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In an open interval  ,a b , we consider the nonlinear differential equation

   2 ,mu f t u (1)

with the boundary conditions of one of the following two types:

         1 10, 0 1, ,i iu a u b i m       (21)

and

         1 10, 0 1, ,i m iu a u b i m        . (22)

(21) is called the conjugate boundary conditions, or the Dirichlet conditions, and (22) is called the focal boundary
conditions, or the Nicoletti conditions. The problems of the type (1), (21) and (1), (22) take central place in the theory of
boundary value problems for ordinary differential equations and are the subject of numerous investigations (see [1-11]
and the references therein). In the present paper we give new sufficient conditions for the existence of positive solutions
of the above-mentioned problems.

Throughout the paper, it is assumed that m is an arbitrary natural number, and    : , 0,f a b R    is a continu-

ous function.

A function    : , 0,u a b    is said to be a positive solution of equation (1), if it is 2m-times continuously differen-

tiable and at every point of the interval  ,a b  satisfies this equation.
A positive solution of equation (1) is said to be a positive solution of problem (1), (21) (of problem (1), (22)), if it

satisfies the boundary conditions (21) (the boundary conditions (22)), where by    ju a   and    ju b   there are
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understood, respectively, the right and the left limits of the function  ju  at the points a and b.
We are especially interested in the case where equation (1) has singularities with respect to the time and phase

variables. Following [1], [5] we will say that equation (1) with respect to the time variable has strong singularities (strong
singularity) at the points a and b (at the point a), if

           
0 0

0

2 1 2 1 2 1

0

, , ,

, 0.

t tb
m m m

a t a
t a f t x dt t a f t x dt t a f t x dx

for a t b x

  
 
        
 
 

  

  

If, however, there is a set  0 ,I a b  such that

   0
0

limsup , for arbitrary t I and 0k

x
x f t x k


    ,

then we will say that equation (1) has strong singularity with respect to the phase variable.
Unlike the previous well-known results (see [2, 3, 8, 10, 11]), the theorems below on the existence and uniqueness of

a positive solution of problem (1), (21) (of problem (1), (22)) cover the case where equation (1), along with strong
singularities with respect to the time variable at the points a and b (at the point a), has strong singularity with respect to
the phase variable as well.

By   2 , ,m mC a b  we denote the space of 2m-times continuously differentiable functions, satisfying the condition

   
2b

m

a
u t dt   .

First we consider problem (1), (21). The following theorem is valid.

Theorem 1 (A principle of a priori boundedness). Let in the domain    , 0,a b    the inequality

     1 ,m f t x h t x  (3)

be fulfilled, where  0,1  is a constant,  and    : , 0,h a b    is a continuous function, not identically equal to

zero. Let, moreover, there exist a positive number r such that for any continuous function    : , 0,1a b   everyy
positive solution of the differential equation

            , 1 1mnu t f t u t h t u     , (4)

belonging to the space   2 , ,m mC a b  and satisfying the boundary conditions (21), admits the estimate

   
2b

m

a
u t dt r . (5)

Then problem (1), (21)  in the space   2 , ,m mC a b  has at least one positive solution.

On the basis of this theorem, the following theorem on the solvability and unique solvability of problem (1), (21) is
proved.

Theorem 2. Let in the domain    , 0,a b    the inequality

     
   

   002 2
1 11 , ,m

m mh t x f t x x h t x q t x
t a b t


 
      
   
 (6)
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be satisfied, where  0,1 ,  0 0,1   and 0  are constants, h and    0 : , 0,h a b    are continuous functions,

and      : , 0, 0,q a b      is a continuous and nonincreasing in the second argument function. If, moreover,,

  2
4 2 1 !!m m     , (7)

        0
11
2

00,
b

m

a

h t t a b t h t dt
    

        ,

and

       
1
2 , 0

b
m m m

a
t a b t q t t a b t x dt for x

         , (8)

then problem (1), (21) in the space   2 , ,m mC a b  has at least one positive solution.

Theorem 3. If

     
   

 2 2
1 11 , , , 0m

m mf t x f t y x y for a t b x y
t a b t

 
               
 ,

where   is a nonnegative constant, satisfying inequality (7), then problem (1), (22) in the space   2 , ,m mC a b  has at

most one  positive solution.
Let us now consider problem (1), (22). Assume

    0 0 0; , max , : for , 0f t x x f t y x y x a t b x x        .

The following theorems are valid.
Theorem 4. (A principle of a priori boundedness).  Let

   
0

0 0 0 0; , , , 0
b

t
f t x x dt for any t a b x and x x      ,

and let in the domain    , 0,a b    inequality (3) be fulfilled, where  0,1  is a constant and    : , 0,h a b  

is a continuous function, not identically equal to zero. Let, moreover, there exist a positive number r such that every

positive solution of problem (4), (22), belonging to the space   2 , ,m mC a b , admits estimate (5). Then problem (1), (22)

in the space   2 , ,m mC a b  has at least one positive solution.

Theorem 5. Let in the domain    , 0,a b    the inequality

     
 

   0021 , ,m
mh t x f t x x h t x q t x

t a
     





be fulfilled, where  0,1 ,  0 0,1  , 0  are constants, h and    0 : , 0,h a b    are continuous functions, and

     : , 0, 0,q a b      is a continuous and nonincreasing in the second argument function. If, moreover,,

      0
11
2 00,

b
m

a
h t t a h t dt    

     ,

    1
2 , 0

b
m m

a
t a q t t a x dt for x     , (9)
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and inequality (7) is fulfilled, then problem (1), (22) in the space   2 , ,m mC a b  has at least one positive solution.

Theorem 6. If

     
 

 21 , , , 0,m
mf t x f t y x y for a t b x y

t a
         





where   is a nonnnegative constant, satisfying inequality (7), then problem (1), (22) in the space    2 , ,m mC a b  has at

most one positive solution.
As examples, let us consider the differential equations

         2
1 21 mmu p t u p t u p t u       , (10)

       2 1 ,mmu p t u q t u     , (11)

where  0,1  and 0   are constants,    1 2, , : , 0,p p p a b    are continuous functions, and

     : , 0, 0,q a b      is the continuous and nonincreasing in the second argument function.
From Theorems 2 and 3 follow the following corollaries.
Corollary 1.  Let

 
   2 2

1 1
m mp t for a t b

t a b t

 
    
   
 , (12)

where   is the nonnegative constant satisfying inequality (7). If, moreover,,

        

       

11
21 1

11
2 2

0, ,

,

b m

a
b m

a

p t t a b t p t dt

t a b t p t dt





   
 

 

      

     





then the problem (10), (21) in the space   2 , ,m mC a b  has at least one positive solution.

Corollary 2. Let in the domain    , 0,a b    the inequality

 0( , )q t x q t (13)

be fulfilled, where    0 : , 0,q a b    is the continuous function, not identically equal to zero. If, moreover, the

conditions (7), (8) and (12) are fulfilled, then the problem (11), (21) in the space   2 , ,m mC a b  has a unique positive

solution.
From Theorems 5 and 6 follow the following corollaries.
Corollary 3.  Let

 
 2mp t for a t b
t a

  


 , (14)

where   is a nonnnegative constant satisfying inequality (7). If, moreover,,
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      

    

11
21 1

11
2 2

0, ,

,

b
m

a
b

m

a

p t t a p t dt

t a p t dt





    

 

   

  





then the problem (10), (22) in the space   2 , ,m mC a b  has at least one positive solution.

Corollary 4.  Let in the domain    , 0,a b    inequality (13) be fulfilled, where    0 : , 0,q a b    is a continu-
ous function, not identically equal to zero. If, moreover, the conditions (7), (9) and (14) are fulfilled, then the problem

(11), (22) in the space   2 , ,m mC a b  has a unique positive solution.

Remark. Let

 
   

     

 
 

   

2 2

2

1 1 , , exp

, , exp

m m

m m

m

m

t a b t
p t q t x

xt a b t

t a
p t q t x

xt a

         
       
     
      





where   is a positive number satisfying inequality (7). Then all conditions of Corollary 2 (of Corollary 4) are fulfilled. On
the other hand, in the case under consideration, equation (11) along with strong singularities with respect to the time
variable at the points a and b (at the point a) has strong singularity with respect to the phase variable as well.
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