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Let R, =[0,+00[, Ry, =]O,+00[, R§+ ={(x1,...,xk):xl >0,...,x, >0} . In a finite interval [a,b] we

consider the differential equation

u”) :f(t,u,...,u("_l)) Q)

with a continuous right-hand side f': [a,b]xR(’)“ . — R, . We are mainly interested in the case where the
equation (1) is singular in phase variables, i.e. the case where it is impossible to extend the function f

continuously to [a,b]x R} . For example, if for any i € {1,...,n} and ¢ €[a,b] the equality

)}il% (t,xl,...,xn):+oo for x, >0 (k;ti; k=l,...,n)

is satisfied, then the equation (1) is singular in phase variables.

The boundary value problems for singular in phase variables second order differential equations find a
wide application in different areas of natural science and are the subject of numerous investigations (see, e.g.,
[1-8] and the references therein). As for the singular differential equation (1), for it only the initial problem is
studied when p > 2 [9], whereas the boundary value problems, including the problem with the nonlocal

boundary conditions

(@) =g, () (), (B,) (=1, @

remain still unstudied. The present paper is devoted, namely, to singular problems of the type (1), (2).

Throughout the paper, it is assumed that
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as<b <bh (izl,...,m—l), b =b,

and along with 1 :[a,b]x R, — R, , the functions
@ R, >R, (i=1...,m)
are also continuous.

By C” ([a, b]x Ry, R+) we denote the set of continuous nonnegative functions defined on [a,b]x Ry, ,
which are nonincreasing in phase variables. Consequently, a continuous function g: [a,b]xRéc . =R,
belongs to the set C~ ([a,b]x R(')‘+;R+) if

g(t,yl,...,yk)Sg(l,xl,...,xk) for a<t<b, y,2x,>0 (i=l,...,k).
A function u :[a,b] — R, 1is said to be a solution of the equation (1) if it is » -times continuously

differentiable and at every point of the interval [a,b] together with the inequalities
WL (@)>0 (i=1,...,n)
satisfies the above differential equation.
A solution of the differential equation (1) satisfying the boundary conditions (2) is called a solution of the
problem (1), (2).
We investigate the problem (1), (2) in the cases, where the function f* on the set [a, b] x R;y, admits either
the one-sided estimate of one of the following two types

F(tx,0x,) 2 fo(Bx,.0x,), ?3)
f(t,xl,...,xn)zzn:hi(t)xi + o (6350003, ). @)
i1
or the two-sided estimate
o653, ) < S (0, € D 0 (1, ), ©

As for the functions g, (i = 1,...,n) , on the set

{(xl,...,xm) eRy,: x,<x, (k= 1,...,m)}
they admit either the one-sided estimates
(pl-(t,xl,...,xm)Zal-xm (i=l,...,n), 6)
or the two-sided estimates
X, <0 (X0 0x, ) S gx, +a (i=1,..,n). @)
Moreover, it is assumed that
a>0, 0<a; <1, 0<pB<q; (i=l...,n),

the functions 7, :[a,b] — R, (i=1,...,n) are continuous, and the functions f; (i=0,1,...,n) satisfy the

conditions

f()eC_([a,b]xR&;RJr), max{fo(t,x,...,x): aStSb}>0 for x>0, ®)
b
fieC_([a,b]xR&;RJr), xlir)rfl@jﬁ(t,x,...,x)dt=0 (i=l,...,n). )

Along with the problem (1), (2), we consider the auxiliary problem
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o) :(1_,1)]‘0(t,u,...,u("_l))+/1f(t,u,...,u(n_l)), (10)

™ (@) = (1-2) o™ (b) + 20, (”(H) ().t )) we (I=len), b

depending on the parameters 4 € ]0,1] and £>0.

The following proposition holds.
Proposition 1 (The principle of a priori boundedness). Let the conditions (3), (6), (8) be fulfilled and there
exist positive constants &, and r such that for arbitrary & € :p, 80] and A € ]0,1] every solution u of the
problem (10), (11) admits the estimates

u(H) (t) <r for a<t<b (i = 1,...,n).
Then the problem (1), (2) has at least one solution.
The above proposition allows one to state in a certain sense unimprovable sufficient conditions of
solvability of the problem (1), (2). To formulate the theorem containing these conditions, we have to introduce

the following notation.

b t
Vo (1) =1, vk(t)zlf]; J.vkﬂ(s)ds+ Vi (s)ds (k=1,...n),
k(l a
1 o b t
W"(t):l—a , wk(t)=l_l; jwkﬂ(s)ds-i-jwkﬂ(s)ds (k=1,...,n-1).
n L a

Theorem 1. Let the conditions (5) and (7)-(9) be fulfilled. If, moreover, the functions (i = l,...,n) satisfy

either the inequalities

max{zn:vi(t)h,-(l): aﬁtsb}ﬁl, min{zn:v[(t)h[(t): aﬁtsb}<1’ 12

i=1 i=1

or the inequality

Zj.wi(f)hi(f)dfﬁl, (13)

then the problem (1), (2) has at least one solution.
Theorem 2. Let the conditions (4), (6), (8) be fulfilled and the functions h; (i = l,...,n) satisfy one of the

following two inequalities:

min{zn:vi(t)hi (1): agsz?}zy "

i=1

1
> ) (1) oz — (1)
i=1 g n
Then the problem (1), (2) has no solution.
A particular case of the problem (1), (2) is the problem
u(") = Z(hi (t)+f,~ (t,u,...,u("_l) )) u(H) + fo (t,u,...,u(n_l)) , (16)

i=1
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WV (a)=au™ (b) (i=1,...,n), (17)
where #; :[a,b] >R, (i=1,...,n) and f, :[a,b]xR{)’+ — R, (i=0,1,...,n) are continuous functions, and
a; €01 (i=1...,n).

Theorems 1 and 2 imply the following corollary.
Corollary 1. If the conditions (8), (9) hold and

max{zn:vi(t)hi(t): agtsb}SI, .

i=1

then for the solvability of (16), (17), it is necessary and sufficient that the inequality

min{ivi (1)h(2): a Stﬁb}<l

i=1
be fulfilled.

Corollary 2. Let the functions f; (i = 0,1,...,n) satisfy the conditions (8), (9). If, moreover, the inequality
(13) is fulfilled, then the problem (16), (17) has at least one solution, but if instead of (13) the inequality (15)
is fulfilled, then this problem has no solution.

Remark 1. According to Corollary 1, the condition (12) in Theorem 1 is unimprovable and it cannot be
replaced by the condition (18). On the other hand, the condition (13) in this theorem is likewise unimprovable

in the sense that it cannot be replaced by the condition

> [w()n () disies

i=1 g
no matter how small is ¢ > (. Indeed, if
1 n
a, =——-01, wi(t)h(t)dt=1+¢
i 010 ,

then the condition (15) is fulfilled, and by Corollary 2, the problem (16), (17) has no solution.
Remark 2. The conditions (8), (9) are satisfied with the functions

fi(t,xl,...,xn):zfik (t)x,?é'* exp[%J (izO,l,...,n),
k=1

Xk
where f;; :[a,b] >Ry, (i =0,1,....,n; k= 1,...,n) are continuous functions, and ¢, and my;, are positive
constants. Consequently, Proposition 1, Theorems 1, 2 and their corollaries cover the case in which the
differential equations (1) and (16) in phase variables have singularities of arbitrary orders.
We investigate the unique solvability of the problem (1), (2) in the case, where the function f on the set
[a,b]x R;, admits the estimate

F(tx,0x,) = foy(t,x,), (19)
and the boundary conditions (2) are of the form
d ™ (@)= (W7 (B)) (1=1m). 20)
Moreover, it is assumed that
foeCf([a,b]xRodr;RJr), max{fo(t,x): aStSb}>0 for x>0, (1)
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and

v (x)= B, |l//l- (x)-w; (y)| Salx—y| for x>0, y>0 (i=1,...,n), (22)
where
0<p <a; <l (i=1,...,n).
By Theorem 2.1 from [10], the boundary value problem

d
£ ho(e2). (@)= 5,7(0)
has a unique solution. We denote this solution by z, and assume that
b ‘
z (1) = . ﬂl;g J.zk+1 (s) a’s+jzk+1 (s)ds (k=1,...,n-1),
- k a a

Theorem 3. Let the conditions (19), (21) and (22) be fulfilled and
(f(t,xl,...,xn)—f(t,yl,...,yn ))sgn(xn —y,)<

SZhi(t)|xi—yi| for a<t<b, kaZk(t), Vi sz(t) (kzl,...,n),
i=1

where h; [a,b] >R, (i = l,...,n) are continuous functions satisfying either the inequalities (12), or the
inequality (13). Then the problem (1), (20) has one and only one solution.

As an example, we consider the differential equation

=3, (z)(u(H) )”" +0, (t)(u(”*l))_# )
i1
with the boundary conditions (17), where
—o<y; <1 (i=1...,n-1), 0<p, <1, 4>0, 0<g;<l (i=L...,n),
l :[a,b] — R, (i=0,1,...,n) are continuous functions, and max{fo (1): a<t< b} >0.

Suppose

2, ()= (e 1) [o(syas+[eo(s)as|

a b
( ): 1_lai J.ZHI

)= |/“i|(zi (’))y

From Theorem 3 we have the following corollary.
Corollary 3. If the functions h, (i =1..., n) satisfy either the inequalities (12), or the inequality (13), then

t
z; (¢t (s)ds+'|.zl-+1(s)ds (izl,...,n—l),
by (¢ ) G
the problem (1), (2) has one and only one solution.
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