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1. STATEMENT OF THE MAIN RESULTS

Let −∞ < a < b < +∞, let

I ⊂ ]a, b[, mes I = b − a,

and let f : I × ]0,+∞[ → R− be a function measurable in the first argument and continuous in
the second argument. Consider the differential equation

u′′ = f(t, u) (1.1)

with boundary conditions of one of the following two forms:

u(a) = ϕ1(u), u(b) = ϕ2(u), (1.2)
u(a) = ϕ1(u), u′(b) = ϕ2(u), (1.3)

where the ϕi : C([a, b]; R+) → R+ (i = 1, 2) are continuous functionals bounded on each bounded
subset of C([a, b]; R+).

Such problems are of interest from both the purely theoretical and the practical viewpoint.
This is especially true for the case in which Eq. (1.1) is singular with respect to the phase variable,
that is, the case in which

lim
x→0

f(t, x) = −∞ for t ∈ I0, (1.4)

where I0 ⊂ I is a subset of positive measure. For example, the problem

u′′ = − t2

32u2
, u(0) = u(1) = 0

arises in the membrane and plate theory (see [1–3]), and the problem

u′′ = −1 − t

u
, u(0) = u(1) = 0

arises in the boundary layer theory for a viscous incompressible fluid (see [4–6]).
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Mainly, two-point boundary value problems were considered for Eq. (1.1) in the above-mentioned
singular case (e.g., see [7–20] and the bibliography therein). Nonlinear nonlocal problems remain
so far unstudied. The present paper is intended to fill the gap.

The theorems on the solvability and unique solvability of problem (1.1), (1.2) [respectively,
problem (1.1), (1.3)] proved in the present paper cover the case in which the function f satisfies
condition (1.4) and has nonintegrable singularities (respectively, a nonintegrable singularity) with
respect to the first argument at the points a and b (respectively, at the point a).

We use the following notation:

f ∗(t, x, y) = max{|f(t, s)| : x ≤ s ≤ y} for t ∈ I, 0 < x ≤ y < +∞,

R+ = [0,+∞[, R− = ] −∞, 0], C([a, b]; R) is the Banach space of continuous functions u : [a, b] → R

with norm ‖u‖ = max{|u(t)| : a ≤ t ≤ b}, C([a, b]; R+) is the set of all nonnegative functions
in C([a, b]; R), and ˜C1

loc(]a, b[; R) is the space of continuously differentiable functions u : ]a, b[ → R

whose first derivative is absolutely continuous on each closed interval contained in ]a, b[; if
u ∈ C([a, b]; R), then

‖u‖[a,t] = max{|u(s)| : a ≤ s ≤ t} if a < t ≤ b,

μ(u; t1, t2) = min{u(t) : t1 ≤ t ≤ t2} if a ≤ t1 < t2 ≤ b.

We say that a function g : I × ]0,+∞[ → R+ belongs to the set M+ if the function g( · , x) :
I → R+ is measurable for each x ∈ ]0,+∞[ and the function g(t, · ) : ]0,+∞[ → R+ is continuous
and nonincreasing for each t ∈ I.

We say that a function g : I × ]0,+∞[ → R− belongs to the set M− if −g ∈ M+.
A function u ∈ C([a, b]; R) ∩ ˜Cloc(]a, b[; R) is called a positive solution of the differential equa-

tion (1.1) if it is positive on the open interval ]a, b[ and satisfies the equation almost everywhere
on ]a, b[.

A positive solution u of the differential equation (1.1) is called a positive solution of prob-
lem (1.1), (1.2) [respectively, a positive solution of problem (1.1), (1.3)] if relations (1.2) are satisfied
[respectively, there exists a finite limit u′(b) = limt→b u′(t) and relation (1.3) holds].

We assume that the function f satisfies the inequality

f(t, x) ≤ −p0(t, x) (1.5)

on I × ]0,+∞[, where p0 ∈ M+. In addition, we study problem (1.1), (1.2) in the case where

0 <

b
∫

a

(s−a)(b−s)p0(s, x) ds ≤
b

∫

a

(s−a)(b−s)f ∗(s, x, y) ds < +∞ for 0 < x ≤ y < +∞ (1.6)

and problem (1.1), (1.3) in the case where

0 <

b
∫

a

(s − a)p0(s, x) ds ≤
b

∫

0

(s − a)f ∗(s, x, y) ds < +∞ for 0 < x ≤ y < +∞. (1.7)

Along with problems (1.1), (1.2) and (1.1), (1.3), we need to consider the differential equation

u′′ = (λ − 1)p0(t, u) + λf(t, u) (1.8)

depending on the parameter λ ∈ [0, 1] with boundary conditions of one of the following two forms:

u(a) = λϕ1(u) + δ, u(b) = λϕ2(u) + δ, (1.9)
u(a) = λϕ1(u) + δ, u′(b) = λϕ2(u). (1.10)
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1020 KIGURADZE

Proposition 1.1 (the a priori boundedness principle). Let a function f satisfy inequality (1.5)
on the set I × ]0,+∞[, where p0 ∈ M+. In addition, suppose that condition (1.6) [respectively,
condition (1.7)] is satisfied and there exist numbers δ0 > 0 and � > δ0 such that, for arbitrary
λ ∈ [0, 1] and δ ∈ ]0, δ0], each solution of problem (1.8), (1.9) [respectively, problem (1.8), (1.10)]
satisfies the estimate

‖u‖ ≤ �. (1.11)
Then problem (1.1), (1.2) [respectively, problem (1.1), (1.3)] has at least one solution.

We use this proposition and a priori estimates for solutions of singular differential inequalities
of second order in nonlocal boundary conditions [21] to obtain in a sense optimal criteria for the
solvability and unique solvability of problems (1.1), (1.2) and (1.1), (1.3).

First, let us present the results for problem (1.1), (1.2).

Theorem 1.1. Let the inequalities

−(1 + x)p1(t, x) ≤ f(t, x) ≤ −p0(t, x), (1.12)
ϕi(u) ≤ �‖u‖ + r (i = 1, 2) (1.13)

hold on the sets I × ]0,+∞[ and C([a, b]; R+), respectively , where pi ∈ M+ (i = 0, 1), � ∈ [0, 1[, and
r ≥ 0. If , in addition,

0 <

b
∫

a

(s − a)(b − s)pi(s, x) ds < +∞ for x > 0 (i = 0, 1), (1.14)

lim
x→+∞

b
∫

a

(s − a)(b − s)p1(s, x) ds < (1 − �)(b − a), (1.15)

then problem (1.1), (1.2) has at least one positive solution.

Theorem 1.2. Let the conditions

−p0(t, x) − p(t)(1 + x) ≤ f(t, x) ≤ −p0(t, x), (1.16)
(f(t, x) − f(t, y)) sgn(x − y) ≥ −p(t)|x − y| (1.17)

be satisfied on the set I × ]0,+∞[, and let the conditions

|ϕi(u) − ϕi(v)| ≤ �‖u − v‖ (i = 1, 2) (1.18)

be satisfied on the set C([a, b]; R+), where p0 ∈ M+, p : I → R+ is a measurable function, and
� ∈ [0, 1[. If , in addition,

0 <

b
∫

a

(s − a)(b − s)p0(s, x) ds < +∞ for x > 0,

b
∫

a

(s − a)(b − s)p(s) ds < (1 − �)(b − a),

(1.19)

then problem (1.1), (1.2) has exactly one positive solution.

Corollary 1.1. Let

f ∈ M−, 0 <

b
∫

a

(s − a)(b − s)|f(s, x)| ds < +∞ for x > 0, (1.20)

and let conditions (1.13) [respectively , (1.18)] be satisfied on the set C([a, b]; R+), where � ∈ [0, 1[
and r ≥ 0. Then problem (1.1), (1.2) has at least one (respectively , exactly one) positive solution.
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In this corollary, the inequality
� < 1 (1.21)

is sharp. Moreover, the following assertion holds.

Corollary 1.2. Let the function f satisfy condition (1.20), and let the functionals ϕi (i = 1, 2)
satisfy the inequalities

�μ(u; ai, bi) ≤ ϕi(u) ≤ �‖u‖ + r (i = 1, 2) (1.22)

on the set C([a, b]; R+), where a < ai < bi < b (i = 1, 2) and � and r are nonnegative constants.
Then problem (1.1), (1.2) has at least one positive solution if and only if inequality (1.21) is valid.

Remark 1.1. For example, the functionals

ϕi(u) =

bi
∫

ai

ψi(u(s)) dσi(s) (i = 1, 2)

satisfy inequalities (1.22), where the ψi : R+ → R+ (i = 1, 2) are continuous functions and the
σi : [ai, bi] → R (i = 1, 2) are nondecreasing functions such that

�x ≤ ψi(x) ≤ �x + r for x ∈ R+, σ(bi) − σ(ai) = 1 (i = 1, 2).

The following two theorems and their corollaries deal with problems (1.1), (1.2) as well but for
the case in which conditions (1.13) and (1.18) are replaced by the conditions

ϕ1(u) ≤ �‖u‖ + r, ϕ2(u) ≤ ‖u‖[a,b0], (1.23)
|ϕ1(u) − ϕ1(v)| ≤ �‖u − v‖, |ϕ2(u) − ϕ2(v)| ≤ ‖u − v‖[a,b0], ϕ2(0) = 0, (1.24)

respectively, where b0 ∈ ]a, b[.

Theorem 1.3. Let inequalities (1.12) and (1.13) be satisfied on the sets I × ]0,+∞[ and
C([a, b]; R+), respectively , where the pi ∈ M+ (i = 0, 1) are functions satisfying condition (1.14),
b0 ∈ ]a, b[, � ∈ [0, 1[, and r ≥ 0. If , in addition,

lim
x→+∞

b
∫

a

(s − a)(b − s)p1(s, x) ds < (1 − �)(b − b0), (1.25)

then problem (1.1), (1.2) has at least one positive solution.

Theorem 1.4. Suppose that the function f satisfies condition (1.20). If , in addition, condi-
tions (1.23) [respectively , (1.24)], where � ∈ [0, 1[ and r ≥ 0, are satisfied on the set C([a, b]; R+),
then problem (1.1), (1.2) has at least one (respectively , exactly one) positive solution.

Corollary 1.3. Let the function f satisfy condition (1.20), and let the functionals ϕi (i = 1, 2)
satisfy the inequalities

�μ(u; a1, b1) ≤ ϕ1(u) ≤ �‖u‖ + r, μ(u; a2, b2) ≤ ϕ2(u) ≤ ‖u‖[a,b0] (1.26)

on the set C([a, b]; R+), where a < a1 < b1 < b, a < a2 < b2 ≤ b0, and � and r are nonnegative
constants. Then inequality (1.21) is a necessary and sufficient condition for the existence of at least
one positive solution of problem (1.1), (1.2).
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Remark 1.2. Inequalities (1.26) hold, for example, for the functionals

ϕ1(u) =

b1
∫

a1

ψ(u(s)) dσ1(s), ϕ2(u) =

b2
∫

a2

u(s) dσ2(s),

where ψ : R+ → R+ (i = 1, 2) is a continuous function and the σi : [ai, bi] → R+ (i = 1, 2) are
nondecreasing functions such that

�x ≤ ψ(x) ≤ �x + r for x ∈ R+, σi(bi) − σi(ai) = 1 (i = 1, 2).

Now let us proceed to the theorems on the solvability and unique solvability for prob-
lem (1.1), (1.3).

Theorem 1.5. Let inequality (1.12) be satisfied on the set I × ]0,+∞[, and let the inequality

ϕ1(u) + (b − a)ϕ2(u) ≤ �‖u‖ + r, (1.27)

where pi ∈ M+ (i = 0, 1), � = [0, 1[, and r ≥ 0, hold on the set C([a, b]; R+). If , in addition,

0 <

b
∫

a

(s − a)pi(s, x) ds < +∞ for x > 0 (i = 0, 1), (1.28)

lim
x→+∞

b
∫

a

(s − a)p1(s, x) ds < 1 − �, (1.29)

then problem (1.1), (1.3) has at least one positive solution.

Theorem 1.6. Let conditions (1.16) and (1.17) be satisfied on the set I × ]0,+∞[, and let the
condition

|ϕ1(u) − ϕ1(v)| + (b − a)|ϕ2(u) − ϕ2(v)| ≤ �‖u − v‖ (i = 1, 2), (1.30)

where p0 ∈ M+, p : I → R+ is a measurable function, and � = [0, 1[, hold on the set C([a, b]; R+).
If , in addition,

0 <

b
∫

a

(s − a)p0(s, x) ds < +∞ for x > 0,

b
∫

a

(s − a)p(s) ds < 1 − �,

then problem (1.1), (1.3) has exactly one positive solution.

Corollary 1.4. Let

f ∈ M−, 0 <

b
∫

a

(s − a)|f(s, x)| ds < +∞, (1.31)

and let condition (1.27) [respectively , condition (1.30)], where � ∈ [0, 1[ and r ≥ 0, be satisfied on
the set C([a, b]; R+). Then problem (1.1), (1.3) has at least one (respectively , exactly one) positive
solution.

Corollary 1.5. Let the function f satisfy condition (1.31), and let the functionals ϕi (i = 1, 2)
satisfy the inequalities

�u(b) ≤ ϕ1(u) + (b − a)ϕ2(u) ≤ �u(b) + r

on the set C([a, b]; R+), where � and r are nonnegative constants. Then inequality (1.21) is a neces-
sary and sufficient condition for the existence of at least one positive solution of problem (1.1), (1.3).
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In conclusion of this section, by way of example, consider the differential equation

u′′ = − p(t)
h(u)

(1.32)

with boundary conditions of one of the following three kinds:

u(a) =
m

∑

i=1

�1ku(tk), u(b) =
m

∑

i=1

�2ku(tk), (1.33)

u(a) =
m

∑

k=1

�1ku(tk), u′(b) =
m

∑

k=1

�2ku(tk), (1.34)

u(a) = �1u(b), u′(b) = �2u(b), (1.35)

where p : I → R+ is a measurable function that is nonzero on a set of positive measure, h :
]0,+∞[ → ]0,+∞[ is a continuous function, a < t1 < · · · < tm < b, and �ik and �i (i = 1, 2;
k = 1, . . . ,m) are nonnegative numbers.

Note that singular boundary value problems arising in applications and considered in [1–6, 20]
are special cases of problem (1.32), (1.33).

Theorems 1.3–1.6 imply the following assertions.

Corollary 1.6. Let the function h satisfy the conditions

lim sup
x→0

h(x) < +∞, lim inf
x→+∞

h(x) > 0 (1.36)

(respectively , let h be a nondecreasing function), and let

m
∑

k=1

�ik < 1 (i = 1, 2). (1.37)

Then the condition
b

∫

a

(s − a)(b − s)p(s) ds < +∞ (1.38)

is necessary and sufficient for the existence of at least one (respectively , a unique) positive solution
of problem (1.32), (1.33).

Corollary 1.7. Let the function h satisfy condition (1.36) (respectively , be nondecreasing), and
suppose that

either
m

∑

k=1

�1k =
m

∑

k=1

�2k or
m

∑

k=1

�2k = 1.

Then the conditions
m

∑

k=1

�1k < 1,

b
∫

a

(s − a)(b − s)p(s) ds < +∞

are necessary and sufficient for the existence of at least one (respectively , a unique) positive solution
of problem (1.32), (1.33).

Corollary 1.8. Let the function h satisfy condition (1.36) (respectively , be nondecreasing), and
let

m
∑

k=1

(�1k + (b − a)�2k) < 1.
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Then there exists at least one (respectively , a unique) positive solution of problem (1.32), (1.34) if
and only if

b
∫

a

(s − a)p(s) ds < +∞.

Corollary 1.9. If the function h satisfies conditions (1.36) (respectively , is nondecreasing),
then the conditions

�1 + (b − a)�2 < 1,

b
∫

a

(s − a)p(s) ds < +∞

are necessary and sufficient for the existence of at least one (respectively , a unique) solution of
problem (1.32), (1.35).

2. AUXILIARY ASSERTIONS

2.1. Lemmas on A Priori Estimates

Consider the differential inequalities

u′′(t) ≤ −p0(t, u(t)), (2.1)
−(1 + u(t))p1(t, u(t)) ≤ u′′(t) ≤ −p0(t, u(t)), (2.2)

where pi ∈ M+ (i = 0, 1).
A function u ∈ C([a, b]; R)∩ ˜C1

loc(]a, b[; R) is called a positive solution of the differential inequal-
ity (2.1) [respectively, the differential inequality (2.2)] if it is positive on the open interval ]a, b[ and
satisfies this differential inequality almost everywhere on ]a, b[.

Lemma 2.1. Suppose that

p0 ∈ M+, mes{t ∈ I : p0(t, x) > 0} > 0 for x > 0, (2.3)

and the differential inequality (2.1) has a positive solution u. Then

0 <

b
∫

a

(s − a)(b − s)p0(s, x) ds < +∞ for x ≥ ‖u‖ (2.4)

and

u(t) ≥ u0 + (t − a)(b − t)(b − a)−3

b
∫

a

(s − a)(b − s)p0(s, ‖u‖) ds > u0 for a < t < b, (2.5)

where u0 = min{u(a), u(b)}.

Proof. Let ak ∈ ]a, b[ and bk ∈ ]ak, b[ (k = 1, 2, . . .) be some sequences satisfying the conditions

lim
k→+∞

ak = a, lim
k→+∞

bk = b.

DIFFERENTIAL EQUATIONS Vol. 50 No. 8 2014
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By Lemma 2.2 in [21] and inequality (2.1), the function u can be estimated as

u(t) ≥ u0k + (t − ak)(bk − t)(bk − ak)−3

bk
∫

ak

(s − ak)(bk − s)|u′′(s)| ds

≥ u0k + (t − ak)(bk − t)(bk − ak)−3

bk
∫

ak

(s − ak)(bk − s)p0(s, u(s)) ds

on the interval [ak, bk] for each k, where u0k = min{u(ak), u(bk)}. If we pass to the limit as
k → +∞ in this inequality and use condition (2.3), then inequalities (2.4) and (2.5) become
obvious. The proof of the lemma is complete.

The following assertion can be proved in a similar way.

Lemma 2.2. Let condition (2.3) be satisfied , and let the differential inequality (2.1) have a pos-
itive solution u. If , in addition, there exists a finite limit

u′(b) = lim
t→b

u′(t),

then

0 <

b
∫

a

(b − s)p0(s, x) ds < +∞ for x ≥ ‖u‖

and

u(t) ≥ u(a) + (t − a)u′(b) +
t − a

b − a

b
∫

a

(s − a)p0(s, ‖u‖) ds > u(a) + (t − a)u′(b) for a < t ≤ b.

Lemmas 2.3–2.5 below deal with a priori estimates for positive solutions of the differential
inequality (2.2) with boundary conditions of one of the following three forms:

u(a) ≤ �‖u‖ + r0, u(b) ≤ �‖u‖ + r0, (2.6)
u(a) ≤ �‖u‖ + r0, u(b) ≤ �‖u‖[a,b0], (2.7)

u(a) + (b − a)u′(b) ≤ �‖u‖, u′(b) ≥ 0, (2.8)

where � ≥ 0, r0 ≥ 0, and b0 ∈ ]a, b[. The proof of these lemmas can be found in [21].

Lemma 2.3. Let pi ∈ M+ (i = 0, 1), let � < 1, and let conditions (1.14) and (1.15) be satisfied.
Then there exists a positive constant � and continuous functions εi : [a, b] → [0, �] (i = 0, 1, 2) such
that

ε1(a) = 0, ε2(b) = 0, ε0(t) > 0 for a < t < b, (2.9)

and an arbitrary positive solution u of problem (2.2), (2.6) satisfies the estimates

ε0(t) ≤ u(t) ≤ � for a ≤ t ≤ b, (2.10)
|u(t) − u(a)| ≤ ε1(t), |u(t) − u(b)| ≤ ε2(t) for a ≤ t ≤ b. (2.11)

Lemma 2.4. Let pi ∈ M+ (i = 0, 1), let � < 1, and let conditions (1.14) and (1.25) be satisfied.
Then there exists a positive constant � and continuous functions εi : [a, b] → [0, �] (i = 0, 1, 2)
satisfying conditions (2.9) such that an arbitrary positive solution u of problem (2.2), (2.7) satisfies
the estimates (2.10) and (2.11).

DIFFERENTIAL EQUATIONS Vol. 50 No. 8 2014



1026 KIGURADZE

Lemma 2.5. Let pi ∈ M+ (i = 0, 1), let � < 1, and let conditions (1.28) and (1.29) be satisfied.
Then there exists a positive constant � and continuous functions εi : [a, b] → [0, �] (i = 0, 1) and
�1 : ]a, b] → ]0,+∞[ such that

ε1(a) = 0, ε0(t) > 0 for a < t ≤ b, (2.12)

and an arbitrary positive solution u of problem (2.2), (2.8) satisfies the estimates

ε0(t) ≤ u(t) ≤ �, 0 ≤ u′(t) ≤ �1(t) for a < t ≤ b, (2.13)
0 ≤ u(t) − u(a) ≤ ε1(t) for a ≤ t ≤ b. (2.14)

2.2. Lemmas on the Solvability of Nonlocal Problems for Equation (1.1)

Consider the differential equation (1.1) with boundary conditions of one of the following two
forms:

u(a) = ϕ1(u) + δ, u(b) = ϕ2(u) + δ, (2.15)
u(a) = ϕ1(u) + δ, u(b) = ϕ2(u), (2.16)

where δ is some positive constant.
Just as above, we assume that f : I×]0,+∞[ → R is a function measurable in the first argument

and continuous in the second argument and the ϕi : C([a, b]; R+) → R+ (i = 1, 2) are continuous
functionals bounded on each bounded subset of C([a, b]; R+).

Lemma 2.6. Let the function f satisfy inequality (1.5), where p0 ∈ M+, on the set I × ]0,+∞[.
In addition, suppose that condition (1.6) is satisfied and there exist numbers δ0 > 0 and � > δ0

such that , for arbitrary λ ∈ [0, 1] and δ ∈ ]0, δ0], each solution of problem (1.8), (1.9) satisfies
the estimate (1.11). Then there exist continuous functions εi : [a, b] → R+ (i = 0, 1, 2) satisfying
conditions (2.9) such that , for each δ ∈ ]0, δ0], problem (1.1), (2.15) has at least one positive solution
satisfying the estimates (2.10) and (2.11).

Proof. First, let us show that, for an arbitrarily fixed δ ∈ ]0, δ0], problem (1.1), (2.15) has
at least one positive solution.

Let

χ(x) =

{ 1 for 0 ≤ x ≤ �,
1 − x/(2�) for � < x < 2�,
0 for x ≥ 2�.

(2.17)

For an arbitrary continuous function u : [a, b] → ]0,+∞[, set

˜f(u)(t) = (χ(‖u‖) − 1)p0(t, u(t)) + χ(‖u‖)f(t, u(t)) for t ∈ I, (2.18)
ϕ̃i(u) = χ(‖u‖)ϕi(u) (i = 1, 2) (2.19)

and consider the auxiliary problem

u′′(t) = ˜f(u)(t), (2.20)
u(a) = ϕ̃1(u) + δ, u(b) = ϕ̃2(u) + δ. (2.21)

By notation (2.17) and (2.18) and condition (1.5), each positive solution of the functional-
differential equation (2.20) is simultaneously a solution of the differential inequality (2.1). This,
together with Lemma 2.1 and condition (2.3), implies that if u is a positive solution of prob-
lem (2.20), (2.21), then

u(t) > δ for a < t < b.
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On the other hand, by conditions (1.5) and (1.6), for an arbitrary continuous function u : [a, b] →
[δ,+∞[ we have

0 ≤ − ˜f(u)(t) ≤ f ∗(t; δ, 2�) for t ∈ I, (2.22)
b

∫

a

(s − a)(b − s)f ∗(s; δ, 2�) ds < +∞. (2.23)

It follows from the preceding that the set of positive solutions of problem (2.20), (2.21) coincides
with the set of positive solutions of the operator equation

u(t) = F (u)(t), (2.24)

where

F (u)(t) = δ +
b − t

b − a
ϕ̃1(u) +

t − a

b − a
ϕ̃2(u) +

b
∫

a

g0(t, s) ˜f(u)(s) ds, (2.25)

g0(t, s) =
1

a − b

{

(t − a)(b − s) for t ≤ s,
(s − a)(b − t) for t > s.

(2.26)

Let

r0 = δ0 + sup{ϕ1(u) + ϕ2(u) : u ∈ C([a, b]; R+), ‖u‖ ≤ 2�}, (2.27)

�0 = r0 + (b − a)−1

b
∫

a

(s − a)(b − s)f ∗(s; δ, 2�) ds,

�1(t) =
r0

b − a
+

t
∫

a

s − a

b − a
f ∗(s; δ, 2�) ds +

b
∫

t

b − s

b − a
f ∗(s; δ, 2�) ds for a < t < b.

By condition (2.23), it is obvious that �1 : ]a, b[ → R+ is a continuous function such that

b
∫

a

�1(s) ds < +∞. (2.28)

By D we denote the set of functions u ∈ C([a, b]; R) satisfying the inequality

δ ≤ u(t) ≤ �0 for a ≤ t ≤ b.

Let u ∈ D and v(t) = F (u)(t). Then v is a continuously differentiable function on the open
interval ]a, b[. On the other hand, by virtue of inequality (2.22) and notation (2.19) and (2.26),
from relation (2.25), we obtain

δ ≤ v(t) ≤ δ0 + ϕ̃1(u) + ϕ̃2(u) + (b − a)−1

b
∫

a

(s − a)(b − s)f ∗(s; δ, 2�) ds ≤ �0 for a ≤ t ≤ b,

|v′(t)| ≤ �1(t) for a < t < b.

These estimates, together with condition (2.28) and the Arzelá–Ascoli lemma, imply that the
operator F maps the set D into a compact subset of itself. By the Schauder theorem, the operator
equation (2.24) and hence problem (2.20), (2.21) have a solution u ∈ D.

DIFFERENTIAL EQUATIONS Vol. 50 No. 8 2014



1028 KIGURADZE

By virtue of relations (2.18) and (2.19), the function u is a positive solution of problem (1.8),
(1.9), where λ = χ(‖u‖). By one of the assumptions of the lemma, the function u admits the
estimate (1.11). This estimate, together with relation (2.17), implies that λ = 1. Consequently,
u is a solution of problem (1.1), (2.15).

Let Sδ be the set of all solutions of problem (1.1), (2.15), and let S =
⋃

0≤δ≤δ0
Sδ. Obviously,

each function u ∈ S satisfies the estimate (1.11). If, in addition, we use condition (1.5), then we
find that u is a positive solution of problem (2.2), (2.6), where

p1(t, x) =
1

1 + x

{

f ∗(t;x, �) for 0 < x < �,
f ∗(t; �, �) for x ≥ �,

pi ∈ M+ (i = 0, 1), � = 0, and r0 is the number given by relation (2.27). In addition, relations (1.14)
and (1.15) follow from conditions (1.16), because

lim
x→+∞

b
∫

a

(s − a)(b − s)p1(s, x) = 0.

By Lemma 2.3, there exists a positive constant � and continuous functions εi : [a, b] → [0, �]
(i = 0, 1, 2) such that

ε1(a) = 0, ε2(b) = 0, ε0(t) > 0 for a < t < b

and an arbitrary positive solution of problem (2.2), (2.6) satisfies the estimates

ε0(t) ≤ u(t) ≤ � for a ≤ t ≤ b,

|u(t) − u(a)| ≤ ε1(t), |u(t) − u(b)| ≤ ε2(t) for a ≤ t ≤ b.

Now if we set
εi(t) = min{�, εi(t)} for a ≤ t ≤ b,

then we find that each function u ∈ S satisfies the estimates (2.10) and (2.11), where the
εi : [a, b] → � (i = 1, 2) are continuous functions satisfying conditions (2.9). The proof of the lemma
is complete.

Lemma 2.7. Let the function f satisfy inequality (1.5), where p0 ∈ M+, on the set I × ]0,+∞[.
In addition, suppose that condition (1.7) is satisfied and there exist numbers δ0 > 0 and � > δ0

such that , for arbitrary λ ∈ [0, 1] and δ ∈ ]0, δ0], each solution u of problem (1.8), (1.10) satisfies
the estimate (2.11). Then there exist continuous functions εi : [a, b] → R+ (i = 0, 1) satisfying
conditions (2.12) and a continuous function �1 : ]a, b] → ]0,+∞[ such that , for each δ ∈ ]0, δ0],
problem (1.1), (2.16) has at least one positive solution that admits the estimates (2.13) and (2.14).

This lemma can be proved by analogy with Lemma 2.6 with the only difference that Lemma 2.5
rather than Lemma 2.3 is used in the proof.

2.3. Lemmas on the Unique Solvability of Nonlocal Problems for Differential Inequalities

Consider the differential inequality

w′′(t) sgn(w(t)) ≥ −p(t)|w(t)| (2.29)

with nonlinear nonlocal boundary conditions of one of the following two forms:

|w(a)| ≤ �‖w‖, |w(b)| ≤ �‖w‖, (2.30)
|w(a)| + (b − a)|w′(b)| ≤ �‖w‖, (2.31)

where p : ]a, b[ → R+ is a measurable function and � ∈ [0, 1[.
We seek a solution of problem (2.29), (2.30) in the set C([a, b]; R)∩ ˜C1

loc(]a, b[; R) and a solution
of problem (2.29), (2.31) in the set of functions w ∈ C([a, b]; R) ∩ ˜C1

loc(]a, b[; R) whose derivative
has a finite limit w′(b) = limt→b w′(t).
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Lemma 2.8. If
b

∫

a

(s − a)(b − s)p(s) ds < (1 − �)(b − a), (2.32)

then problem (2.29), (2.30) has only the trivial solution.

Proof. By inequality (2.32), there exists a number �1 ∈ ]�, 1[ such that

b
∫

a

(s − a)(b − s)p(s) ds < (1 − �1)(b − a). (2.33)

Now assume that problem (2.29), (2.30) has a nontrivial solution w. Then, by virtue of inequal-
ities (2.30), we can assume without loss of generality that the conditions

w(t0) = ‖w‖, w(t) > 0 if a1 < t < b1, 0 ≤ w(a1) ≤ �1‖w‖, 0 ≤ w(b1) ≤ �1‖w‖

are satisfied for some a1 ∈ ]a, b[, b1 ∈ ]a1, b[, and t0 ∈ ]a1, b1[. On the other hand, by using these
conditions, from the differential inequality (2.29), we obtain

‖w‖ = w(t0) =
b1 − t0
b1 − a1

w(a1) +
t0 − a1

b1 − a1

w(b1) +

b1
∫

a1

g0(t0, s)w′′(s) ds

≤
(

�1 +

b1
∫

a1

|g0(t0, s)|p(s) ds

)

‖w‖, (2.34)

where

g0(t, s) =
1

a1 − b1

{

(t − a1)(b1 − s) for a1 ≤ t ≤ s ≤ b1,
(s − a1)(b1 − t) for a1 ≤ s < t ≤ b1

and
|g0(t, s)| ≤ (b − a)−1(s − a)(b − s) for a1 ≤ s, t ≤ b1.

By virtue of this estimate and condition (2.32), it follows from inequality (2.34) that

‖w‖ ≤
(

�1 + (b − a)−1

b1
∫

a1

(s − a)(b − s)p(s) ds

)

‖w‖ < ‖w‖.

The contradiction thus obtained implies that problem (2.29), (2.30) has only the trivial solution.
The proof of the lemma is complete.

Lemma 2.9. If
b

∫

a

(s − a)p(s) ds < 1 − �,

then problem (2.29), (2.31) has only the trivial solution.

Proof. Take �1 ∈ ]0, �[ such that

b
∫

a

(s − a)p(s) ds < 1 − �1. (2.35)
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Now assume that problem (2.29), (2.31) has a nontrivial solution w. Then, by virtue of inequal-
ity (2.31), we can assume without loss of generality that the conditions

w(b1) = ‖w‖, w(t) > 0 for a1 < t ≤ b1, w(a1) + (b1 − a1)w′(b1) ≤ �1‖w‖

are true for some a1 ∈ ]a, b[ and b1 ∈ ]a1, b]. If, in addition, we use inequality (2.35), then, from the
differential inequality (2.29), we obtain

‖w‖ = w(b1) = w(a1) + (b1 − a1)w′(b1)−
b1

∫

a1

(s − a1)w′′(s) ds ≤
(

�1 +

b1
∫

a1

(s − a)p(s) ds

)

‖w‖ < ‖w‖.

The contradiction thus obtained implies that problem (2.29), (2.31) has only the trivial solution.
The proof of the lemma is complete.

In conclusion, consider the differential inequality

w′′(t) sgn(w(t)) ≥ 0 (2.36)

with the boundary conditions

|w(a)| ≤ �‖w‖, |w(b)| ≤ ‖w‖[a,b0], (2.37)

where � ∈ [0, 1[ and b0 ∈ ]a, b[.

Lemma 2.10. Problem (2.36), (2.37) has only the trivial solution.

Proof. First, note that, by Lemmas 2.8 and 2.9, for an arbitrary t0 ∈ ]a, b], the differential
inequality (2.36) on the interval [a, t0] does not have a nontrivial solution such that either

|w(a)| ≤ �‖w‖, w(t0) = 0

or
|w(a)| ≤ �‖w‖, w′(t0) = 0.

Now assume that problem (2.36), (2.37) has a nontrivial solution w. Then, by the preceding,
either

w(t)w′(t) 
= 0 for a < t ≤ b, (2.38)

or there exists an a1 ∈ ]a, b[ such that

w(t) = 0 for a ≤ t ≤ a1, w(t)w′(t) > 0 for a1 < t ≤ b. (2.39)

However, both condition (2.38) and condition (2.39) contradict inequality (2.37). The contradiction
thus obtained completes the proof of the lemma.

3. PROOF OF THE MAIN RESULTS

Proof of Proposition 1.1. By Lemma 2.6, for each positive integer k, the differential equa-
tion (1.1) has a positive solution uk satisfying the conditions

uk(a) = ϕ1(uk) +
δ0

k
, uk(b) = ϕ2(uk) +

δ0

k
, (3.1)

ε0(t) ≤ uk(t) ≤ � for a ≤ t ≤ b, (3.2)
|uk(t) − uk(a)| ≤ ε0(t), |uk(t) − uk(b)| ≤ ε1(t) for a ≤ t ≤ b, (3.3)

where the εi : [a, b] → [0, �] (i = 0, 1, 2) are continuous functions independent of k and satisfying
conditions (2.9).
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Let
�0(t) = f ∗(t; ε0(t), �) for t ∈ I.

By conditions (1.6) and (2.9), the function �0 is Lebesgue integrable on each closed interval
contained in ]a, b[. Take arbitrary numbers a0 ∈ ]a, b[ and b0 ∈ ]a0, b[ and introduce the function

�1(t) =
�

b0 − a0

+

b0
∫

a0

�0(s) ds +

∣

∣

∣

∣

∣

t
∫

a0

�0(s) ds

∣

∣

∣

∣

∣

for a < t < b.

By virtue of the estimate (3.2), we have

|u′′
k(t)| = |f(t, uk(t))| ≤ �0(t) for almost all t ∈ ]a, b[, (3.4)

|u′
k(t)| ≤ �1(t) for a < t < b. (3.5)

The estimates (3.2), (3.3), and (3.5) ensure the uniform boundedness and equicontinuity of the
sequence (uk)+∞

k=1 on [a, b], and the estimates (3.4) and (3.5) guarantee the uniform boundedness
and equicontinuity of the sequence (u′

k)
+∞
k=1 on each closed interval contained in ]a, b[.

By the Arzelá–Ascoli lemma, the sequence (uk)+∞
k=1 contains a subsequence (ukm

)+∞
m=1 uniformly

converging on [a, b] and such that (u′
km

)+∞
m=1 uniformly converges on each closed interval contained

in ]a, b[. Set
u(t) = lim

m→+∞
ukm

(t) for a ≤ t ≤ b.

Then
u′(t) = lim

m→+∞
u′

km
(t) for a < t < b.

If we pass in the relation

u′
km

(t) = u′
km

(a0) +

t
∫

a0

f(s, ukm
(s)) ds for a < t < b

to the limit as m → +∞, then, by using the dominated convergence theorem and condition (3.4),
we obtain

u′(t) = u′(a0) +

t
∫

a0

f(s, u(s)) ds for a < t < b.

On the other hand, it follows from relation (3.1) and inequality (3.2) that the function u satisfies
the boundary conditions (1.2) and the conditions

ε0(t) ≤ u(t) ≤ � for a ≤ t ≤ b.

Consequently, u is a positive solution of problem (1.1), (1.2).
If we use Lemma 2.7 instead of Lemma 2.6, then, in a similar way, we can show that prob-

lem (1.1), (1.3) has at least one solution. The proof of the proposition is complete.

Proof of Theorem 1.1. First, note that, by conditions (1.12) and (1.14), the function f ∗

admits the estimate

p0(t, x) ≤ f ∗(t, x, y) ≤ p1(t, x)(1 + y) for t ∈ I, 0 < x ≤ y < +∞

and satisfies condition (1.6).
Let r0 = r + 1, let � be the positive constant introduced in Lemma 2.3, and let u be a positive

solution of problem (1.8), (1.9) for some λ ∈ [0, 1] and δ ∈ ]0, 1]. By inequalities (1.12) and (1.13),
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the function u also is a positive solution of problem (2.2), (2.6) and satisfies the estimate (1.11) by
Lemma 2.3.

Now if we use Proposition 1.1, then Theorem 1.1 becomes obvious. The proof of the theorem is
complete.

Proof of Theorem 1.2. Conditions (1.16), (1.18), and (1.19) imply conditions (1.12)–(1.15),
where r = max{ϕ1(0), ϕ2(0)} and p1(t, x) = p(t) + p0(t, x)(1 + x)−1. On the other hand, by Theo-
rem 1.1, these conditions ensure the existence of a positive solution u of problem (1.1), (1.2).

It remains to show that problem (1.1), (1.2) has no solution other than u.
Let v be an arbitrary positive solution of problem (1.1), (1.2), and let

w(t) = u(t) − v(t) for a ≤ t ≤ b. (3.6)

Then, by conditions (1.17) and (1.18), the function w is a solution of problem (2.29), (2.30). How-
ever, by Lemma 2.8 and condition (2.32), this problem has only the trivial solution. Consequently,
v(t) ≡ u(t). The proof of the theorem is complete.

Proof of Corollary 1.1. Condition (1.20) implies conditions (1.12), (1.14), (1.16), and (1.17),
where

p(t) = 0, p0(t, x) = |f(t, x)|, p1(t, x) = (1 + x)−1|f(t, x)| for t ∈ I, x > 0.

On the other hand,

pi ∈ M+ (i = 0, 1), lim
x→+∞

b
∫

a

(s − a)(b − s)p1(s, x) ds = 0.

Now if condition (1.13) [respectively, (1.18)] is satisfied on the set C([a, b]; R+), then, by The-
orem 1.1 (respectively, Theorem 1.2), problem (1.1), (1.2) has at least one (respectively, exactly
one) positive solution. The proof of the corollary is complete.

Proof of Corollary 1.2. If inequality (1.21) holds, then, by Corollary 1.1, problem (1.1), (1.2)
has at least one positive solution.

It remains to show that inequality (1.21) is also necessary for the existence of at least one positive
solution of problem (1.1), (1.2). Indeed, if there exists such a solution, then, by Lemma 2.1,

μ(u; ai, bi) > min{ϕ1(u), ϕ2(u)} (i = 1, 2).

This, together with inequalities (1.22), implies inequality (1.21). The proof of the corollary is
complete.

The proof of Theorem 1.3 (respectively, Theorem 1.5) can be carried out by analogy with that of
Theorem 1.1. The only difference is that Lemma 2.4 (respectively, Lemma 2.5) is used instead
of Lemma 2.3.

Theorem 1.4 follows from Theorem 1.3 and Lemma 2.10, and Theorem 1.6 follows from Theo-
rem 1.5 and Lemma 2.9.

Corollary 1.3 follows from Theorem 1.4 and Lemma 2.1, Corollary 1.4 follows from Theorems 1.5
and 1.6, and Corollary 1.5 follows from Corollary 1.4 and Lemma 2.2.

Proof of Corollary 1.6. Set

f(t, x) = − p(t)
h(x)

for t ∈ I, x > 0, ϕi(u) =
m

∑

k=1

�iku(tk) for u ∈ C([a, b]; R+) (i = 1, 2).

Then problem (1.32), (1.33) acquires the form (1.1), (1.2).
First, consider the case in which the function h satisfies condition (1.36). In this case, there

exist nondecreasing functions hi : ]0,+∞[ → ]0,+∞[ (i = 0, 1) such that

h1(x) ≤ h(x) ≤ h0(x) for x > 0.
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By the preceding, the function f and the functionals ϕi (i = 1, 2) satisfy inequalities (1.12)
and (1.13) on the sets I × ]0,+∞[ and C([a, b]; R+), respectively, where

p0(t, x) =
p(t)

h0(x)
, p1(t, x) = (1 + x)−1 p(t)

h1(x)
, � = max

{ m
∑

k=1

�ik : i = 1, 2
}

, r = 0.

Moreover, pi ∈ M+, and condition (2.3) holds.
Each positive solution of problem (1.32), (1.33) is simultaneously a solution of the differential

inequality (2.1). This, together with Lemma 2.1, implies that condition (1.38) is necessary for the
existence of at least one solution of this form. On the other hand, if, in addition to (1.36) and (1.37),
condition (1.38) is satisfied, then the functions pi (i = 0, 1) satisfy conditions (1.14) and (1.15),
and problem (1.1), (1.2) has at least one positive solution by Theorem 1.1.

Let us proceed to the case in which h is a nondecreasing function. Then f ∈ M−, and, by Corol-
lary 1.1, conditions (1.37) and (1.38) ensure the existence of a unique positive solution of prob-
lem (1.32), (1.33). The proof of the corollary is complete.

We omit the proof of Corollaries 1.7–1.9, because it is similar to that of Corollary 1.6. Note only
that Corollary 1.7 is proved on the basis of Theorems 1.3 and 1.4 and Lemma 2.1, and Corollaries 1.8
and 1.9 are proved on the basis of Theorem 1.5, Corollary 1.4, and Lemma 2.2.
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