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Abstract

Unimprovable, in a certain sense, sufficient conditions of solvability and unsolvability
of nonlocal problems are found for the differential system

dxi

dt
= fi(t,x1, . . . ,xn) (i = 1, . . . ,n),

where each of the functions fi : [a,b]×Rn → R (i = 1, . . . ,n) may be superlinear or
sublinear with respect to phase variables.
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1 Introduction

In the present paper, for the nonlinear differential system

dui

dt
= fi(t,u1, . . . ,un) (i = 1, . . . ,n) (1.1)

on a finite interval [a,b] we study the nonlocal boundary value problem

ui(ti) = ϕi(ui) (i = 1, . . . ,n) (1.2)
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and its particular case

ui(ti) =
bZ

a

u(s)dαi(s)+ ci (i = 1, . . . ,n). (1.3)

Here, fi : [a,b]×Rn → R (i = 1, . . . ,n) are the functions satisfying the local Carathéodory
conditions, ti ∈ [a,b], ci ∈ R (i = 1, . . . ,n), ϕi : C([a,b]) → R (i = 1, . . . ,n) are continuous
functionals bounded on every compact set of the space C([a,b]), and αi : [a,b] → R (i =
1, . . . ,n) are the functions of bounded variations.

The boundary value problems of the type (1.1), (1.2) have been mainly investigated in
the case where the functions fi (i = 1, . . . ,n) admit the one-sided estimates

fi(t,x1, . . . ,xn)sgn
(
(t− ti)xi

)
≤

n

∑
k=1

pik(t)|xk|+qi(t) (i = 1, . . . ,n),

that is, when orders of growth of the functions

(t,x1, . . . ,xn)→
[

fi(t,x1, . . . ,xn)sgn((t− ti)xi)
]
+ (i = 1, . . . ,n)

with respect to the phase variables do not exceed 1 (see, e.g., [1]–[5], [9]–[11] and the
references therein).

In case for which this condition is violated, the above-mentioned problems are, as a
matter of fact, being unstudied. The theorems proven below fill to some extent this gap.

Throughout the paper, the use will be made of the following notation: Rn is the n-
dimensional real Euclidean space; x = (xi)n

i=1 ∈ Rn is the column-vector with components
xi ∈ R (i = 1, . . . ,n); δik is the Kronecker symbol; X = (xik)n

i,k=1 is the n× n-matrix with

components xik ∈ R (i,k = 1, . . . ,n) and with the norm ‖X‖=
n
∑

i,k=1
|xik|; X−1 is the inverse

to X matrix; r(X) is a spectral radius of the matrix X ; E is the unit matrix; C([a,b]) and
L([a,b];R) are the spaces of continuous and Lebesgue integrable functions u : [a,b] → R
and v : [a,b]→ R, respectively, with the norms

‖u‖C = max
{
|u(t)| : a ≤ t ≤ b

}
, ‖v‖L =

bZ
a

|v(s)|ds;

tR
a
|dα(s)| is a full variation of the function α : [a, t]→ R on [a, t].1

Definition 1.1. The real matrix H = (hik)n
i,k=1 belongs to the set As if it is quasi-nonnegative

and asymptotically stable, i.e., if hik ≥ 0 for i 6= k, and if real parts of eigen-values of the
matrix H are negative.

1
tR

a
|dα(s)|= 0 for t = a.
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Definition 1.2. The function f : [a,b]×Rn → R belongs to the set K loc([a,b]×Rn) if it
satisfies the local Carathéodory conditions2, i.e., if f (t, ·, . . . , ·) : R → R is continuous for
almost all t ∈ [a,b], f (·,x1, . . . ,xn) : [a,b]→ R, measurable for all (xi)n

i=1 ∈ Rn and

max
{∣∣ f (·,x1, . . . ,xn)

∣∣ :
n

∑
i=1

|xi| ≤ ρ

}
∈ L([a,b];R)

for any ρ ∈ ]0,+∞[ .

Everywhere in the sequel, it will be assumed that

fi ∈ K loc([a,b]×Rn) (i = 1, . . . ,n).

Along with the problem (1.1) (1.2) we consider the auxiliary boundary value problem

dui

dt
= (1−λ)pi(t,u1, . . . ,un)ui +λ fi(t,u1, . . . ,un) (i = 1, . . . ,n), (1.4)

ui(ti) = λϕi(u)(i = 1, . . . ,n), (1.5)

depending on the parameter λ ∈ ]0,1[ . From Theorem 1 of [8] it follows

Proposition 1.3 (The principle of a priori boundedness). Let there exist functions pi ∈
K loc([a,b]×Rn) (i = 1, . . . ,n), a set of zero measure I ⊂ [a,b] and a positive constant ρ

such that on the set ([a,b]× I)×Rn the inequalities

pi(t,x1, . . . ,xn)(t− ti)≥ 0 (i = 1, . . . ,n) (1.6)

are fulfilled, and for an arbitrary λ∈ ]0,1[ , every solution of the problem (1.4), (1.5) admits
the estimate

n

∑
i=1

‖ui‖C ≤ ρ. (1.7)

Then the problem (1.1), (1.2) has at least one solution.

Besides the above proposition, in the sequel we will need the following three lemmas.

Lemma 1.4. The quasi-nonnegative matrix H = (hik)n
i,k=1 belongs to the set As iff

hii < 0 (i = 1, . . . ,n), (1.8)

r(H0) < 1, (1.9)

where

H0 =
(

(1−δik)
hik

|hii|

)n

i,k=1
. (1.10)

2in Greek Kαραθεo∂ωρη.
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Lemma 1.5. Let H0 = (h0ik)n
i,k=1 be a nonnegative matrix satisfying the inequality (1.9)

and ρi and h0i (i = 1, . . . ,n) be nonnegative numbers such that

ρi ≤
n

∑
k=1

h0ikρk +h0i (i = 1, . . . ,n). (1.11)

Then
n

∑
i=1

ρi ≤ ‖(E−H0)−1‖
n

∑
i=1

h0i . (1.12)

Lemma 1.6. Let H0 = (h0ik)n
i,k=1 be a nonnegative matrix satisfying the inequality

r(H0)≥ 1. (1.13)

Then for any ε > 0 there exist the numbers h0i ∈ [0,ε] (i = 1, . . . ,n) such that

n

∑
i=1

h0i > 0, (1.14)

n

∑
k=1

h0ikh0k ≥ h0i (i = 1, . . . ,n). (1.15)

Lemma 1.4 follows from Theorem 1.18 of monograph [6], and the proof of Lemma 1.5
can be found in [7]. As for Lemma 1.6, it is obvious and we omit its proof.

2 Main Results

First of all, we consider the case where the functions fi (i = 1, . . . ,n) and the functionals ϕi

(i = 1, . . . ,n) satisfy the inequalities

fi(t,x1, . . . ,xn)sgn((t− ti)xi)

≤ gi(t,x1, . . . ,xn)
( n

∑
k=1

hik|xk|+hi

)
for t∈ [a,b]\ I, (xk)n

k=1∈Rn (i=1, . . . ,n), (2.1)

|ϕi(u)| ≤
Z b

a
|u(t)|dβi(t)+ γi for u ∈C([a,b]) (i = 1, . . . ,n), (2.2)

where I ⊂ [a,b] is a set of zero measure, hi and γi (i = 1, . . . ,n) are nonnegative numbers,

H = (hik)
n
i,k=1 ∈ As, (2.3)

gi ∈ K loc([a,b]×Rn) (i = 1, . . . ,n) are nonnegative and βi : [a,b] → R (i = 1, . . . ,n) are
nondecreasing functions such that

βi(b)−βi(a)≤ 1 (i = 1, . . . ,n). (2.4)

Assume

g0i(t) = inf{gi(t,x1, . . . ,xn) : (xk)n
k=1 ∈ Rn} (i = 1, . . . ,n), (2.5)

ηi =
Z b

a
exp
(

hii

∣∣∣∣Z t

ti
g0i(s)ds

∣∣∣∣)dβi(t) (i = 1, . . . ,n). (2.6)
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Theorem 2.1. Let the conditions (2.1)–(2.4) be fulfilled and

either ηi < 1, or γi = 1−ηi = 0 for every i ∈ {1, . . . ,n}, (2.7)

where ηi (i = 1, . . . ,n) are the numbers given by the equalities (2.5) and (2.6). Then the
problem (1.1), (1.2) has at least one solution.

Proof. First, we note that the condition (2.3) by Lemma 1.4 ensures the fulfilment of the
inequalities (1.8) and (1.9), where H0 is the matrix given the inequality (1.10). On the other
hand, by the condition (2.7), we have

γi = (1−ηi)γ0i (i = 1, . . . ,n), (2.8)

where

γ0i =

{
γi/(1−ηi) for ηi < 1,

0 for ηi = 1.

Suppose

h0i =
hi

|hii|
+ γ0i (i = 1, . . . ,n), (2.9)

ρ =
∥∥(E−H0)−1∥∥ n

∑
i=1

h0i, (2.10)

and
pi(t,x1, . . . ,xn)≡ hiigi(t,x1, . . . ,xn)sgn(t− ti) (i = 1, . . . ,n). (2.11)

By (1.8) the functions pi (i = 1, . . . ,n) satisfy the inequalities (1.6), since gi (i = 1, . . . ,n)
are nonnegative.

Let (ui)n
i=1 be a solution of the problem (1.4), (1.5) for an arbitrary λ ∈]0,1[. According

to Proposition 1.3, to prove the theorem, it suffices to state that (ui)n
i=1 admits the estimate

(1.7).
In view of (1.8), (2.1) and (2.11), almost everywhere on [a,b] the inequalities

|ui(t)|′ sgn(t− ti)≤−pi(t)|ui(t)|+ pi(t)
( n

∑
k=1

h0ikρk +hi/|hii|
)

(i = 1, . . . ,n) (2.12)

are fulfilled, where h0ik = (1−δik)hik/|hii| (i = 1, . . . ,n),

pi(t) = |hii|gi(t,u1(t), . . . ,un(t))≥ |hii|g0i(t)≥ 0 (i = 1, . . . ,n), (2.13)

and
ρi = ‖ui‖C (i = 1, . . . ,n). (2.14)

On the other hand, it follows from (1.5), (2.2) and (2.8) that

|ui(ti)| ≤ λ

Z b

a
|u(t)|dβi(t)+λ(1−ηi)γ0i (i = 1, . . . ,n). (2.15)

From (2.12) we have
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|ui(t)| ≤ exp
(
−
∣∣∣∣Z t

ti
pi(s)ds

∣∣∣∣)|ui(ti)|+
( n

∑
k=1

h0ikρk +hi/|hii|
)

×

(
1− exp

(
−
∣∣∣∣Z t

ti
pi(s)ds

∣∣∣∣)
)

for a ≤ t ≤ b (i = 1, . . . ,n). (2.16)

If along with (2.16) we take into account that βi : [a,b] → R (i = 1, . . . ,n) are the nonde-
creasing functions satisfying the inequalities (2.4), then from (2.15) we find

|ui(t)| ≤ ζ|ui(ti)|+
( n

∑
k=1

h0ikρk +hi/|hii|
)

(1−ζi)+λ(1−ηi)γ0i (i = 1, . . . ,n), (2.17)

where

ζi = λ

Z b

a
exp
(
−
∣∣∣∣Z t

ti
pi(s)ds

∣∣∣∣)dβi(t) (i = 1, . . . ,n).

On the other hand, by virtue of (2.6) and (2.13), it is clear that

ζi ≤ ληi < 1, λ(1−ηi) < 1−ζi (i = 1, . . . ,n).

Taking into account the above inequalities and the notation (2.9), from (2.17) we get

|ui(ti)| ≤
n

∑
k=1

h0ikρk +h0i (i = 1, . . . ,n).

Thus it follows from (2.16) that

|ui(t)| ≤
n

∑
k=1

h0ikρk +h0i for a ≤ t ≤ b (i = 1, . . . ,n).

Consequently, the inequalities (1.11) are fulfilled. However, by Lemma 1.5, the inequalities
(1.9) and (1.11) result in (1.12). Taking now into account the notations (2.10) and (2.14),
the validity of the estimate (1.7) becomes obvious.

If

ϕi(u) =
Z b

a
u(t)dαi(t)+ ci (i = 1, . . . ,n),

then the boundary conditions (1.2) take the form (1.3). On the other hand, in this case the
inequalities (2.2) are fulfilled, where γi = |ci| (i = 1, . . . ,n) and

βi(t) =
Z t

a
|dαi(s)| for a ≤ t ≤ b (i = 1, . . . ,n). (2.18)

Therefore from Theorem 2.1 we have

Corollary 2.2. Let the conditions (2.1), (2.3) andZ b

a
|dαi(t)| ≤ 1 (i = 1, . . . ,n) (2.19)

be fulfilled. If, moreover,

either ηi < 1, or ci = 1−ηi = 0 for every i ∈ {1, . . . ,n}, (2.20)

where ηi (i = 1, . . . ,n) are the numbers given by the equalities (2.5), (2.6), and (2.18), then
the problem (1.1), (1.3) has at least one solution.
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If γ1 = · · ·= γn = 0 (c1 = · · ·= cn = 0), then the condition (2.7) (the condition (2.20))
in Theorem 2.1 (in Corollary 2.2) is fulfilled automatically. Consequently, the following
corollary is valid.

Corollary 2.3. Let the conditions (2.1)–(2.4) (the conditions (2.1), (2.3), and (2.19)) be
fulfilled, and γ1 = · · · = γn = 0 (c1 = · · · = cn = 0). Then the problem (1.1), (1.2) (the
problem (1.1), (1.3)) has at least one solution.

Theorem 2.4. Let there exist constants hi > 0 and hik ∈ R (i,k = 1, . . . ,n), functions gi ∈
K loc([a,b]×Rn) (i = 1, . . . ,n) and a set of zero measure I ⊂ [a,b] such that

(1−δik)hik ≥ 0, hii < 0 (i = 1, . . . ,n), H = (hik)n
i,k=1 /∈ As (2.21)

and on the set ([a,b]\ I)×Rn the inequalities

gi(t,x1, . . . ,xn) > 0 (i = 1, . . . ,n), (2.22)

fi(t,x1, . . . ,xn)sgn(t− ti)≥ gi(t,x1, . . . ,xn)
( n

∑
k=1

hik|xk|+hi

)
(i = 1, . . . ,n) (2.23)

are fulfilled. If, moreover,

ϕi(u)≥
Z b

a
|u(t)|dβi(t) for u ∈C([a,b]), (2.24)

where βi : [a,b]→ R (i = 1, . . . ,n) are the nondecreasing functions satisfying the conditions

βi(b)−βi(a) = 1, lim
t→ti

βi(t) = βi(ti) (i = 1, . . . ,n), (2.25)

then the problem (1.1), (1.2) has no solution.

Proof. Assume

h0ik = (1−δik)hik/|hii| (i = 1, . . . ,n), H0 = (h0ik)
n
i,k=1 .

Then according to Lemmas 1.4, 1.6 and the condition (2.21), the matrix H0 satisfies the
inequality (1.13), and there exist the numbers

h0i ∈ [0,hi/|hii|] (i = 1, . . . ,n) (2.26)

satisfying the inequalities (1.14) and (1.15).
Assume now that the theorem is invalid, i.e., the problem (1.1), (1.2) has a solution

(ui)n
i=1. Then by the conditions (2.21)–(2.23) and (2.26), almost everywhere on [a,b] the

inequalities

pi(t)
de f
= |hii|gi(t,u1(t), . . . ,un(t)) > 0 (i = 1, . . . ,n), (2.27)

u′i(t)sgn(t− ti)≥ pi(t)|ui(t)|+ pi(t)
( n

∑
k=1

h0ikµk +h0i

)
(i = 1, . . . ,n), (2.28)(

u′i(t)− p̃i(t)ui(t)
)

sgn(t− ti) > 0 (i = 1, . . . ,n) (2.29)
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are fulfilled, where

p̃i(t) = pi(t)sgn((t− ti)ui(t)) , µi = min{ui(t) : a ≤ t ≤ b} (i = 1, . . . ,n).

On the other hand, in view of (2.24) we have

ui(ti)≥
Z b

a
|ui(t)|dβi(t)≥ 0 (i = 1, . . . ,n). (2.30)

Since ui(ti) (i = 1, . . . ,n) are nonnegative, it follows from (2.29) that

ui(t)≥ ui(ti)exp
(Z t

ti
p̃i(s)ds

)
≥ 0 for a ≤ t ≤ b (i = 1, . . . ,n). (2.31)

If along with (2.27) and (2.31) we take into account that βi (i = 1, . . . ,n) are the nonde-
creasing functions satisfying the equalities βi(b) = βi(a) (i = 1, . . . ,n), then form (2.28)
and (2.30) we find

ui(t)≥ ui(ti)exp
(
−
∣∣∣∣Z t

ti
pi(s)ds

∣∣∣∣)
+
( n

∑
k=1

h0ikµk +h0i

)(
1− exp

(
−
∣∣∣∣Z t

ti
pi(s)ds

∣∣∣∣)
)

for a ≤ t ≤ b (i = 1, . . . ,n) (2.32)

and

ui(ti)≥ ζiui(ti)+
( n

∑
k=1

h0ikµk +h0i

)
(1−ζi) (i = 1, . . . ,n), (2.33)

where

ζi =
Z b

a
exp
(
−
∣∣∣∣Z t

ti
pi(s)ds

∣∣∣∣)dβi(t) (i = 1, . . . ,n).

However, by virtue of (2.25) and (2.27) it is clear that

ζi < 1 (i = 1, . . . ,n).

Therefore it follows from (2.33) and (2.32) that

ui(ti)≥
n

∑
k=1

h0ikµk +h0i (i = 1, . . . ,n)

and

ui(t)≥
n

∑
k=1

h0ikµk +h0i for a ≤ t ≤ b (i = 1, . . . ,n).

Consequently,

µi ≥
n

∑
k=1

h0ikµk +h0i (i = 1, . . . ,n),

whence by the inequalities (1.15) we find

µi ≥ mh0i (i = 1, . . . ,n; m = 1,2, . . .).

Therefore,
h0i ≤ lim

m→∞

µi

m
= 0 (i = 1, . . . ,n),

which contradicts the inequality (1.14). The obtained contradiction proves the theorem.
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As an example, we consider the problems

dui

dt
= pi(t,u1, . . . ,un)

(
hiiui +

n

∑
k=1

hik|uk|+qi(t,u1, . . . ,un)
)

(i = 1, . . . ,n), (2.34)

ui(ti) =
Z b

a
|ui(t)|dβi(t) (i = 1, . . . ,n) (2.35)

and

dui

dt
= pi(t,u1, . . . ,un)

( n

∑
k=1

hikuk +qi(t,u1, . . . ,un)
)

(i = 1, . . . ,n), (2.36)

ui(ti) =
Z b

a
ui(t)dβi(t) (i = 1, . . . ,n). (2.37)

Here
(1−δik)hik ≥ 0, hii < 0 (i = 1, . . . ,n),

pi and qi ∈ K loc([a,b]×Rn) (i = 1, . . . ,n), and βi : [a,b] → R (i = 1, . . . ,n) are the non-
decreasing functions satisfying the conditions (2.25). Moreover, there exist a set of zero
measure I ⊂ [a,b] and the constants `0 > 0 and ` > `0 such that on the set ([a,b] \ I)×Rn

the inequalities

pi(t,x1, . . . ,xn)sgn(t− ti)≥ 0, `0 ≤ qi(t,x1, . . . ,xn)≤ ` (i = 1, . . . ,n)

are fulfilled.
The above problems are tightly connected with each other, since as it is not difficult to

see, the problem (2.34), (2.35) is solvable if and only if the problem (2.36), (2.37) has at
least one positive solution.3

From Theorems 2.1 and 2.4 we have the following corollaries.

Corollary 2.5. The problem (2.34), (2.35) is solvable iff H = (hik)n
i,k=1 ∈ As.

Corollary 2.6. The problem (2.36), (2.37) has at least one positive solution iff H =
(hik)n

i,k=1 ∈ As.

According to Corollary 2.5, the condition H = (hik)n
i,k=1 ∈ As (the condition H =

(hik)n
i,k=1 /∈ As) in Theorem 2.1 (in Theorem 2.4) is unimprovable.

Note also that in the conditions of Corollary 2.5 we might meet with the possibility
when for arbitrary i ∈ {1, . . . ,n} and ν ≥ 0 one of the conditions( n

∑
k=1

|xk|
)−ν

|pi(t,x1, . . . ,xn)| →+∞ as
n

∑
k=1

|xk| →+∞

or ( n

∑
k=1

|xk|
)ν

|pi(t,x1, . . . ,xn)| → 0 as
n

∑
k=1

|xk| →+∞

is fulfilled.
Consequently, unlike the well-known earlier results, the theorems proved by us cover

the cases where each of the functions fi (i = 1, . . . ,n) is either superlinear or sublinear with
respect to the phase variables.

3That is a solution with positive components.
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