
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Nonlinear Analysis 74 (2011) 757–767

Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Optimal conditions of solvability of nonlocal problems for second-order
ordinary differential equations
Ivan Kiguradze a, Tariel Kiguradze b,∗

a A. Razmadze Mathematical Institute, 1 M. Aleksidze St, 0193 Tbilisi, GA, United States
b Florida Institute of Technology, Department of Mathematical Sciences, Melbourne, FL 32901, United States

a r t i c l e i n f o

Article history:
Received 1 February 2010
Accepted 14 September 2010

MSC:
34B10
34B16
34B18

Keywords:
Nonlinear
Second order
Singular differential equation
Nonlocal problem
Positive solution

a b s t r a c t

For the differential equation

u′′
= f (t, u)

in regular as well as in singular cases there are established optimal sufficient conditions of
existence for solutions satisfying nonlocal boundary conditions of the type∫ b

a
u(i−1)(s) dϕi(s) = ci (i = 1, 2).

© 2010 Elsevier Ltd. All rights reserved.

1. Formulation of the main results

1.1. Statement of the problem and basic notation

Consider the boundary value problem

u′′
= f (t, u); (1.1)∫ b

a
u(i−1)(s) dϕi(s) = ci (i = 1, 2), (1.2)

where f : [a, b] × R → R is a function satisfying local Caratheodory conditions, ci ∈ R (i = 1, 2), and ϕi : [a, b] → R (i =

1, 2) are functions of bounded variation such that
ϕi(a) = 0, ϕi(b) = 1 (i = 1, 2). (1.3)

Primarily we are interested in the case where, along with (1.3), one of the following four conditions holds:
ϕi(s) > 1 for a < s < b (i = 1, 2); (1.4)
ϕi(s) < 0 for a < s < b (i = 1, 2); (1.5)
ϕ1(s) > 1, ϕ2(s) < 0 for a < s < b (i = 1, 2); (1.6)
ϕ1(s) < 0, ϕ2(s) > 1 for a < s < b (i = 1, 2). (1.7)
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In these cases, as far as we know, problems of the form (1.1), (1.2) are still little studied (see [1–19] and the references
therein). The present paper is an attempt to fill the existing gap. In particular, there are established unimprovable, in a certain
sense, sufficient conditions which guarantee: solvability of problem (1.1), (1.2); unique solvability of problem (1.1), (1.2);
and the existence of at least three distinct solutions to problem (1.1), (1.2). In addition to that there is considered separately
a singular case, where the function f is defined only on the set [a, b] × (0, +∞) and, generally speaking, has no finite limit
limx→0 f (t, x). In that case there are established optimal sufficient conditions of existence of a positive solution to problem
(1.1), (1.2).

Throughout the paper the following notation will be used.
L([a, b]) is the space of Lebesgue integrable functions.
Kloc([a, b] × I), where I = R or I = (0, +∞), is a set of functions q : [a, b] × I → R satisfying local Caratheodory

conditions, i.e., q ∈ Kloc([a, b] × I) if q(·, x) : [a, b] → R is measurable for any x ∈ I, q(t, ·) : I → R is continuous for
almost every t ∈ [a, b], and for an arbitrary compact interval J ⊂ I

q∗

J ∈ L([a, b]), where q∗

J (t) = max{|q(t, x)| : |x| ∈ J}.
Za,b is the set of functions q : [a, b] × [1, +∞) → [0, +∞) nondecreasing with respect to the second argument and

satisfying the conditions

q(·, x) ∈ L([a, b]) for 1 ≤ x < +∞, lim
x→+∞

∫ b

a

q(t, x)
x

dt = 0.

For arbitrary pi ∈ L([a, b]) (i = 1, 2), p1(t) ≢ p2(t) would mean that p1 and p2 differ from each other on a set of positive
measure.

By χ, g0, h0 and σ we will understand functions, an operator and a number given by the equalities

χ(s, t) =


1 for s ≥ t,
0 for s < t;

g0(t, s) =

∫ b

a
ϕ1(τ ) dτ + t − b


ϕ2(s) −

∫ s

a
ϕ1(τ ) dτ + χ(s, t)(s − t) for a ≤ s, t ≤ b; (1.8)

h0(q)(t) =

∫ b

a
g0(t, s)q(s) ds for a ≤ t ≤ b, q ∈ L([a, b]); (1.9)

σ = sgn


ϕ1

a + b
2


ϕ2

a + b
2


. (1.10)

If one of the conditions (1.4)–(1.7) holds, then according to Lemma 2.2 (see below), we have
σg0(t, s) > 0 for a ≤ t ≤ b, a < s < b.

Therefore
σh0(q)(t) > 0 for a ≤ t ≤ b,

if q ∈ L([a, b]) is a nonnegative function different from zero on a set of positive measure.
In the aforementioned cases we will use the following definitions.

Definition 1.1. Wesay that an integrable function p : [a, b] → [0, +∞) belongs to the setGϕ1,ϕ2 if there exists an integrable
function p0 : [a, b] → [0, +∞) such that p0(t) ≢ 0,

p(t) ≤
p0(t)

|h0(p0)(t)|
for a ≤ t ≤ b, p(t) ≢

p0(t)
|h0(p0)(t)|

.

Definition 1.2. We say that p ∈ G∗
ϕ1,ϕ2

if there exists an integrable function p0 : [a, b] → [0, +∞) such that

p(t) =
p0(t)

|h0(p0)(t)|
for a ≤ t ≤ b.

It is clear that if p ∈ G∗
ϕ1,ϕ2

, then αp ∈ Gϕ1,ϕ2 for any α ∈ [0, 1). Consequently,

G∗

ϕ1,ϕ2
⊂ Gϕ1,ϕ2

\ Gϕ1,ϕ2 ,

where Gϕ1,ϕ2
is the closure of Gϕ1,ϕ2 in the space L([a, b]).

1.2. The regular problem

In this subsection we consider problem (1.1), (1.2) in the regular case, where
f ∈ Kloc([a, b] × R). (1.11)

A solution u of problem (1.1), (1.2) will be called positive (negative) if u(t) > 0 for a ≤ t ≤ b (u(t) < 0 for a ≤ t ≤ b).
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Theorem 1.1. Let

|f (t, x)| ≤ p(t)|x| + q(t, |x|) for a ≤ t ≤ b, |x| ≥ 1, (1.12)

where p ∈ L([a, b]) and q ∈ Za,b. Moreover, let either∫ b

a
|g0(t, s)|p(s) ds < 1 for a ≤ t ≤ b, (1.13)

or one of the conditions (1.4)–(1.7) hold and

p ∈ Gϕ1,ϕ2 . (1.14)

Then problem (1.1), (1.2) has at least one solution.

Theorem 1.2. Let

|f (t, x) − f (t, y)| ≤ p(t)|x − y| for a ≤ t ≤ b, x, y ∈ R, (1.15)

where p ∈ L([a, b]). Moreover, let either p satisfy (1.13), or one of the conditions (1.4)–(1.7) hold and p satisfy (1.14). Then
problem (1.1), (1.2) has one and only one solution.

In Theorems 1.1 and 1.2 conditions (1.13) and (1.14) are unimprovable in a certain sense. More precisely, the following
theorem is true:

Theorem 1.3. Let

c1 ≥ 0, c2

∫ b

a
ϕ1(s) ds ≥ 0, (1.16)

σ f (t, x) ≥ p(t)|x| + q(t) for a ≤ t ≤ b, x ∈ R, (1.17)

where p and q ∈ L([a, b]) are nonnegative functions and c1+|c2|+q(t) ≢ 0. If, moreover, one of the conditions (1.4)–(1.7) holds
and p satisfies either the inequality∫ b

a
|g0(t, s)|p(s) ds ≥ 1 for a ≤ t ≤ b, (1.18)

or the inclusion

p ∈ G∗

ϕ1,ϕ2
, (1.19)

then problem (1.1), (1.2) has no solution.

According to Definitions 1.1 and 1.2 and notation (1.8), (1.9), condition (1.4) (condition (1.5)) holds, if

p(t) <
1

|h0(1)(t)|


p(t) =

1
|h0(1)(t)|


for a ≤ t ≤ b,

where

h0(1)(t) =

∫ b

a
ϕ1(s) ds + t − b

 ∫ b

a
ϕ2(s) ds −

∫ b

a
(b − s)ϕ1(s) ds +

(b − t)2

2
.

Theorem 1.4. Let one of the conditions (1.4)–(1.7) hold and

q0(t)ω0(|x|) ≤ σ f (t, x) sgn x ≤ p(t)|x| + q(t)ω(|x|) for a ≤ t ≤ b, x ∈ R, (1.20)

where p, q and q0 ∈ L([a, b]) are nonnegative functions, q0(t) ≢ 0, and ω0 and ω : [0, +∞) → [0, +∞) are nondecreasing
functions such that

lim
x→0

ω0(x)
x

= +∞; (1.21)

lim
x→+∞

ω(x)
x

= 0. (1.22)

If, moreover, c1 = c2 = 0 and p satisfies either of the conditions (1.13) and (1.14), then problem (1.1), (1.2) along with the trivial
solution has positive and negative solutions as well.

1.3. The singular problem

The results of this section concern the singular case, when
f ∈ Kloc([a, b] × (0, +∞)). (1.23)
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Theorem 1.5. Let along with (1.16) the inequalities

σ f (t, x) ≥ q0(t)ω0(x) for a ≤ t ≤ b, x > 0, (1.24)
σ f (t, x) ≤ p(t)x + q(t, x) for a ≤ t ≤ b, x ≥ 1, (1.25)

hold, where p and q0 ∈ L([a, b]) are nonnegative functions, c1 + |c2| + q0(t) ≢ 0, q ∈ Za,b, and ω0 : (0, +∞) → (0, +∞) is a
nondecreasing function satisfying (1.21). If, moreover, one of the conditions (1.4)–(1.7) holds and p satisfies either (1.13) or (1.14),
then problem (1.1), (1.2) has at least one positive solution.

Theorem 1.6. Let along with (1.16) and the inequality

σ f (t, x) ≥ p(t)x + q(t)ω(x) for a < t < b, x > 0 (1.26)

one of the conditions (1.4)–(1.7) hold, where p and q ∈ L([a, b]) are nonnegative functions, and ω : (0, +∞) × (0, +∞) is
a nondecreasing function. If, moreover, c1 + |c2| + q(t) ≢ 0, and p satisfies either of the conditions (1.18) and (1.19), then
problem (1.1), (1.2) has no positive solutions.

1.4. Examples

Consider the differential equations

u′′
= l(t)u + l0(t); (1.27)

u′′
= l(t)|u| + l0(t); (1.28)

u′′
= l(t)u + l0(t)|u|α sgn u; (1.29)

u′′
= l(t)u + l0(t)(uα

+ u−β), (1.30)
where l and l0 ∈ L([a, b]), 0 < α < 1, β > 0.

Theorems 1.1 and 1.2 imply

Corollary 1.1. Let either∫ b

a
|g0(t, s)l(s)| ds < 1 for a ≤ t ≤ b, (1.31)

or one of the conditions (1.4)–(1.7) hold and

|l| ∈ Gϕ1,ϕ2 . (1.32)

Then problem (1.29), (1.2) is solvable, while the problems (1.27), (1.2) and (1.28), (1.2) are uniquely solvable.

Theorems 1.3, 1.5 and 1.6 imply

Corollary 1.2. Let along with (1.16) and the inequalities

σ l(t) ≥ 0, σ l0(t) ≥ 0 for a ≤ t ≤ b, c1 + |c2| + l0(t) ≢ 0

one of the conditions (1.4)–(1.7) hold. If, moreover, l satisfies either of the conditions (1.31) and (1.32), then:
(i) a solution of problem (1.27), (1.2) is positive and coincides with a solution of problem (1.28), (1.2);
(ii) problem (1.29), (1.2), as well as problem (1.30), (1.2), has at least one positive solution, and besides, if either∫ b

a
|g0(t, s)l(s)| ds ≥ 1 for a ≤ t ≤ b, (1.33)

or

σ l ∈ G∗

ϕ1,ϕ2
, (1.34)

then:
(iii) none of the problems (1.27), (1.2); (1.29), (1.2) and (1.30), (1.2) has a positive solution;
(iv) problem (1.28), (1.2) has no solutions.

Theorems 1.4 and 1.6 imply

Corollary 1.3. Let c1 = c2 = 0 and one of the conditions (1.4)–(1.7) hold, and

σ l(t) ≥ 0, σ l0(t) ≥ 0 for a ≤ t ≤ b, l0(t) ≢ 0.

Then:
(i) if l satisfies either of the conditions (1.31) and (1.32), then problem (1.29), (1.2) along with the trivial solution has positive

and negative solutions;
(ii) if l satisfies either of the conditions (1.33) and (1.34), then problem (1.29), (1.2) has neither positive nor negative solutions.
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2. Auxiliary statements

2.1. Properties of the function g0 and the operator h0

Consider the differential equation

u′′
= q(t) (2.1)

with boundary conditions (1.2), where q ∈ L([a, b]). As above, it will be assumed thatϕi : [a, b] → R (i = 1, 2) are functions
of bounded variation satisfying equalities (1.3).

Lemma 2.1. Problem (2.1), (1.2) has a unique solution u, g0 is its Green’s function and u admits the representation

u(t) = c1 + c2

∫ b

a
ϕ1(s) ds + t − b


+ h0(q)(t) for a ≤ t ≤ b. (2.2)

Proof. An arbitrary solution of Eq. (2.1) admits the representation

u(t) = γ1 + γ2(t − a) +

∫ t

a
(t − s)q(s) ds, (2.3)

where γi ∈ R (i = 1, 2). In view of (1.3), u is a solution of problem (2.1), (1.2) if and only if (γ1, γ2) is a solution of the linear
algebraic equations

γ1 + γ2

∫ b

a
(τ − a) dϕ1(τ ) +

∫ b

a

∫ s

a
(s − τ)q(τ ) dτ


dϕ1(s) = c1,

γ2 +

∫ b

a

∫ s

a
q(τ ) dτ


dϕ2(s) = c2.

(2.4)

However, in view (1.3) we have∫ b

a
(τ − a) dϕ1(τ ) = b − a −

∫ b

a
ϕ1(τ ) dτ ,∫ b

a

∫ s

a
(s − τ)q(τ ) dτ


dϕ1(s) =

∫ b

a
(b − s)q(s) ds −

∫ b

a

∫ s

a
q(τ ) dτ


ϕ1(s) ds

=

∫ b

a
(b − s)q(s) ds −

∫ b

a

∫ b

s
ϕ1(τ ) dτ


q(s) ds

=

∫ b

a


b − s −

∫ b

s
ϕ1(τ ) dτ


q(s) ds,∫ b

a

∫ s

a
q(τ ) dτ


dϕ2(s) =

∫ b

a
(1 − ϕ2(s))q(s) ds.

Therefore system (2.4) has a unique solution (γ1, γ2) given by the equalities

γ1 = c1 + c2

∫ b

a
ϕ1(τ ) dτ + a − b


+

∫ b

a

[∫ b

a
ϕ1(τ ) dτ + a − b


ϕ2(s) −

∫ s

a
ϕ1(τ ) dτ + s − a

]
q(s) ds,

γ2 = c2 +

∫ b

a
(ϕ2(s) − 1)q(s) ds.

The latter equalities together with (2.3) imply

u(t) = c1 + c2

∫ b

a
ϕ1(τ ) dτ + t − b


+

∫ b

a

[∫ b

a
ϕ1(τ ) dτ + t − b


ϕ2(s) −

∫ s

a
ϕ1(τ ) dτ + s − t

]
q(s) ds

+

∫ t

a
(t − s) q(s) ds.

Hence, (1.8) and (1.9) imply equality (2.2). �

Lemma 2.2. If one of the conditions (1.4)–(1.7) holds, then

σg0(t, s) > 0 for a ≤ t ≤ b, a < s < b (2.5)
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and, consequently,

σh0(q)(t) > 0 for a ≤ t ≤ b (2.6)

for any q ∈ L([a, b]) satisfying the conditions

q(t) ≥ 0 for a ≤ t ≤ b, q(t) ≢ 0. (2.7)

Proof. Assume first that (1.4) holds. Then from (1.8) we have

g0(t, s) >

∫ b

a
ϕ1(τ ) dτ + t − b −

∫ s

a
ϕ1(τ ) dτ + χ(s, t)(s − t)

=

∫ b

s
ϕ1(τ ) dτ + t − b + χ(s, t)(s − t) > t − s + χ(s, t)(s − t) ≥ 0 for a ≤ t ≤ b, a < s < b.

If (1.5) holds then

g0(t, s) > χ(s, t)(s − t) ≥ 0 for a ≤ t ≤ b, a < s < b.

Consequently in these two cases inequality (2.5) holds true, since σ = 1 according to (1.10).
Assume now that condition (1.6) holds. Then σ = −1, and, by (1.8), we get

σg0(t, s) =

∫ b

a
ϕ1(τ ) dτ + t − b


|ϕ2(s)| +

∫ s

a
ϕ1(τ ) dτ + χ(s, t)(t − s)

> s − a + χ(s, t)(t − s) ≥ 0 for a ≤ t ≤ b, a < s < b.

If (1.7) holds, then again σ = −1 and

σg0(t, s) =

∫ b

a
|ϕ1(τ )| dτ + b − t


ϕ2(s) −

∫ s

a
|ϕ1(τ )| dτ + χ(s, t)(t − s)

>

∫ b

s
|ϕ1(τ )| dτ + b − t + χ(s, t)(t − s) ≥ 0 for a ≤ t ≤ b, a < s < b.

Thus (2.5) is proved. As for the inequality (2.6), it immediately follows from (1.9), (2.5) and (2.7). �

2.2. Lemmas on differential inequalities

Consider the differential inequalities

σu′′(t) ≥ q0(t), (2.8)

σu′′(t) ≥ q0(t)ω0(|u(t)|) (2.9)

and

σu′′(t) ≥ p(t)|u(t)| + q(t), (2.10)

where σ is the number given by (1.10), p, q0 and q : [a, b] → [0, +∞) are integrable functions, and ω0 : [0, +∞) →

[0, +∞) is a nondecreasing function. A function u : [a, b] → R will be called a solution of the differential inequality
(2.k), k ∈ {8, 9, 10} if it is absolutely continuous together with its derivative and satisfies the differential inequality almost
everywhere on [a, b].

Lemma 2.3. Let one of the conditions (1.4)–(1.7) hold, c1 and c2 satisfy inequalities (1.16) and

c1 + |c2| + q0(t) ≢ 0. (2.11)

Then an arbitrary solution u of problem (2.8), (1.2) admits the estimate

u(t) ≥ δ0(c1 + |c2|) + σh0(q0)(t) > 0 for a ≤ t ≤ b, (2.12)

where

δ0 = min

1,

∫ b

a
|ϕ1(s)| ds,

∫ b

a
ϕ1(s) ds + a − b

 > 0. (2.13)

Proof. By Lemma 2.1 the representation

u(t) = c1 + c2

∫ b

a
ϕ1(s) ds + t − b


+ h0(u′′)(t)
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is valid. Hence in view of Lemma 2.2 and inequality (2.8) we have

u(t) ≥ c1 + c2

∫ b

a
ϕ1(s) ds + t − b


+ σh0(q0)(t) for a ≤ t ≤ b. (2.14)

Moreover, if q0(t) ≢ 0, then

σh0(q0)(t) > 0 for a ≤ t ≤ b.

On the other hand, inequality (1.16) and any of the conditions (1.4)–(1.7) guarantee the validity of inequality (2.13) and the
estimate

c1 + c2

∫ b

a
ϕ1(s) ds + t − b


≥ δ0(c1 + |c2|) for a ≤ t ≤ b.

Therefore estimate (2.12) follows from inequalities (2.11) and (2.14). �

Lemma 2.4. Let, along with one of the conditions (1.4)–(1.7), conditions (1.16), (1.21) hold and

q0(t) ≢ 0. (2.15)

Then there exists a positive number δ such that an arbitrary positive solution u of problem (2.9), (1.2) admits the estimate

u(t) > δ for a ≤ t ≤ b. (2.16)

Proof. By Lemma 2.2 and condition (2.15), we have

γ = inf{σh0(q0)(t) : a ≤ t ≤ b} > 0.

On the other hand, according to condition (1.21) there exists δ > 0 such that

x
ω0(x)

< γ for 0 < x ≤ δ. (2.17)

Let u be a positive solution of problem (2.9), (1.2). Choose t0 ∈ [a, b] such that

µ = min{u(t) : a ≤ t ≤ b} = u(t0).

Then the inequality

σu′′(t) ≥ ω0(µ)q0(t)

holds almost everywhere on [a, b]. Hence Lemma 2.3 yields

µ ≥ δ0(c1 + |c2|) + σh0(ω0(µ)q0)(t0) ≥ ω0(µ)σh0(q0)(t0) ≥ γω0(µ)

and, consequently,
µ

ω0(µ)
> γ .

In view of (2.17) the latter inequality implies

µ > δ,

i.e., estimate (2.16) holds. �

Lemma 2.5. Let one of the conditions (1.4)–(1.7) hold, c1 and c2 satisfy inequalities (1.16), and

c1 + |c2| + q(t) ≢ 0. (2.18)

If, moreover, p satisfies either of the conditions (1.18) and (1.19), then problem (2.10), (1.2) has no solution.
Proof. Assume the contrary, that problem (2.10), (1.2) has a solution u. Then by Lemma 2.3 and condition (2.18), we have

u(t) ≥ δ0(c1 + |c2|) + σh0(p|u| + q)(t) > 0 for a ≤ t ≤ b, (2.19)

and, consequently,

σh0(p|u| + q)(t) = σh0(pu)(t) + σh0(q)(t).

On the other hand, by Lemma 2.2 and condition (2.18), the inequality

δ(c1 + |c2|) + σh0(q)(t) > 0 for a ≤ t ≤ b

holds, according to which (2.19) implies

u(t) > 0, u(t) > σh0(pu)(t) for a ≤ t ≤ b. (2.20)
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Consider first the case where p satisfies inequality (1.18), and choose t0 ∈ [a, b] such that

u(t0) = min{u(t) : a ≤ t ≤ b}.

Then according to Lemma 2.2 and (2.20) we have

u(t0) > u(t0)σh0(p)(t0) = u(t0)
∫ b

a
|g0(t0, s)|p(s) ds ≥ u(t0).

The contradiction obtained shows that if (1.18) holds, then problem (2.10), (1.2) has no solution.
Now assume that p satisfies (1.19). Then, by Definition 1.2, there exists a nonnegative function p0 ∈ L([a, b]) such that

p0(t) ≢ 0 and

p(t) ≡
p0(t)

|h0(p0)(t)|
.

Set

µ = min


u(t)
|h0(p0)(t)|

: a ≤ t ≤ b


and choose t0 ∈ [a, b] such that

u(t0) = µ|h0(p0)(t0)|.

Then by Lemma 2.2 and (2.20), again we get the contradiction

µ|h0(p0)(t0)| > σh0(pu)(t0) = σh0


p0

u
|h0(p0)|


(t0)

≥ µσh0(p0)(t0) = µ|h0(p0)(t0)|.

Consequently, problem (2.10), (1.2) has no solution if (1.19) holds. �

2.3. Lemma on the solvability of the regular problem (1.1), (1.2)

The following lemma deals with the case where (1.11) holds.

Lemma 2.6. Let inequality (1.12) hold, where p : [a, b] → [0, +∞) is an integrable function and

q ∈ Za,b. (2.21)

Moreover, let the differential inequality

|u′′(t)| ≤ p(t)|u(t)|, (2.22)

subject to the homogeneous boundary conditions∫ b

a
u(i−1)(s) dϕi(s) = 0 (i = 1, 2), (2.23)

have only the trivial solution. Then problem (1.1), (1.2) has at least one solution.

Proof. Problem (1.1), (1.2) is equivalent to problem

u′

1 = u2, u′

2 = f (t, u1); (2.24)∫ b

a
ui(s) dϕi(s) = ci (i = 1, 2). (2.25)

On the other hand, according to Theorem 2.3 from [8] and conditions (1.12) and (2.21), problem (2.24), (2.25) is solvable, if
the system of differential inequalities

|u′

1(t) − u2(t)| ≤ 0, |u′

2(t)| ≤ p(t)|u1(t)|, (2.26)

subject to the homogeneous boundary conditions∫ b

a
ui(s) dϕi(s) = 0 (i = 1, 2), (2.27)

has only the trivial solution. Consequently, to prove the lemma it is sufficient to show that problem (2.26), (2.27) has only
the trivial solution.
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Let (u1, u2) be an arbitrary solution of problem (2.26), (2.27). Set

u(t) = u1(t) for a ≤ t ≤ b.

Then

u2(t) = u′(t) for a ≤ t ≤ b,

and u is a solution of problem (2.22), (2.23). However, according to one of the conditions of the lemma, problem (2.22), (2.23)
has only the trivial solution. Consequently, ui(t) ≡ u(i−1)(t) ≡ 0 (i = 1, 2). �

2.4. Lemma on the regularization of the singular problem (1.1), (1.2)

In this subsection consider problem (1.1), (1.2) in the singular case when (1.23) holds.
For an arbitrary γ > 0 set

fγ (t, x) =


f (t, x) for x ≥ γ
f (t, γ ) for x ≤ γ ,

(2.28)

and consider the differential equation

u′′
= fγ (t, u). (2.29)

In view of (1.23) it follows from (2.28) that
fγ ∈ Kloc([a, b] × R).

Consequently, problem (2.29), (1.2) is regular for any γ > 0.
If problem (1.1), (1.2) has a positive solution, then it is clear that it would also be a solution of problem (2.29), (1.2) for

sufficiently small γ > 0. It turns out that under some additional restrictions on the function f the converse is true, i.e.,
solvability of regular problem (2.29), (1.2) guarantees the existence of a positive solution to singular problem (1.1), (1.2).
More precisely, the following lemma holds.

Lemma 2.7. Let inequalities (1.16) and (1.24) hold, where q0 : [a, b] → [0, +∞) is an integrable function and
ω0 : (0, +∞) → (0, +∞) is a nondecreasing function satisfying conditions (1.21) and (2.11). If, moreover, one of the
conditions (1.4)–(1.7) holds, then solvability of problem (2.29), (1.2) for an arbitrarily small γ > 0 guarantees the existence
of at least one positive solution to problem (1.1), (1.2).
Proof. If c1 + |c2| > 0, then set

δ =
δ0(c1 + |c2|)

2
, (2.30)

where δ0 is the number given by (2.13). If c1 + |c2| = 0, then, in view of (2.11), inequality (2.15) holds. In this case by δ we
will understand the number appearing in Lemma 2.4.

Let us show that if problem (2.29), (1.2) is solvable for some γ ∈ (0, δ], then its arbitrary solution u is a positive solution
of problem (1.1), (1.2). For this, according to equality (2.28), it is sufficient to show that u admits estimate (2.16).

(1.24) and (2.28) imply

σ fγ (t, x) ≥ ω0(γ )q0(t) for a ≤ t ≤ b, x ∈ R (2.31)

and

σ fγ (t, x) ≥ q0(t)ω0(x) for a ≤ t ≤ b, x ≥ 0. (2.32)

By (2.31), an arbitrary solution u of problem (2.29), (1.2) is also a solution of the differential inequality

σu′′(t) ≥ ω0(γ )q0(t).

Hence, by Lemma 2.3 and condition (2.11), it follows that

u(t) ≥ δ0(c1 + |c2|) + σh0(ω0(γ )q0)(t) > 0 for a ≤ t ≤ b. (2.33)

If c1 + |c2| > 0, then (2.30) and (2.33) imply estimate (2.16). If c1 + |c2| = 0, then, in view of (2.11), inequality (2.15)
holds. On the other hand from (2.32) and (2.33) it is clear that u is a positive solution of the differential inequality (2.9).
Applying Lemma 2.4 we immediately get estimate (2.16). �

3. Proofs of the main results

Proof of Theorem 1.1. By Lemma2.6, it is sufficient to show that problem (2.22), (2.23) has only the trivial solution. Assume
the contrary, that this problem has a nontrivial solution u. Then, by Lemma 2.1, u admits the representation

u(t) =

∫ b

a
g0(t, s)u′′(s) ds.
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Therefore

|u(t)| ≤

∫ b

a
|g0(t, s)|p(s)|u(s)| ds for a ≤ t ≤ b. (3.1)

Consider first the case when inequality (1.13) holds. Choose t0 ∈ [a, b] such that

|u(t0)| = max{|u(t)| : a ≤ t ≤ b}.

Then (3.1) yields the contradiction

|u(t0)| ≤

∫ b

a
|g0(t, s)|p(s)|u(s)| ds ≤ |u(t0)|

∫ b

a
|g0(t, s)|p(s) ds < |u(t0)|.

It remains to consider the case where one of the conditions (1.4)–(1.7) holds and p satisfies (1.14).
By Definition 1.1, there exists a nonnegative function p0 ∈ L([a, b]) such that p(t) ≢ 0,

p(t) ≤
p0(t)

|h0(p0)(t)|
for a ≤ t ≤ b, p(t) ≢

p0(t)
|h0(p0)(t)|

. (3.2)

Choose t0 ∈ [a, b] such that

|u(t0)|
|h0(p0)(t0)|

= max


|u(t)|
|h0(p0)(t)|

: a ≤ t ≤ b


.

Then by Lemma 2.2 and inequalities (3.2), from (3.1) again we get the contradiction

|u(t0)| ≤
|u(t0)|

|h0(p0)(t0)|

∫ b

a
|g0(t0, s)|p(s)|h0(p0)(s)| ds

<
|u(t0)|

|h0(p0)(t0)|

∫ b

a
|g0(t0, s)|p0(s) ds = |u(t0)|.

Thus it is proved that problem (2.22), (2.23) has only the trivial solution. �

Proof of Theorem 1.2. (1.15) implies inequality (1.12), where

q(t, x) ≡ |f (t, 0)| and q ∈ Za,b.

Consequently, all of the conditions of Theorem 1.1 are satisfied, which guarantees solvability of problem (1.1), (1.2). It
remains to prove the uniqueness of its solution.

Let u1 and u2 be arbitrary solutions of problem (1.1), (1.2) and

u(t) = u1(t) − u2(t).

Then in viewof (1.15), u is a solution of problem (2.22), (2.23). However, aswas shown above, in the case under consideration
problem (2.22), (2.23) has only the trivial solution. Consequently, u1(t) ≡ u2(t). �

Proof of Theorem 1.3. Assume the contrary, that problem (1.1), (1.2) has a solution u. Then in view of condition (1.17) u is
a solution of problem (2.10), (1.2). However, by Lemma 2.5, in the case considered problem (2.10), (1.2) has no solution. The
contradiction obtained proves the theorem. �

Proof of Theorem 1.5. Let γ be an arbitrary positive constant, and fγ be a function given by equality (2.28). Then in view of
inequalities (1.24) and (1.5) we have

|f (t, x)| ≤ p(t)|x| + qγ (t, |x|) for a ≤ t ≤ b, |x| ≥ 1,

where

qγ (t, x) = |f (t, γ )| + q(t, x) for a ≤ t ≤ b, x ≥ 1,

and qγ ∈ Za,b. By Theorem 1.1, problem (2.29), (1.2) is solvable. However, by Lemma 2.7, solvability of the aforementioned
problem for an arbitrary γ > 0 guarantees the existence of at least one positive solution of problem (1.1), (1.2). �

Proof of Theorem 1.4. From (1.20) it is clear that f (t, 0) ≡ 0. Consequently, problem (1.1), (1.2) has the trivial solution
since ci = 0 (i = 1, 2).

Setf (t, x) = −f (t, −x) for a ≤ t ≤ b, x ≥ 0; (3.3)
q∗(t, x) = q(t)ω(x) for a ≤ t ≤ b, x ≥ 1,
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and along with (1.1) consider the differential equation

u′′
=f (t, u). (3.4)

According to (1.20) the function f along with (1.24) satisfies the inequality

σ f (t, x) ≤ q(t)x + q∗(t, x) for a ≤ t ≤ b, x ≥ 1,

and the functionf satisfies the inequalities

σf (t, x) ≥ q0(t)ω0(x) for a ≤ t ≤ b, x > 0;
σf (t, x) ≤ p(t)x + q∗(t, x) for a ≤ t ≤ b, x ≥ 1.

Besides, in view of (1.22), it is clear that q∗
∈ Za,b.

By Theorem 1.5, problem (1.1), (1.2), as well as problem (3.4), (1.2), has at least one positive solution.
Let u0 be an arbitrary positive solution of problem (3.4), (1.2) and

u(t) = −u0(t) for a ≤ t ≤ b.

Then in view of condition (3.3) and the equalities ci = 0 (i = 1, 2), u is a solution of problem (1.1), (1.2). Consequently,
problem (1.1), (1.2) along with the trivial and positive solutions also has a negative solution. �

Proof of Theorem 1.6. Assume the contrary, that problem (1.1), (1.2) has a positive solution u. Set δ = min{u(t) : a ≤ t ≤

b}. Then in view of (1.26) the function u is a solution of the differential inequality

σu′′(t) ≥ p(t)|u(t)| + q1(t), (3.5)

where q1(t) = ω(δ)q(t) ≥ 0 for a ≤ t ≤ b and c1 + |c2| + q1(t) ≢ 0. However, by Lemma 2.5, problem (3.5), (1.2) has no
solution. The contradiction obtained proves the theorem. �
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