}(t) & \leq 2 \ell_{1}\left|p_{1}(t)\right|, \quad 2 p_{2}(t)-p_{3}^{\prime}(t)>-2 \ell \quad \text { for } \quad a<t<b, \tag{18}\\
\ell_{1} p_{2}^{2}(t) & \leq \ell_{2}\left|p_{1}(t)\right|, \quad \sigma \ell_{1} p_{3}(t) \leq \ell_{3}, \quad \ell p_{3}^{\prime \prime}(t) \geq-2(1-\delta)\left|p_{1}(t)\right| \quad \text { for } a<t<b, \tag{19}\\
\ell & +\left(\delta^{-1} \ell_{2}^{1 / 2}+\delta^{-1 / 2} \ell_{3}^{1 / 2}\right)^{2} \leq d^{-2} . \tag{20}
\end{align*}
$$

Then problem (1), (2) has exactly one solution.
Proof. Suppose the contrary. Then problem $\left(1_{0}\right),\left(2_{0}\right)$ has a nontrivial solution u, which satisfies inequalities $\left(8_{2}\right),\left(9_{2}\right)$, and (10) by Lemma 1.

By virtue of condition (19) and the Schwartz inequality, it follows from $\left(8_{2}\right)$ that

$$
\begin{aligned}
\ell_{1} \int_{a}^{b}\left|p_{1}(t)\right| u^{2}(t) d t & \leq \delta^{-1} \ell_{2}^{1 / 2} \ell_{1}^{1 / 2} \int_{a}^{b}\left|p_{1}(t)\right|^{1 / 2}|u(t)|\left|u^{\prime}(t)\right| d t+\delta^{-1} \ell_{3} \int_{a}^{b} u^{\prime 2}(t) d t \\
& \leq \delta^{-1} \ell_{2}^{1 / 2}\left(\ell_{1} \int_{a}^{b}\left|p_{1}(t)\right| u^{2}(t) d t\right)^{1 / 2}\left(\int_{a}^{b} u^{\prime 2}(t) d t\right)^{1 / 2}+\delta^{-1} \ell_{3} \int_{a}^{b} u^{\prime 2}(t) d t
\end{aligned}
$$

and consequently,

$$
\ell_{1} \int_{a}^{b}\left|p_{1}(t)\right| u^{2}(t) d t \leq\left(\delta^{-1} \ell_{2}^{1 / 2}+\delta^{-1 / 2} \ell_{3}^{1 / 2}\right)^{2} \int_{a}^{b} u^{\prime 2}(t) d t
$$

If, along with the last inequality, we use conditions (10), (18), and (20) and apply the Wirtinger theorem, then from $\left(9_{2}\right)$, we obtain

$$
\begin{aligned}
\int_{a}^{b} u^{\prime \prime 2}(t) d t & <\ell_{1} \int_{a}^{b}\left|p_{1}(t)\right| u^{2}(t) d t+\ell \int_{a}^{b} u^{\prime 2}(t) d t \\
& \leq\left[\ell+\left(\delta^{-1} \ell_{2}^{1 / 2}+\delta^{-1 / 2} \ell_{3}^{1 / 2}\right)^{2}\right] \int_{a}^{b} u^{\prime 2}(t) d t \leq \int_{a}^{b} u^{\prime \prime 2}(t) d t
\end{aligned}
$$

The resulting contradiction proves the theorem.
This implies the following assertion for the differential equation

$$
\begin{equation*}
u^{\prime \prime \prime}=p_{1} u+p_{2}(t) u^{\prime}+p_{3} u+q(t) \tag{2}
\end{equation*}
$$

where p_{1} and p_{3} are constants.
Corollary 2. If $p_{1} \neq 0$ and

$$
\begin{equation*}
p_{2}(t)>-d^{-2} \quad \text { for } \quad a<t<b \tag{21}
\end{equation*}
$$

then problem $\left(1_{2}\right)$, (2) has exactly one solution.
Remark 2. If condition (17) is satisfied, then conditions (3), (42), (19), and (20) are valid, where $\sigma=\operatorname{sgn} p_{3}, \delta=1, \ell_{1}=\ell_{2}=\ell_{3}=0$, and $\ell=d^{-2}$, and, instead of (18) and (21), we have

$$
\begin{align*}
& p_{1}^{\prime}(t) \leq 2 \ell_{1}\left|p_{1}(t)\right|, \quad 2 p_{2}(t)-p_{3}^{\prime}(t) \geq-\ell \quad \text { for } \quad a<t<b \\
& p_{2}(t) \geq-\ell \quad \text { for } \quad a<t<b
\end{align*}
$$

respectively. On the other hand, in this case, the homogeneous problem $\left(1_{0}\right),\left(2_{0}\right)$ has the nontrivial solution $u(t)=\sin (2 \pi(t-a) /(b-a))$. Consequently, condition (18) [respectively, (21)] in Theorem 2 [respectively, Corollary 2)] is sharp in the sense that it cannot be replaced by condition (18') [respectively, (21')].

Theorem 3. Let conditions (3) and $\left(4_{3}\right)$ be satisfied. In addition, suppose that there exist constants $\delta \in] 0,1]$ and $\ell_{i} \geq 0(i=1,2,3), \ell \geq 0$, such that

$$
\begin{align*}
\sigma p_{1}^{\prime \prime}(t) & \leq \ell_{1}\left|p_{1}(t)\right|, \quad\left|p_{1}(t)\right|+\frac{\sigma}{2} p_{2}^{\prime}(t) \leq \ell_{2} \quad \text { for } \quad a<t<b, \tag{22}\\
\sigma p_{2}^{\prime}(t) & \geq 2(1-\delta)\left|p_{1}(t)\right|, \quad \ell_{1} p_{3}^{2}(t) \leq \ell_{3}\left|p_{1}(t)\right| \quad \text { for } \quad a<t<b, \tag{23}\\
\sigma p_{3}(t) & >\ell \quad \text { for } \quad a<t<b, \tag{24}\\
d^{2} \ell_{2}+\delta^{-2} \ell_{3} & \leq \ell \tag{25}
\end{align*}
$$

Then problem (1), (2) has exactly one solution.
Proof. Suppose the contrary. Then the homogeneous problem $\left(1_{0}\right),\left(2_{0}\right)$ has a nontrivial solution u, which satisfies inequalities $\left(8_{3}\right),\left(9_{3}\right)$, and (10) by Lemma 1.

By condition (23) and the Schwartz inequality, from $\left(8_{3}\right)$, we obtain the inequality

$$
\ell_{1}^{1 / 2} \int_{a}^{b}\left|p_{1}(t)\right| u^{2}(t) d t \leq \delta^{-1} \ell_{3}^{1 / 2}\left(\int_{a}^{b}\left|p_{1}(t)\right| u^{2}(t) d t\right)^{1 / 2}\left(\int_{a}^{b} u^{\prime \prime 2}(t) d t\right)^{1 / 2}
$$

Therefore,

$$
\ell_{1} \int_{a}^{b}\left|p_{1}(t)\right| u^{2}(t) d t \leq \delta^{-2} \ell_{3} \int_{a}^{b} u^{\prime \prime 2}(t) d t
$$

If, along with this inequality, we use conditions (10), (22), (24), and (25) and apply the Wirtinger theorem, then from $\left(9_{3}\right)$, we obtain

$$
\begin{aligned}
\ell \int_{a}^{b} u^{\prime \prime 2}(t) d t & <\ell_{2} \int_{a}^{b} u^{\prime 2}(t) d t+\ell_{1} \int_{a}^{b}\left|p_{1}(t)\right| u^{2}(t) d t \\
& \leq\left[d^{2} \ell_{2}+\delta^{-2} \ell_{3}\right] \int_{a}^{b} u^{\prime \prime 2}(t) d t \leq \ell \int_{a}^{b} u^{\prime \prime 2}(t) d t
\end{aligned}
$$

The resulting contradiction proves the theorem.
The following assertion can be proved by analogy with the preceding theorem.
Theorem 4. Let conditions (3) and (4_{4}) be satisfied, and let

$$
\sigma p_{1}^{\prime \prime}(t) \leq 0, \quad\left|p_{1}(t)\right|+\frac{\sigma}{2} p_{2}^{\prime}(t)>0, \quad \sigma p_{3}(t) \leq 0 \quad \text { for } \quad a<t<b .
$$

Then problem (1), (2) has exactly one solution.
Theorems 3 and 4 imply the following assertion for the differential equation

$$
\begin{equation*}
u^{\prime \prime \prime}=p_{1} u+p_{2} u^{\prime}+p_{3}(t) u, \tag{3}
\end{equation*}
$$

where p_{1} and p_{2} are constants.
Corollary 3. Let $p_{1} \neq 0$, and let either

$$
p_{1} p_{3}(t) \leq 0 \quad \text { for } \quad a<t<b,
$$

or

$$
\begin{equation*}
p_{3}(t) \operatorname{sgn} p_{1}>d^{2}\left|p_{1}\right| \quad \text { for } \quad a<t<b . \tag{26}
\end{equation*}
$$

Then problem $\left(1_{3}\right),(2)$ has exactly one solution.
Remark 3. As was mentioned above, if condition (17) is satisfied, then the homogeneous problem $\left(1_{0}\right),\left(2_{0}\right)$ has a nontrivial solution. This implies that condition (24) [respectively, condition (26)] in Theorem 3 (respectively, in Corollary 3) cannot be replaced by the condition

$$
\sigma p_{3}(t) \geq \ell \quad \text { for } \quad a<t<b \quad\left(p_{3}(t) \operatorname{sgn} p_{1} \geq d^{2}\left|p_{1}\right| \quad \text { for } \quad a<t<b\right) .
$$

ACKNOWLEDGMENTS

The work was supported by INTAS project no. 03-51-5007.

REFERENCES

1. Lasota, A. and Opial, Z., Ann. Polon. Math., 1964, vol. 16, no. 1, pp. 69-94.
2. Bernfeld, S.R. and Lakshmikantham, V., An Introduction to Nonlinear Boundary Value Problems, New York, 1974.
3. Gaines, R.E. and Mawhin, J.L., Coincidence Degree and Nonlinear Differential Equations, Berlin, 1977.
4. Kipnis, A.A., Prikl. Mat. Mekh., 1977, vol. 41, no. 2, pp. 362-365.
5. Bates, F.W. and Ward, Y.R., Pacific J. Math., 1979, vol. 84, no. 2, pp. 275-282.
6. Kiguradze, I.T., Mat. Zametki, 1985, vol. 37, no. 1, pp. 48-62.
7. Gegelia, G.T., Differents. Uravn., 1986, vol. 22, no. 3, pp. 390-396.
8. Gegelia, G.T., in Colloq. Math. Soc. János Bolyai. 53. Qual. Theory Differ. Equations, Szeged, 1986, pp. 211-217.
9. Kiguradze, T., Mem. Differential Equations Math. Phys., 1994, vol. 1, pp. 1-144.
10. Kiguradze, I.T., Nachal'naya i kraevye zadachi dlya sistem obyknovennykh differentsial'nykh uravnenii. I. Lineinaya teoriya (Initial and Boundary Value Problems for Systems of Ordinary Differential Equations. I. Linear Theory), Tbilisi, 1997.
11. Kiguradze, I.T. and Kusano, T., Differents. Uravn., 1999, vol. 35, no. 1, pp. 72-78.
12. Kiguradze, I.T. and Kusano, T., Differents. Uravn., 2000, vol. 36, no. 10, pp. 1301-1306.
13. Kiguradze, I., Nonlinear Anal., 2000, vol. 40, no. 1-8, pp. 309-321.
14. Kiguradze, I. and Puža, B., Boundary Value Problems for Systems of Linear Functional Differential Equations, Brno, 2003.
15. Hardy, G., Littlewood, J., and Polya, G., Inequalities, Cambridge, 1934. Translated under the title Neravenstva, Moscow, 1948.
