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1. STATEMENT OF THE MAIN RESULTS

In the present paper, for differential equations of the form

u(n) = f(t, u) + f0(t), (1.1)

we consider the problem on the existence of a periodic solution with a given period ω > 0. Here
n ≥ 1, f is a function satisfying the local Carathéodory conditions,

f(t, 0) = 0, f(t + ω, x) = f(t, x) for (t, x) ∈ R2, and f0 ∈ Lω. (1.2)

We are mainly interested in the little-studied case

lim inf
|x|→+∞

∣
∣
∣
∣

f(t, x)
x

∣
∣
∣
∣
= 0.

In this case, our periodic problem is a resonance problem, because the linear homogeneous differ-
ential equation u(n) = 0 corresponding to (1.1) has infinitely many ω-periodic solutions.

Throughout the following, Lω (respectively, L∞
ω ) stands for the space of ω-periodic real functions

Lebesgue integrable (respectively, essentially bounded and measurable) on [0, ω]. For arbitrary
pi ∈ Lω (i = 1, 2), we write p1(t) �≡ p2(t) to indicate that the functions p1 and p2 differ from each
other on a set of positive measure.

Theorem 1.1. Let
n = 2m − 1, σ ∈ {−1, 1}

[or n = 2m and σ = (−1)m−1]. Suppose that there exists a positive constant r and a function g ∈ Lω

such that

σf(t, x) sgn x ≥ g(t) for (t, x) ∈ R2, |x| > r, (1.3)
∣
∣
∣
∣
∣

ω∫

0

f0(t)dt

∣
∣
∣
∣
∣
≤

ω∫

0

g(t)dt. (1.4)

Then Eq. (1.1) has at least one ω-periodic solution.
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Theorem 1.2. Let n = 2m − 1 and σ ∈ {−1, 1} [or n = 2m and σ = (−1)m−1]. Suppose that
there exists a function � ∈ Lω and a continuous function h : R2 → [0,+∞[ such that �(t) > 0 for
t ∈ R, h(x, y) > 0 for x �= y, and

σ(f(t, x) − f(t, y)) sgn(x − y) ≥ �(t)h(x, y) for (t, x, y) ∈ R3. (1.5)

In addition, suppose that inequality (1.4) with

g(t) = min{|f(t, r)|, |f(t,−r)|} (1.6)

holds for some r > 0. Then Eq. (1.1) has a unique ω-periodic solution.

In forthcoming considerations, we need the following notion.

Definition 1.1. We say that a nonnegative function p ∈ Lω belongs to the set Km
ω if p(t) �≡ 0

and for an arbitrary function p0 ∈ Lω satisfying the conditions

0 ≤ p0(t) ≤ p(t) for t ∈ R, p0(t) �≡ 0 (1.7)

the differential equation
u(2m) = (−1)mp0(t)u (1.8)

does not have nontrivial ω-periodic solutions.

Theorem 1.3. Suppose that n = 2m and there exists a positive constant r and functions
g, p, q ∈ Lω such that, along with (1.4), the conditions

p ∈ Km
ω , (1.9)

g(t) ≤ (−1)mf(t, x) sgn x ≤ p(t)|x| + q(t) for (t, x) ∈ R2, |x| > r, (1.10)

are satisfied. Then Eq. (1.1) has at least one ω-periodic solution.

Corollary 1.1. Suppose that n = 2m and there exists a positive constant r and functions
g, p, q ∈ Lω such that, along with (1.4), inequality (1.10) holds. In addition, let p and m satisfy one
of the following three conditions :

p(t) ≤
(

2π
ω

)2m

for t ∈ R, p(t) �≡
(

2π
ω

)2m

, (1.11)

ω∫

0

p(t)dt ≤ 4
ω

(
2π
ω

)2m−2

, (1.12)

m = 1,

ω∫

0

p(t)dt ≤ 16
ω

. (1.13)

Then Eq. (1.1) has at least one ω-periodic solution.

Theorem 1.4. Suppose that n = 2m and there exist functions � ∈ Lω and p ∈ Km
ω and a

continuous function h : R2 → [0,+∞[ such that �(t) ≥ 0 for t ∈ R, �(t) �≡ 0, h(x, y) > 0 for x �= y,
and

�(t)h(x, y) ≤ (−1)m(f(t, x) − f(t, y)) sgn(x − y) ≤ p(t)|x − y| for (t, x, y) ∈ R3. (1.14)

In addition, suppose that inequality (1.4) holds for some r > 0, where g is the function defined
in (1.6). Then Eq. (1.1) has a unique ω-periodic solution.
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Corollary 1.2. Suppose that n = 2m and there exists a positive constant r, nonnegative func-
tions p ∈ Lω and � ∈ Lω, and a continuous function h : R2 → [0,+∞[ such that �(t) �≡ 0, h(x, y) > 0
for x �= y, and conditions (1.4) and (1.14) are satisfied, where g is the function defined in (1.6).
If, in addition, m and p satisfy one of conditions (1.11), (1.12), and (1.13), then Eq. (1.1) has a
unique ω-periodic solution.

By way of example, consider the differential equations

u(n) = σf1(t) exp (f2(t)|u|ν) | sin u|u + f0(t), (1.15)
u(n) = σf1(t) exp (f2(t)|u|ν) u + f0(t), (1.16)

u(n) = σf1(t) (1 + |u|ν)−1 |u|ν sgn u + f0(t), (1.17)

where σ ∈ {−1, 1}, ν > 0, fi ∈ Lω (i = 0, 1), f1(t) ≥ 0 for t ∈ R, and f2 ∈ L∞
ω . By Theorem 1.1

and Corollary 1.1, Eq. (1.15) has at least one ω-periodic solution provided that
∫ ω

0
f0(t)dt = 0 and

either one of the conditions

n = 2m − 1, σ ∈ {−1, 1}, (1.18)
n = 2m, σ = (−1)m−1 (1.19)

is satisfied or n = 2m, σ = (−1)m, f2(t) ≤ 0 for t ∈ R, and

lim
x→+∞

ω∫

0

f1(s) exp (xf2(s)) ds <
4
ω

(
2π
ω

)2m−2

.

By Theorem 1.2 and Corollary 1.2, we have the following assertions.
1. If f1(t) > 0, f2(t) ≥ 0 for t ∈ R, and one of conditions (1.18) and (1.19) is satisfied, then

Eq. (1.16) has a unique ω-periodic solution.
2. If f1(t) > 0 for t ∈ R,

∣
∣
∫ ω

0
f0(s)ds

∣
∣ <

∫ ω

0
f1(s)ds, and either one of conditions (1.18) and (1.19)

is satisfied or n = 2m, σ = (−1)m, ν ≥ 1, and νf1(t) < (2π/ω)n for t ∈ R, then Eq. (1.17) has a
unique ω-periodic solution.

These facts do not follow from earlier-known theorems on the existence and uniqueness of
ω-periodic solutions of Eq. (1.1) (see [1–15] and the bibliography therein).

Remark 1.1. In Theorems 1.1–1.4 and Corollaries 1.1 and 1.2, inequality (1.4) is sharp in the
sense that it cannot be replaced by the inequality

∣
∣
∣
∣
∣

ω∫

0

f0(t)dt

∣
∣
∣
∣
∣
≤ (1 + ε)

b∫

a

g(t)dt (1.20)

with a given (however small) ε > 0. Indeed, if

f0(t) = (1 + ε)g(t), f(t, x) = σ(1 + ε)g(t)(1 + |x|)−1x,

where ε > 0, σ ∈ {−1, 1}, g ∈ Lω, and g(t) > 0 for t ∈ R, then Eq. (1.1) has no ω-periodic solutions.
On the other hand, if n ∈ {2m − 1, 2m} and σ = (−1)m−1 [respectively, n = 2m, σ = (−1)m, and
(1+ε)g(t) < (2π/ω)2m for t ∈ R], then all assumptions of Theorem 1.2 (respectively, Corollary 1.2)
are satisfied except for inequality (1.4), which is replaced by (1.20).

Remark 1.2. In Corollaries 1.1 and 1.2, condition (1.11) cannot be replaced by the condition
p(t) ≡ (2π/ω)2m, because if n = 2m and

f(t, x) ≡ (−1)m

(
2π
ω

)2m

x and

ω∫

0

f0(t) sin
2πt

ω
dt �= 0,

then Eq. (1.1) has no ω-periodic solutions.
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2. AUXILIARY ASSERTIONS

By Cω (respectively, Cn−1
ω ) we denote the space of continuous (respectively, n− 1 times contin-

uously differentiable) ω-periodic functions u : R → R with the norm

‖u‖Cω
= max{‖u(t)‖ : 0 ≤ t ≤ ω}

(

‖u‖Cn−1
ω

=
n∑

k=1

∥
∥u(k−1)

∥
∥

Cω

)

,

and by C̃n−1
ω we denote the space of functions u ∈ Cn−1

ω such that u(n−1) is an absolutely continuous
function.

For v ∈ Lω, we introduce the norm

‖v‖Lω
=

ω∫

0

|v(t)|dt.

For arbitrary u ∈ Cω, we set µ(u) = min{|u(t)| : 0 ≤ t ≤ ω}.
Let us introduce the numbers

αnk =
ω

4

( ω

2π

)n−1−k

(k = 1, . . . , n − 1), αnn =
1
2
, αn =

n∑

k=1

αnk. (2.1)

Lemma 2.1. If u ∈ C̃n−1
ω , then

‖u‖Cω
≤ µ(u) + αn1

∥
∥u(n)

∥
∥

Lω
, ‖u‖Cn−1

ω
≤ µ(u) + αn

∥
∥u(n)

∥
∥

Lω
. (2.2)

If, in addition, u is not of constant sign, then

‖u‖Cω
< αn1

∥
∥u(n)

∥
∥

Lω
, ‖u‖Cn−1

ω
< αn

∥
∥u(n)

∥
∥

Lω
. (2.3)

Proof. Take t0 ∈ [0, ω] and t∗ ∈ ]t0, t0 + ω[ so as to ensure that µ(u) = |u (t0)| and ‖u‖Cω
=

= ‖u (t∗)‖. Then

‖u‖Cω
=

∣
∣
∣
∣
∣
u (t0) +

t∗∫

t0

u′(t)dt

∣
∣
∣
∣
∣
≤ µ(u) +

t∗∫

t0

|u′(t)| dt,

‖u‖Cω
=

∣
∣
∣
∣
∣
u (t0) −

t0+ω∫

t∗

u′(t)dt

∣
∣
∣
∣
∣
≤ µ(u) +

t0+ω∫

t∗

|u′(t)| dt.

Therefore,

2‖u‖Cω
≤ 2µ(u) +

t0+ω∫

t0

|u′(t)| dtz,

and consequently,

‖u‖Cω
≤ µ(u) +

1
2
‖u′‖Lω

. (2.4)

This inequality for the function u(n−1) acquires the form

∥
∥u(n−1)

∥
∥

Cω
≤ 1

2

∥
∥u(n)

∥
∥

Cω
, (2.5)

because µ
(

u(n−1)
)

= 0.
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If n > 1, then, by the Wirtinger theorem [16, Th. 258] and inequality (2.5), we have

‖u′‖Lω
≤ ω1/2

( ω∫

0

|u′(t)|2 dt

)1/2

≤ ω1/2
( ω

2π

)n−2
( ω∫

0

∣
∣u(n−1)(t)

∣
∣
2
dt

)1/2

≤ ω
( ω

2π

)n−2 ∥
∥u(n−1)

∥
∥

Cω
≤ 2αn1

∥
∥u(n)

∥
∥

Lω
, (2.6)

which, together with inequality (2.4), implies that

‖u‖Cω
≤ µ(u) + αn1

∥
∥u(n)

∥
∥

Lω
.

If we apply this inequality to the functions u(k−1) (k = 2, . . . , n), then we obtain
∥
∥u(k−1)

∥
∥

Cω
≤ αnk

∥
∥u(n)

∥
∥

Lω
(k = 2, . . . , n). (2.7)

We have thereby proved inequalities (2.2), where αnk (k = 1, . . . , n) and αn are the numbers defined
in (2.1).

Let us proceed to the analysis of the case in which u is not of constant sign. Then there exist
t0 ∈ [0, ω], t∗ ∈ ]t0, t0 + ω[, and σ ∈ {−1, 1} such that

u (t0) = 0, ‖u‖Cω
= σ

t∗∫

t0

u′(s)ds, ‖u‖Cω
= −σ

t0+ω∫

t∗

u′(s)ds.

It follows from these relations that either

‖u‖Cω
<

1
2
‖u′‖Lω

(2.8)

or
σu′(t) (t∗ − t) ≥ 0 for almost all t ∈ [t0, t0 + ω] .

However, the latter inequality cannot be true, because u (t0) = u (t0 + ω) = 0 and u is not of
constant sign. Consequently, inequality (2.8) holds. On the other hand, as was shown above, if
n > 1, then the function u satisfies inequalities (2.6) and (2.7). Inequalities (2.6)–(2.8) imply (2.3).
The proof of the lemma is complete.

Lemma 2.2. Suppose that p ∈ Lω, p(t) ≥ 0 for t ∈ R, p(t) �≡ 0, and one of conditions (1.11),
(1.12), and (1.13) is satisfied. Then condition (1.9) is also satisfied.

Proof. Let p0 ∈ Lω be an arbitrary function satisfying inequalities (1.7). If, in addition, condi-
tion (1.11) [respectively, condition (1.13)] is satisfied, then, by Theorem 1.1 in [11] (respectively, by
the lemma proved in [1, Sec. 3]), Eq. (1.8) does not have nontrivial ω-periodic solutions. It remains
to show that this equation does not have nontrivial ω-periodic solutions in the case of condi-
tion (1.12) as well. Suppose the contrary: let Eq. (1.8) have a nontrivial ω-periodic solution u.
Then

∫ ω

0
p0(t)u(t)dt = 0. This, together with condition (1.7), implies that u is not of constant

sign. By Lemma 2.1, this provides the validity of inequalities (2.3). If, along with (2.3), we use
inequalities (1.7) and (1.12), then from (1.8), we obtain

∥
∥u(2m)

∥
∥

Lω
= ‖p0u‖Lω

≤ ‖p0‖Lω
‖u‖Cω

< α2m 1‖p‖Lω

∥
∥u(2m)

∥
∥

Lω
≤

∥
∥u(2m)

∥
∥

Lω
.

The resulting contradiction proves the lemma.
Now consider the system of differential inequalities

σu(n)(t) sgn u(t) ≥
∣
∣u(n)(t) sgn u(t)

∣
∣ − q(t),

∣
∣u(n)(t)

∣
∣ ≤ q0(t, |u(t)|) (2.9)

DIFFERENTIAL EQUATIONS Vol. 44 No. 8 2008
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and the two-sided differential inequality

−q(t) ≤ (−1)mu(2m)(t) sgn u(t) ≤ p(t)|u(t)| + q(t), (2.10)

where σ ∈ {−1, 1}, p and q ∈ Lω are nonnegative functions, and q0 : R × [0,+∞[ → [0,+∞[ is
a function such that q0(·, x) ∈ Lω for arbitrary x ∈ [0,+∞[ and q0(t, ·) : [0,+∞[ → [0,+∞[ is a
continuous nondecreasing function for almost all t ∈ R.

A function u ∈ C̃n−1
ω is called an ω-periodic solution of system (2.9) of differential inequali-

ties [respectively, of the differential inequality (2.10)] if it satisfies this system (respectively, this
inequality) almost everywhere on R.

Lemma 2.3. If one of conditions (1.18) and (1.19) holds, then an arbitrary ω-periodic solution
u of system (2.9) admits the estimate

‖u‖Cn−1
ω

≤ �1µ(u) + �2, (2.11)

where

�1 = 1 + αn‖q‖Lω
, �2 = αn�1

ω∫

0

q0 (t, �1) dt. (2.12)

Proof. First, note that the function u admits the estimates (2.2) by Lemma 2.1.
If we multiply the first inequality in system (2.9) by |u(t)| and integrate the resulting relation

from 0 to ω, then we obtain the inequality

−(n + 1 − 2m)

ω∫

0

∣
∣u(m)(t)

∣
∣
2
dt ≥

ω∫

0

∣
∣u(n)(t)u(t)

∣
∣ dt −

ω∫

0

q(t)|u(t)|dt.

This, together with (2.2), implies that

ω∫

0

∣
∣u(n)(t)u(t)

∣
∣ dt ≤

(

µ(u) + αn

∥
∥u(n)

∥
∥

Lω

)

‖q‖Lω
. (2.13)

Let I1 = {t ∈ [0, ω] : |u(t)| > �1} and I2 = [0, ω]\I1. Then, by the second inequality in sys-
tem (2.9) and inequality (2.13), we obtain

�1

∥
∥u(n)

∥
∥

Lω
≤

∫

I1

∣
∣u(n)(t)u(t)

∣
∣ dt + �1

∫

I2

∣
∣u(n)(t)

∣
∣ dt

≤
(

µ(u) + αn

∥
∥u(n)

∥
∥

Lω

)

‖q‖Lω
+ �1

ω∫

0

q0 (t, �1) dt

= (�1 − 1)
(∥
∥u(n)

∥
∥

Lω
+ µ(u)/αn

)

+ �2/αn,

and consequently,
∥
∥u(n)

∥
∥

Lω
≤ ((�1 − 1) µ(u) + �2) /αn,

where �1 and �2 are the numbers defined in (2.12). If, along with this, we use inequalities (2.2),
then the estimate (2.11) becomes obvious. The proof of the lemma is complete.

Lemma 2.4. If condition (1.9) is satisfied, then there exists a positive constant �0 such that,
for an arbitrary nonnegative function q ∈ Lω, each solution u of the differential inequality (2.10)
admits the estimate

‖u‖C2m−1
ω

≤ �0 (µ(u) + ‖q‖Lω
) . (2.14)
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Proof. Suppose that the lemma is not true. Then, for an arbitrary positive integer k, there
exists a nonnegative function qk ∈ Lω and an ω-periodic solution uk of the differential inequality

0 ≤ (−1)mu
(2m)
k (t) sgn uk(t) + qk(t) ≤ p(t) |uk(t)| + 2qk(t) (2.15)

such that
‖uk‖C2m−1

ω
> k

(

µ (uk) + ‖qk‖Lω

)

. (2.16)

Let

u0k(t) = uk(t)/ ‖uk‖C2m−1
ω

, q0k(t) = qk(t)/ ‖uk‖C2m−1
ω

, δk(t) = p(t) |u0k(t)| + 2q0k(t),

ηk(t) =

{
0 for δk(t) = 0

(

(−1)mu
(2m)
0k (t) sgn u0k(t) + q0k(t)

)

/δk(t) for δk(t) > 0,

pk(t) = ηk(t)p(t), Pk(t) =

t∫

0

pk(s)ds, q1k(t) = (2ηk(t) − 1) q0k(t) sgn u0k(t).

Then, by virtue of (2.15) and (2.16), we have 0 ≤ ηk(t) ≤ 1 for almost all t ∈ R and

‖u0k‖C2m−1
ω

= 1, µ (u0k) < 1/k, (2.17)
‖q1k‖Lω

< 1/k. (2.18)

In addition, it is clear that, for each positive integer k, the function u0k is an ω-periodic solution
of the differential equation

u
(2m)
0k (t) = (−1)mp0k(t)u0k(t) + q1k(t) (2.19)

and the function Pk satisfies the conditions

Pk(0) = 0, Pk(t + ω) = Pk(ω) + Pk(t),

0 ≤ Pk(t) − Pk(τ) ≤
t∫

τ

p(s)ds for t ∈ R, τ ≤ t.
(2.20)

By (2.17) and (2.18), from (2.19), we obtain
∥
∥
∥u

(2m)
0k

∥
∥
∥

Lω

≤ ‖p‖Lω
+ 1. (2.21)

On the other hand, by the Arzelá–Ascoli lemma and conditions (2.17), (2.20), and (2.21), one can

assume without loss of generality that the sequences
(

u
(i−1)
0k

)∞

k=1
(i = 1, . . . , n) and (Pk)

∞
k=1 are

uniformly convergent on R; i.e.,

lim
k→∞

‖u0k − u‖Cn−1
ω

= 0, lim
k→∞

Pk(t) = P0(t) uniformly on R, (2.22)

where u ∈ Cn−1
ω and P0 : R → R is a continuous function. Therefore, it follows from (2.17) and

(2.20) that

‖u‖Cn−1
ω

= 1, µ(u) = 0, (2.23)
P0(0) = 0, P0(t + ω) = P0(ω) + P0(t),

0 ≤ P0(t) − P0(τ) ≤
t∫

τ

p(s)ds for t ∈ R, τ ∈ ] −∞, t].
(2.24)

DIFFERENTIAL EQUATIONS Vol. 44 No. 8 2008
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By conditions (2.24), P0 is an absolutely continuous function, and

P0(t) =

t∫

0

p0(s)ds for t ∈ R, (2.25)

where the function p0 ∈ Lω either is identically zero or satisfies inequalities (1.7).
By Lemma 1.1 in [15] and conditions (2.22) and (2.25), we have

lim
k→∞

t∫

0

pk(s)u0k(s)ds =

t∫

0

p0(s)u(s)ds for t ∈ R.

If, along with these relations, we use condition (2.18), then from the relation

u
(2m−1)
0k (t) = u

(2m)
0k (0) +

t∫

0

[(−1)mpk(s)u0k(s) + q1k(s)] ds for t ∈ R,

we obtain

u(2m−1)(t) = u(2m−1)(0) + (−1)m

t∫

0

p0(s)u(s)ds for t ∈ R.

Consequently, u is an ω-periodic solution of Eq. (1.8). If p0 satisfies inequalities (1.7), then,
by condition (1.9), Eq. (1.8) does not have nontrivial ω-periodic solutions. Therefore, it remains to
consider the case in which p0(t) ≡ 0. In this case, u(t) ≡ const, which contradicts condition (2.23).
The resulting contradiction proves the lemma.

Along with (1.1), consider the differential equation

u(n) = (1 − λ)a(t)u + λ [f(t, u) + f0(t)] , (2.26)

which depends on the parameter λ ∈ ]0, 1[ and the function a ∈ Lω. The following assertion holds.

Lemma 2.5. Suppose that there exists an a ∈ Lω and a positive constant � such that the linear
homogeneous equation

u(n) = a(t)u (2.27)

does not have nontrivial ω-periodic solutions and for each λ ∈ ]0, 1[ an arbitrary ω-periodic solution
u of the differential equation (2.26) admits the estimate

‖u‖Cn−1
ω

≤ �. (2.28)

Then Eq. (1.1) has at least one ω-periodic solution.

Proof. If a function u : [0, ω] → R is a solution of Eq. (1.1) [respectively, Eq. (2.26)] with the
boundary conditions

u(i−1)(ω) = u(i−1)(0) (i = 1, . . . , n), (2.29)

then, by virtue of conditions (1.2), its ω-periodic extension to R is an ω-periodic solution of the
respective equation. Therefore, to prove the lemma, it suffices to show that problem (1.1), (2.29)
has at least one solution.

Let λ ∈ ]0, 1[, and let u be an arbitrary solution of problem (2.26), (2.29). Then, as was
mentioned above, the ω-periodic extension of u to R is also a solution of Eq. (2.26), and, by one of
the assumptions of the lemma, the estimate (2.28) holds. However, by virtue of Corollary 2 in [17],
this estimate, together with the existence of only the trivial solution of the linear homogeneous
problem (2.27), (2.29), provides the solvability of problem (1.1), (2.29). The proof of the lemma is
complete.
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Lemma 2.6. Suppose that there exist numbers σ ∈ {−1, 1} and r ≥ 0 and a function g ∈ Lω

such that, along with (1.3) and (1.4), the inequalities

σa(t) ≥ 0 for t ∈ R, a(t) �≡ 0, (2.30)

hold. Then for each λ ∈ ]0, 1[, an arbitrary ω-periodic solution of Eq. (2.26) admits the estimate

µ(u) ≤ r. (2.31)

Proof. Suppose the contrary: µ(u) > r. Then, by (1.3) and (2.30), from (2.26), we obtain

σ0u
(n)(t) = (1 − λ)σa(t)|u(t)| + λ [σf(t, u(t)) sgn u(t) + σ0f0(t)]

≥ r(1 − λ)|a(t)| + λ (g(t) + σ0f0(t)) ,

where σ0 = σ sgn u(0). If we integrate this inequality from 0 to ω, then, by virtue of condition (1.4),
we obtain

0 ≥ r(1 − λ)

ω∫

0

|a(t)|dt + λ

[ ω∫

0

g(t)dt + σ0

ω∫

0

f0(t)dt

]

> 0.

The resulting contradiction implies the estimate (2.31). The proof of the lemma is complete.

3. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1. Let

a(t) = σ, q0(t, y) = y + |f0(t)| + max{|f(t, x)| : |x| ≤ y},
q(t) = 2q0(t, r) + 2|g(t)| for t ∈ R, y ≥ 0.

Then
a(t)|x| + |f(t, x) + f0(t)| ≤ q0(t, |x|) for (t, x) ∈ R2. (3.1)

On the other hand, by virtue of inequality (1.3), we have

σ [f(t, x) + f0(t)] sgn x

= |σ [f(t, x) + f0(t)] sgn x + q0(t, r) + |g(t)| | − q0(t, r) − |g(t)|
≥ |σ [f(t, x) + f0(t)] sgn x| − q(t) for (t, x) ∈ R2. (3.2)

By Proposition 1.1 in [11], Eq. (2.27) does not have nontrivial ω-periodic solutions, because
σa(t) ≡ 1 and one of conditions (1.18) and (1.19) is satisfied. This, together with Lemma 2.5,
implies that to prove the theorem, it suffices to show that for each λ ∈ ]0, 1[ an arbitrary ω-periodic
solution u of the differential equation (2.26) admits the estimate (2.28), where � is a positive
constant independent of λ and u.

By conditions (3.1) and (3.2), the inequalities
∣
∣u(n)(t)

∣
∣ = |(1 − λ)a(t)u(t) + λ [f(t, u(t)) + f0(t)]| ≤ q0(t, |u(t)|),

σu(n)(t) sgn u(t) = (1 − λ)|u(t)| + λσ [f(t, u(t)) + f0(t)] sgn u(t)
≥ (1 − λ)|u(t)| + λ |σ [f(t, u(t)) + f0(t)] sgn u(t)| − λq(t)

≥
∣
∣u(n)(t) sgn u(t)

∣
∣ − q(t)

hold almost everywhere on R. Consequently, u is an ω-periodic solution of system (2.9), which,
together with Lemma 2.3, implies the estimate (2.11), where �1 and �2 are the numbers defined
in (2.12). On the other hand, by Lemma 2.6, the function u admits the estimate (2.31). It follows
from the estimates (2.11) and (2.31) that the estimate (2.28) holds, where � = �1r+�2 is a positive
constant independent of λ and u. The proof of the theorem is complete.

DIFFERENTIAL EQUATIONS Vol. 44 No. 8 2008



1062 KIGURADZE

Proof of Theorem 1.2. Conditions (1.2) and (1.5) imply condition (1.3), where g is the
function given by (1.6). Consequently, all assumptions of Theorem 1.1 are valid, which provides
the existence of at least one ω-periodic solution of Eq. (1.1). It remains to show that if u1 and u2

are arbitrary ω-periodic solutions of Eq. (1.1) and u(t) = u1(t)− u2(t), then u(t) ≡ 0. Suppose the
contrary: u(t) �≡ 0. Then, by condition (1.5), the inequality

σu(n)(t)u(t) ≥ �0(t)

holds almost everywhere on R, where �0(t) = �(t)h (u1(t), u2(t)) |u(t)| ≥ 0 for t ∈ R and �0(t) �≡ 0.
If we integrate both sides of this inequality from 0 to ω and use one of conditions (1.18) and (1.19),
then we obtain

−(n + 1 − 2m)

ω∫

0

∣
∣u(m)(t)

∣
∣
2
dt ≥

ω∫

0

�0(t)dt > 0.

But this is impossible, since n ≥ 2m − 1. The resulting contradiction proves the theorem.
Proof of Theorem 1.3. By condition (1.10), one can assume without loss of generality that

|f0(t)| − q(t) ≤ (−1)mf(t, x) sgn x ≤ p(t)|x| + q(t) − |f0(t)| for (t, x) ∈ R2. (3.3)

Let �0 be the number occurring in Lemma 2.4, let � = �0 (r + ‖q‖Lω
), let

a(t) = (−1)mp(t), (3.4)

and let u be an ω-periodic solution of Eq. (2.26) for some λ ∈ ]0, 1[. By virtue of condition (1.9) and
Lemma 2.5, to prove the theorem, it suffices to show that u admits the estimate (2.28).

By using conditions (3.3) and (3.4), from (2.26), we find that u is an ω-periodic solution of the
differential inequality (2.10). Therefore, it admits the estimate (2.14). On the other hand, the esti-
mate (2.31) also holds by Lemma 2.6. However, the estimate (2.28) follows from the estimates (2.14)
and (2.31). The proof of the theorem is complete.

Proof of Corollary 1.1. It follows from inequality (1.10) that p(t) ≥ 0 for t ∈ R. Without
loss of generality, one can assume that p(t) �≡ 0. By Lemma 2.2, in this case, condition (1.9) is
also satisfied, because p and m satisfy one of conditions (1.11), (1.12), and (1.13). If we now use
Theorem 1.3, then Corollary 1.1 becomes obvious.

Proof of Theorem 1.4. From conditions (1.2) and (1.14), we obtain condition (1.10), where g
is the function given by (1.6). Consequently, all assumptions of Theorem 1.3 hold, which provides
the existence of an ω-periodic solution of Eq. (1.1).

It remains to prove the uniqueness. Suppose the contrary. Then there exist ω-periodic solutions
u1 and u2 of Eq. (1.1) such that u(t) = u1(t) − u2(t) �≡ 0. By condition (1.14), the function u is a
solution of the differential inequality

0 ≤ (−1)mu(t) sgn u(t) ≤ p(t)|u(t)|.
This, together with Lemma 2.4 and condition (1.9), implies that

0 < ‖u‖Cn−1
ω

≤ �0µ(u),

where �0 = const > 0. Consequently, µ(u) > 0. If, in addition, we use condition (1.14), then it
becomes clear that the inequality

σ0u
(n)(t) ≥ �0(t)

holds almost everywhere on R, where σ0 = (−1)m sgn u(0), �0(t) = �(t)η (u1(t), u2(t)) ≥ 0 for t ∈ R,
and �0(t) �≡ 0. The integration of this inequality from 0 to ω results in the relations

0 = σ0

(

u(n−1)(ω) − u(n−1)(0)
)

≥
ω∫

0

�0(t)dt > 0.

The resulting contradiction proves the theorem.
By virtue of Lemma 2.2, from Theorem 1.4, we obtain Corollary 1.2.
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