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Optimal sufficient conditions for the solvability and well-posedness of the boundary value
problem

dxi
dt
= fi(t, x1, . . . , xn) (i = 1, . . . , n),

xi(0) = ci (i = 1, . . . ,m), lim sup
t→+∞

|xi(t)| < +∞ (i = m+ 1, . . . , n)

are established.
© 2009 Elsevier Ltd. All rights reserved.

1. Statement of the main results

In the present paper, the boundary value problem

dxi
dt
= fi(t, x1, . . . , xn) (i = 1, . . . , n), (1.1)

xi(0) = ci (i = 1, . . . ,m), lim sup
t→+∞

|xi(t)| < +∞ (i = m+ 1, . . . , n) (1.2)

is investigated on the interval R+ = [0,+∞[ . Here n ≥ 2, m ∈ {1, . . . , n − 1}, ci ∈ R(i = 1, . . . ,m), and
fi : R+ × Rn → R(i = 1, . . . , n) are functions satisfying the local Carathéodory conditions.
The previous well-known results on the solvability of such problems do not cover the wide class of nonlinear differential

systemswith right-hand sides rapidly growingwith respect to the phase variables. As for thewell-posedness of the problem
(1.1), (1.2), and the behavior of its solutions at +∞, they have remained practically unstudied (see, e.g, [1–6] and the
references therein). Theorems 1.1–1.5 below fill this gap to some extent. Theorems 1.1–1.3 and 1.5 contain unimprovable in
a sense conditions guaranteeing solvability and well-posedness of the problem (1.1), (1.2). In Theorem 1.4 we give optimal
sufficient conditions under which every solution of that problem vanishes at infinity.
We use the following notation.
Rn is the n-dimensional real Euclidean space;
x = (xi)ni=1 ∈ Rn is the vector with components xi (i = 1, . . . , n);
δik is Kronecker’s symbol;
X = (xik)ni,k=1 is the n× n-matrix with components xik ∈ R (i, k = 1, . . . , n) and with the norm

‖X‖ =
n∑

i,k=1

|xik|;
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r(X) is the spectral radius of X; E is the unit matrix;
As is the set of asymptotically stable, quasi-nonnegative n× n-matrices, i.e. H = (hik)ni,k=1 ∈ As if and only if hik ≥ 0 for

i 6= k and real parts of eigenvalues of H are negative;
C̃loc(R+) is the space of functions x : R+ → R, absolutely continuous on every compact interval containing in R+;
Lloc(R+) is the space of functions x : R+ → R, Lebesgue integrable on every compact interval containing in R+;
L∞(R+) is the space of essentially bounded measurable functions x : R+ → Rwith the norm

‖x‖L∞ = ess sup {|x(t)| : t ∈ R+} ;

Kloc(R+ × Rn) is the set of functions f : R+ × Rn → R, satisfying the local Carathéodory1 conditions, i.e., f ∈
Kloc(R+×Rn) iff f (t, ·, . . . , ·) : Rn → R is continuous for almost all t ∈ R+, f (·, x1, . . . , xn) ∈ Lloc(R+) for any (xi)ni=1 ∈ Rn
and the function f ∗ρ , given by the equality

f ∗ρ (t) = max

{
|f (t, x1, . . . , xn)| :

n∑
i=1

|xi| ≤ ρ

}
,

belongs to the space Lloc(R+) for any ρ ∈ R+.
Throughout the paper, it is supposed that

fi ∈ Kloc(R+ × Rn) (i = 1, . . . , n). (1.3)

By a solution of the system (1.1), defined on the interval R+, we understand a vector function (xi)ni=1 : R+ → Rn with
components xiC̃loc(R+) (i = 1, . . . , n) satisfying that system almost everywhere on R+.
A solution (xi)ni=1 of the system (1.1), defined on R+ and satisfying the boundary conditions (1.2), is called a solution of

the problem (1.1), (1.2).
Along with the problem (1.1), (1.2) we consider the auxiliary problem

dxi
dt
= λfi(t, x1, . . . , xn) (i = 1, . . . , n), (1.4)

xi(0) = ci (i = 1, . . . ,m), xi(a) = ci (i = m+ 1, . . . , n), (1.5)

depending on parameters λ ∈]0, 1] and a ∈]0,+∞[ .
The following theorems are valid.

Theorem 1.1 (Principle of a priori Boundedness). Let there exists a non-decreasing functionρ0 : R+ → R+ such that for arbitrary
λ ∈ ]0, 1], b ∈]0,+∞[, and (ci)ni=1 ∈ Rn, every solution (xi)ni=1 of the problem (1.4), (1.5) admits the estimate

n∑
i=1

|xi(t)| ≤ ρ0

(
n∑
i=1

|ci|

)
for 0 ≤ t ≤ b. (1.6)

Then for any (ci)mi=1 ∈ Rm, the problem (1.1), (1.2) is solvable, and every solution of this problem is bounded on R+.

Theorem 1.2. Let there exist nonnegative functions gi ∈ Kloc(R+ × Rn)(i = 1, . . . , n), h ∈ L∞(R+) and a matrix H =
(hik)ni,k=1 ∈ As such that on the set R+ × Rn the inequalities

σifi(t, x1, . . . , xn)sgn(xi) ≤ gi(t, x1, . . . , xn)

(
n∑
k=1

hik|xk| + h(t)

)
(i = 1, . . . , n), (1.7)

where σ1 = · · · = σm = 1 and σm+1 = · · · = σn = −1, are satisfied. Then for arbitrary (ci)mi=1 ∈ Rm the problem (1.1), (1.2)
has at least one solution, and every solution of this problem is bounded on R+.

It is known (see [3], Theorem 1.18) that the quasi-nonnegative matrix H = (hik)ni,k=1 belongs to the set As iff

hii < 0 (i = 1, . . . , n) and r(H0) < 1, (1.8)

where

H0 =
(
(1− δik)

hik
|hii|

)n
i,k=1

. (1.9)

Note that the condition H ∈ As in Theorem 1.2 and in other theorems below is unimprovable and it cannot be weakened.
It can be replaced by the equivalent condition (1.8) but not by the condition

hii < 0 (i = 1, . . . , n), r(H0) ≤ 1. (1.10)

1 The Greek spelling is Kαραθεoδωρη.
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Indeed, consider the problem

dxi
dt
= (−1)i(x1 + x2)+ i− 1 (i = 1, 2), (1.11)

xi(0) = ci, lim sup
t→+∞

|x2(t)| < +∞. (1.12)

For this problem all the conditions of Theorem 1.2 hold except H ∈ As instead of which the condition (1.10) holds, since

H =
(
−1 1
1 −1

)
, H0 =

(
0 1
1 0

)
.

Nevertheless the problem (1.11), (1.12) does not have a solution since general solution of the system (1.11) has the form

x1(t) = α1 − (α1 + α2)t −
t2

2
, x2(t) = α2 + (α1 + α2 + 1)t +

t2

2
,

where α1 and α2 are arbitrary real numbers.
For any H ∈ As suppose that

µ(H) =
∥∥(E − H0)−1∥∥(1+ n∑

i=1

|hii|−1
)
, (1.13)

where H0 is the matrix given by the equality (1.9).

Theorem 1.3. Let the conditions of Theorem 1.2 be fulfilled and∫
+∞

0
pi(s)ds = +∞ (i = m+ 1, . . . , n), (1.14)

where

pi(t) = inf
{
gi(t, x1, . . . , xn) : (xk)nk=1 ∈ Rn

}
. (1.15)

Then every solution of the problem (1.1), (1.2) admits the estimate

n∑
k=1

|xk(t)| ≤ µ(H)

(
m∑
k=1

|ck| + ‖h‖L∞

)
for t ∈ R+, (1.16)

where µ(H) is the number, given by the equality (1.13).

From the estimate (1.16) it, in particular, follows that if the conditions of Theorem 1.3 are fulfilled, then an arbitrary
solution of the system (1.1), satisfying the conditions

xi(0) = ci (i = 1, . . . , n) and
n∑
k=1

|ck| > µ(H)

(
m∑
k=1

|ck| + ‖h‖L∞

)
,

is either unbounded or blowing-up.

Theorem 1.4. Let the conditions of Theorem 1.2 be fulfilled, h(t)→ 0 as t →+∞, and∫
+∞

0
pi(s)ds = +∞ (i = 1, . . . , n), (1.17)

where each pi is the function given by the equality (1.15). Then an arbitrary solution of the problem (1.1), (1.2) is vanishing at
infinity, i.e.,

lim
t→+∞

xi(t) = 0 (i = 1, . . . , n). (1.18)

Now along with the problem (1.1), (1.2) we consider the perturbed problem

dyi
dt
= fi(t, y1, . . . , yn)+ qi(t, y1, . . . , yn) (i = 1, . . . , n), (1.19)

yi(0) = ci + δi (i = 1, . . . ,m), lim sup
t→+∞

|yi(t)| < +∞ (i = m+ 1, . . . , n), (1.20)

where (δi)mi=1 ∈ Rm, and qi ∈ Kloc(R+ × Rn)(i = 1, . . . , n) are functions satisfying the conditions

|qi(t, y1, . . . , yn)| ≤ pi(t)q0(t) (i = 1, . . . , n), q0 ∈ L∞(R+). (1.21)
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The case, where

lim
t→+∞

q0(t) = 0, (1.22)

is considered separately.
Let us introduce the following definition.

Definition 1.1. Suppose pi ∈ Lloc(R+)(i = 1, . . . , n) are nonnegative functions. The problem (1.1), (1.2) is said to be well-
posed with the weight (pi)ni=1 if for any (δi)

m
i=1 ∈ Rm and functions qi ∈ Kloc(R+ × Rn)(i = 1, . . . , n), satisfying the

conditions (1.21), the problem (1.19), (1.20) is solvable and there exists a positive constant ρ such that arbitrary solutions
(xi)ni=1 and (yi)

n
i=1 of the problems (1.1), (1.2), and (1.19), (1.20) admit the estimate

n∑
i=1

|yi(t)− xi(t)| ≤ ρ

(
m∑
i=1

|δi| + ‖q0‖L∞

)
for t ∈ R+. (1.23)

From this definition it is clear that if the problem (1.1), (1.2) is well-posed, then it has a unique solution.

Definition 1.2. The problem (1.1), (1.2) is said to be asymptotically well-posed with the weight (pi)ni=1 if it is well-posed
and for any (δi)mi=1 ∈ Rm and functions qi ∈ Kloc(R+ × Rn)(i = 1, . . . , n), satisfying the conditions (1.21) and (1.22), an
arbitrary solution (yi)ni=1 of the problem (1.19), (1.20) satisfies the equalities

lim
t→+∞

(yi(t)− xi(t)) = 0 (i = 1, . . . , n), (1.24)

where (xi)ni=1 is a solution of the problem (1.1), (1.2).

Theorem 1.5. Let there exist nonnegative functions pi ∈ Lloc(R+)(i = 1, . . . , n), h ∈ L∞(R+), and a matrix H = (hik)ni,k=1 ∈ As
such that, respectively, on R+ × Rn and R+ the conditions

σi (f (t, x1, . . . , xn)− f (t, y1, . . . , yn)) sgn(xi − yi) ≤ pi(t)
n∑
k=1

hik|xk − yk| (i = 1, . . . , n), (1.25)

|fi(t, 0, . . . , 0)| ≤ h(t)pi(t) (i = 1, . . . , n), (1.26)

where σ1 = · · · = σm = 1, σm+1 = · · · = σn = −1, are satisfied. If, moreover, the equalities (1.14) (the equalities (1.17)) hold,
then the problem (1.1), (1.2) is well-posed (asymptotically well-posed) with the weight (pi)ni=1.

Note that if

fi(t, x1, . . . , xn) = −σipi(t) (i = 1, . . . , n),

where σ1 = · · · = σm = 1, σm+1 = · · · = σn = −1, and pi ∈ Lloc(R)(i = 1, . . . , n) are nonnegative functions, then the
problem (1.1), (1.2) is well-posed (asymptotically well-posed) with the weight (pi)ni=1 if and only if the equalities (1.14) (the
equalities (1.17)) are satisfied.
Consequently, the condition (1.14) (the condition (1.17)) in Theorem 1.5 is unimprovable.

2. Auxiliary propositions

2.1. Lemmas on a priori estimates

Consider the system of differential inequalities

σiu′i(t) ≤ hi(t)

(
n∑
k=1

hikuk(t)+ h(t)

)
(i = 1, . . . , n), (2.1)

where

σ1 = · · · = σm = 1, σm+1 = · · · = σn = −1, H = (hik)ni,k=1 ∈ As, (2.2)

hi ∈ Lloc(R+) (i = 1, . . . , n) and h ∈ L∞(R+) are nonnegative functions. (2.3)

Let I be some interval from R+. A vector function (ui)ni=1 with nonnegative components ui ∈ C̃loc(I) (i = 1, . . . , n) is said
to be a nonnegative solution of the system (2.1) if it satisfies this system almost everywhere on I .

Lemma 2.1. Let conditions (2.2) and (2.3) be fulfilled and (ui)ni=1 be a nonnegative solution of the system (2.1) on some interval
[0, a] ⊂ R+. Then
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n∑
i=1

ui(t) ≤ µ(H)

(
m∑
i=1

ui(0)+
n∑

i=m+1

ui(a)+ ‖h‖L∞

)
for 0 ≤ t ≤ a, (2.4)

where µ(H) is the number given by the equality (1.13).

To prove this lemma, we need the following

Lemma 2.2. Let γi, γ0i and h0ik(i, k = 1, . . . , n) be nonnegative numbers such that

γi ≤

n∑
k=1

h0ikγk + γ0i (i = 1, . . . , n) (2.5)

and

r(H0) < 1, where H0 = (h0ik)ni,k=1. (2.6)

Then
n∑
i=1

γi ≤ ‖(E − H0)−1‖
n∑
i=1

γ0i. (2.7)

Proof. If we suppose that

γ = (γi)
n
i=1, γ0 = (γ0i)

n
i=1,

then the system of inequalities (2.5) takes the form

γ ≤ H0γ + γ0.

Consequently,

(E − H0)γ ≤ γ0. (2.8)

However, in view of (2.6), the matrix E − H0 is non-degenerate and (E − H0)−1 is a nonnegative matrix. If we multiply the
vector inequality (2.8) by (E − H0)−1, then we get

γ ≤ (E − H0)−1γ0.

Hence we obtain the estimate (2.7). �

As we already said above, the condition H ∈ As guarantees the condition (1.8), where H0 is a matrix given by the equality
(1.9). Consequently, the following lemma is valid.

Lemma 2.3. If H = (hik)ni,k=1 ∈ As and

h0ik = (1− δik)|hii|−1hik (i, k = 1, . . . , n), (2.9)

then the condition (2.6) is fulfilled.

Proof of Lemma 2.1. Suppose

ti = 0 (i = 1, . . . ,m), ti = a (i = m+ 1, . . . , n). (2.10)

Then due to (2.1)–(2.3) the inequalities

ui(t) ≤ ui(ti) exp
(
−

∣∣∣∣hii ∫ t

ti
hi(τ )dτ

∣∣∣∣)

+

∣∣∣∣∣
∫ t

ti
exp

(
−

∣∣∣∣hii ∫ t

s
hi(τ )dτ

∣∣∣∣) hi(s)
[
n∑
k=1

(1− δik)hik|uk(s)| + h(s)

]
ds

∣∣∣∣∣ (i = 1, . . . , n) (2.11)

are satisfied on [0, a]. Hence we get the inequalities (2.5) with

γi = max{|ui(t)| : 0 ≤ t ≤ a}, γ0i = |ui(ti)| + |hii|−1‖h‖L∞ ,

where h0ik(i, k = 1, . . . , n) are numbers given by the equalities (2.9). On the other hand, by Lemmas 2.2 and 2.3, the
inequalities (2.5) result in the inequality (2.7). However,
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n∑
i=1

γ0i =

m∑
i=1

ui(0)+
n∑

i=m+1

ui(a)+ ‖h‖L∞
n∑
i=1

|hii|−1

≤

(
1+

n∑
i=1

|hii|−1
)(

m∑
i=1

ui(0)+
n∑

i=m+1

ui(a)+ ‖h‖L∞

)
.

Taking into account this fact and the notation (1.13), from (2.7) we obtain the estimate (2.4). �

Lemma 2.4. Let the conditions (2.2) and (2.3) be fulfilled and (ui)ni=1 be a nonnegative solution of the system (2.1) on R+ such
that

lim sup
t→+∞

ui(t) < +∞ (i = m+ 1, . . . , n). (2.12)

Then

sup

{
n∑
i=1

ui(t) : t ∈ R+

}
< +∞. (2.13)

Proof. By Lemma 2.1, for an arbitrary a ∈ R+ the estimate (2.4) is valid, from which due to (2.12) it follows the inequality
(2.13). �

Lemma 2.5. Let, along with (2.2) and (2.3), the condition∫
+∞

0
hi(s)ds = +∞ (i = m+ 1, . . . , n) (2.14)

hold. Let, moreover, (ui)ni=1 be a nonnegative solution of the system (2.1) on R+, satisfying the condition (2.12). Then

n∑
i=1

ui(t) ≤ µ(H)

(
m∑
i=1

ui(0)+ ‖h‖L∞

)
for t ∈ R+. (2.15)

Proof. By Lemma 2.4,

γi = sup {ui(t) : t ∈ R+} < +∞ (i = 1, . . . , n). (2.16)

On the other hand, in view of (2.1)–(2.3) for any a ∈]0,+∞[ the inequalities (2.11) are satisfied on the interval [0, a], where
ti(i = 1, . . . ,m) are numbers given by the equalities (2.10). Therefore,

ui(t) ≤ ui(0)+ |hii|−1‖h‖L∞ +
n∑
k=1

h0ikγk for 0 ≤ t ≤ a (i = 1, . . . ,m),

ui(t) ≤ γi exp
(
−|hii|

∫ a

t
hi(s)ds

)
+ |hii|−1‖h‖L∞ +

n∑
k=1

h0ikγk for 0 ≤ t ≤ a (i = m+ 1, . . . , n),

where h0ik(i, k = 1, . . . , n) are numbers given by the equalities (2.9). If we pass to the limit in these inequalities as a→+∞,
then due to (2.14) we obtain

ui(t) ≤ γ0i +
n∑
i=1

h0ikγk for t ∈ R+,

where

γ0i = ui(0)+ |hii|−1‖h‖L∞ (i = 1, . . . ,m), γ0i = |hii|−1‖h‖L∞ (i = m+ 1, . . . , n). (2.17)

Consequently, the inequalities (2.5) are satisfied. Hence by Lemma 2.2 and 2.3 we obtain the inequality (2.7). If along with
(2.7) we take into account (2.16) and (2.17), then the validity of the estimate (2.15) becomes evident. �

Lemma 2.6. Let along with (2.2) and (2.3) the condition∫
+∞

0
hi(s)ds = +∞ (i = 1, . . . , n) (2.18)

be fulfilled and h(t)→ 0 as t →+∞. Let, moreover, (ui)ni=1 be a nonnegative solution of the system (2.1) on R+, satisfying the
condition (2.12). Then along with (2.15) the condition
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lim
t→+∞

ui(t) = 0 (i = 1, . . . , n) (2.19)

holds.

Proof. By Lemma 2.4,

γi = lim sup
t→+∞

|ui(t)| < +∞ (i = 1, . . . , n). (2.20)

For any ε > 0, choose a = a(ε) > 0 so that

h(t) < ε, ui(t) < γi + ε (i = 1, . . . , n) for t ≥ a. (2.21)

On the other hand, in view of (2.1)–(2.3) for any b ∈]a,+∞[ the inequalities (2.11) hold on [a, b], where

ti = a (i = 1, . . . ,m), ti = b (i = m+ 1, . . . , n).

On account of (2.21) from (2.11) we find that

ui(t) ≤ ui(a) exp
(
−|hii|

∫ t
a hi(s)ds

)
+

n∑
k=1
h0ikγi + `iε for t ≥ a (i = 1, . . . , n), (2.22)

ui(t) ≤ ui(b) exp
(
−|hii|

∫ b
t hi(s)ds

)
+

n∑
k=1
h0ikγi + `iε for a ≤ t ≤ b (i = m+ 1, . . . , n), (2.23)

where h0ik(i = 1, . . . , n) are numbers given by the equalities (2.9) and

`i =

n∑
k=1

h0ik + |hii|−1 (i = 1, . . . , n).

By (2.18) and (2.20), from (2.22) we get

γi ≤

n∑
k=1

h0ikγi + `iε (i = 1, . . . ,m). (2.24)

If we pass to the limit in the inequalities (2.23) as b→+∞, then by (2.18) we find that

ui(t) ≤
n∑
k=1

h0ikγi + `iε for t ∈ R+ (i = m+ 1, . . . , n).

Therefore,

γi ≤

n∑
k=1

h0ikγi + `iε (i = m+ 1, . . . , n). (2.25)

By virtue of Lemmas 2.2 and 2.3, the inequalities (2.24) and (2.25) imply the estimate
n∑
i=1

γi ≤ `ε, where ` =
∥∥(E − H0)−1∥∥ n∑

i=1

`i.

Hence, in view of the arbitrariness of ε and the nonnegativeness of γi(i = 1, . . . , n), we obtain

γi = 0 (i = 1, . . . , n).

Consequently, the equalities (2.19) are valid. �

2.2. Lemma on the solvability of the problem (1.1), (1.5)

From Corollary 2 in [7] it follows

Lemma 2.7. If the conditions of Theorem 1.1 are satisfied, then for any a ∈]0,+∞[ and (ci)ni=1 ∈ Rn the problem (1.1), (1.5) is
solvable and each of its solution admits the estimate (1.6).

3. Proof of the main results

Proof of Theorem 1.1. Suppose (ci)mi=1 ∈ Rm is fixed arbitrarily. By Lemma 2.7, for any natural k the system (1.1) has a
solution (xik)ni,k=1 in the interval [0, k], satisfying the boundary conditions

xik(0) = ci (i = 1, . . . ,m), xik(k) = 0 (i = m+ 1, . . . , n) (3.1)
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and admitting the estimate

n∑
i=1

|xik(t)| ≤ ρ for 0 ≤ t ≤ k, (3.2)

where ρ = ρ0
(∑m

i=1 ci
)
. In view of (1.3) and (3.2), the inequality

n∑
i=1

|fi (t, x1k(t), . . . , xnk(t))| ≤ f ∗(t) (3.3)

is satisfied almost everywhere on [0, k], where

f ∗(t) = max

{
n∑
i=1

|fi(t, x1, . . . , xn)| :
n∑
j=1

|xj| ≤ ρ

}
and f ∗ ∈ Lloc(R+).

Thus
n∑
i=1

|xi(t)− xi(s)| ≤
∫ t

s
f ∗(τ )dτ for 0 ≤ s ≤ t ≤ k. (3.4)

Suppose

xik(t) = 0 for t ≥ k (i = 1, . . . , n).

Then, according to the conditions (3.1), (3.2) and (3.4), the sequence of vector functions ((xik)ni=1)
∞

k=1 is uniformly bounded
and equicontinuous on each compact interval from R+. By the Arzela–Ascoli lemma, from this sequence we can choose a
subsequence ((xikj)ni=1)

∞

j=1 which is uniformly convergent on each compact interval from R+.
Let

xi(t) = lim
j→+∞

xikj(t) for t ∈ R+ (i = 1, . . . ,m). (3.5)

If we apply the Lebesgue dominant theorem, then in view of the conditions (1.3), (3.3) and (3.5), from the equalities

xikj(t) = xikj(0)+
∫ t

0
fi
(
s, x1kj(s), . . . , xnkj(s)

)
ds for 0 ≤ t ≤ kj(i = 1, . . . , n)

we find

xi(t) = xi(0)+
∫ t

0
fi (s, x1(s), . . . , xn(s)) ds for t ∈ R+ (i = 1, . . . , n).

Consequently, (xi)ni=1 is a solution of the system (1.1) on R+. On the other hand, by (3.5), from (3.1) and (3.2) it follows that
(xi)ni=1 satisfies the boundary conditions (1.2). Thus the solvability of the problem (1.1), (1.2) is proved.
It remains to show that an arbitrary solution (xi)ni=1 of the problem (1.1), (1.2) is bounded on R+. According to (1.2),

γ = sup

{
n∑

i=m+1

|xi(t)| : t ∈ R+

}
< +∞.

On the other hand, by Lemma 2.7, for an arbitrary a ∈ ]0,+∞[we have

n∑
i=1

|xi(t)| ≤ ρ0

(
m∑
i=1

|ci| +
n∑

i=m+1

|xi(a)|

)
≤ ρ0

(
m∑
i=1

|ci| + γ

)
for 0 ≤ t ≤ a.

Hence due to the arbitrariness of a it follows that (xi)ni=1 is bounded on R+. �

Proof of the Theorem 1.2. Let µ(H) be the number given by the equality (1.13) and

ρ0(x) = µ(H) (x+ ‖h‖L∞) for x ∈ R+. (3.6)

According to Theorem 1.1, to prove Theorem 1.2 it suffices to state that for any λ ∈ ]0, 1], a ∈ ]0,+∞[ and (ci)ni=1 ∈ Rn,
every solution (xi)ni=1 of the problem (1.4), (1.5) admits the estimate (1.6).
Suppose

ui(t) = |xi(t)| (i = 1, . . . , n). (3.7)
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Then in view of (1.7) the conditions

σiu′i(t) = σiλfi (t, x1(t), . . . , xn(t)) sgn(xi(t))≤hi(t)

(
n∑
k=1

hikuk(t)+ h(t)

)
(i = 1, . . . , n)

are satisfied almost everywhere on [0, a], where

hi(t) = λgi (t, x1, (t), . . . , xn(t)) (i = 1, . . . , n).

Therefore, (ui)ni=1 is a nonnegative solution of the system of differential inequalities (2.1) on [0, a]. Moreover, σi, hi, hik(i, k =
1, . . . , n) and h satisfy the conditions (2.2) and (2.3), which by Lemma 2.1 guarantees the validity of the estimate (2.4). If
now we take into account conditions (1.5) and the notations (3.6) and (3.7), then the validity of the estimate (1.6) becomes
evident. �

Proof of Theorem 1.3 (Theorem 1.4). Let (xi)ni=1 be an arbitrary solution of the problem (1.1), (1.2). Then in view of (1.7) the
vector function (ui)ni=1, whose components are given by the equalities (3.7), satisfies the condition (2.12) and is a nonnegative
solution of the system of differential inequalities (2.1) on R+, where

hi(t) = gi (t, x1(t), . . . , xn(t)) (i = 1, . . . , n). (3.8)

Moreover,σi, hi, hik(i, k = 1, . . . , n) and h satisfy the conditions (2.2), (2.3) (and h(t)→ 0 as t →+∞). On the other hand, in
viewof (3.8) from (1.14) and (1.15) (from (1.15) and (1.17)) it follow the equalities (2.14) (the equalities (2.18)). By Lemma2.5
(by Lemma 2.6), the vector function (ui)ni=1 admits the estimate (2.15) (satisfies the equalities (2.19)). Consequently, (xi)

n
i=1

admits the estimate (1.16) (satisfies the equalities (1.18)). �

Proof of Theorem 1.5. Let qi ∈ Kloc(R+ × Rn)(i = 1, . . . , n) be arbitrary functions satisfying the condition (1.21). Then in
view of (1.25) and (1.26) the inequalities

σi (fi(t, x1, . . . , xn)+ qi(t, x1, . . . , xn)) sgn(xi) ≤ pi(t)

(
n∑
k=1

hik|xk| + h(t)+ q0(t)

)
(i = 1, . . . , n) (3.9)

are satisfied on R+ × Rn. Moreover, h ∈ L∞(R+),

pi ∈ Lloc(R+) (i = 1, . . . , n), q0 ∈ L∞(R+) (3.10)

and the condition (2.2) holds. Hence by Theorem1.2 it follows that the problem (1.19), (1.20) is solvable for any (δi)mi=1 ∈ Rm.
Let (xi)ni=1 and (yi)

n
i=1 be arbitrary solutions of the problems (1.1), (1.2) and (1.19), (1.20), and

ui(t) = |xi(t)− yi(t)| (i = 1, . . . , n).

Then, due to (1.21) and (1.25), the vector function (ui)ni=1 is a nonnegative solution of the system of differential inequalities

σiu′i(t) ≤ pi(t)

(
n∑
k=1

hikuk(t)+ q0(t)

)
(i = 1, . . . , n),

satisfying the conditions

ui(0) = |δi| (i = 1, . . . ,m), lim sup
t→+∞

ui(t) < +∞ (i = m+ 1, . . . , n).

If, along with (2.2) and (3.10), the condition (1.14) (the conditions (1.17) and (1.22)) holds, then by Lemma 2.5 (by
Lemma 2.6) we have

n∑
i=1

ui(t) ≤ µ(H)

(
m∑
i=1

|δi| + ‖q0‖L∞

)
for t ∈ R+

(
lim
t→+∞

ui(t) = 0 (i = 1, . . . , n)
)
.

Thus we have proved that the estimate (1.23) is valid (along with the estimate (1.23) the equalities (1.24) are valid), where
ρ = µ(H). Therefore the problem (1.1), (1.2) is well-posed (asymptotically well-posed) with the weight (pi)ni=1. �
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