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THE GLOBAL INDICATOR OF CLASSICALITY OF
AN ARBITRARY N-LEVEL QUANTUM SYSTEM

V. Abgaryan,∗ A. Khvedelidze,† and A. Torosyan‡ UDC 512.816.2, 530.145

It is commonly accepted that the deviation of the Wigner quasiprobability distribution of a quantum
state from a proper statistical distribution signifies its nonclassicality. Following this ideology, we
introduce a global indicator QN for quantifying the “classicality-quantumness” correspondence in
the form of a functional on the orbit space O[PN ] of the adjoint action of the group SU(N) on
the state space PN of an N -dimensional quantum system. The indicator QN is defined as the

relative volume of the subspace O[P
(+)
N ] ⊂ O[PN ] where the Wigner quasiprobability distribution is

positive. The algebraic structure of O[P
(+)
N ] is revealed and exemplified by the case of a single qubit

(N = 2) and a single qutrit (N = 3). For the Hilbert–Schmidt ensemble of qutrits, the dependence
of the global indicator on the moduli parameter of the Wigner quasiprobability distribution is found.
Bibliography: 18 titles.

1. Introduction

Over the past decades, a number of witnesses and measures of the nonclassicality of quantum
systems have been formulated (see, e.g., [1–3]). Most of them are based on the primary impos-
sibility of a classical statistical description of quantum systems. In particular, the nonexistence
of positive definite probability distributions serves as a certain indication of the nonclassicality
of a physical system.1

In the present note, we will focus on the problem of quantifying the nonclassicality of quan-
tum systems associated with a finite-dimensional Hilbert space by studying the nonpositivity
of the Wigner quasiprobability distributions (the Wigner function, or, in short, WF) [6–9].
Our treatment is based on the recent publications [10,11], where the Wigner quasiprobability

distribution W
(ν)
� (ΩN ) of an N -level quantum system is constructed via the dual pairing,

W (ν)
� (ΩN ) = tr [�Δ(ΩN |ν)] , (1)

of a density matrix �, which is an element of the quantum state space

PN = {X ∈ MN (C) | X = X†, X ≥ 0, tr (X) = 1}, (2)

and an element of the dual space Δ(ΩN |ν) ∈ P∗
N , the so-called Stratonovich–Weyl (SW)

kernel. The dual space P∗
N is defined as2

P∗
N = {X ∈ MN (C) | X = X†, tr (X) = 1, tr

(
X2

)
= N}, (3)
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and the SW kernel is a mapping between the phase space ΩN and the dual spaceP∗
N . Assuming

that the SW kernel Δ(ΩN ) has isotropy group H ⊂ U(N) of the form

H = U(k1)× U(k2)× . . .× U(ks+1),

we identify the phase space ΩN with a complex flag manifold:

ΩN → F
N
d1,d2,...,ds = U(N)/H,

where (d1, d2, . . . , ds) is a sequence of positive integers with sum N such that k1 = d1 and
ki+1 = di+1 − di with ds+1 = N.

The Wigner function defined in Eqs. (1)–(3) possesses all the properties of a proper sta-
tistical distribution except for nonnegativity. From a physical point of view, the positiveness
of probability distributions is a fundamental element of the classical statistical paradigm.
Therefore, if the WF attains negative values, it is undeniable that the physical system shows
some “nonclassical” behavior. Following this observation, we introduce the global indicator of
classicality QN characterizing the degree of closeness of a quasiprobability distribution to a
proper one. Commonly used measures of deviation from classicality are defined as functionals
either on the quantum state space (measures based on the distance from the base “classical
state” [12–14]), or on the phase space (measures that depend on the volume of the phase space
region where the WF is negative [2]). In contrast to this approach, we follow an alternative
one, the so-called “minimal description,” when characteristics of quantum systems are given
solely in terms of SU(N)-invariants. In other words, we intend to define the global indica-
tor QN as a functional on the unitary orbit space O[PN ]. With this aim, we introduce the
following definitions.

Definition 1. The unitary orbit space O[PN ] is the quotient space under the equivalence
relation induced by the adjoint action of SU(N) on the state space PN with the quotient
(canonical) mapping

π : PN −→ O[PN ] = PN/SU(N). (4)

Definition 2. The set Ω
(+)
N [�] is the subset of the phase space ΩN where the Wigner function

of a given state � is nonnegative:

Ω
(+)
N [�] = {x ∈ ΩN |W�(ΩN ) ≥ 0}. (5)

Definition 3. The subspace P
(+)
N ⊂ PN consists of the states � such that

P
(+)
N = {� ∈ PN |Ω(+)

N [�] = ΩN}. (6)

Definition 4. The subset O[P
(+)
N ] is the image of P

(+)
N under the quotient mapping (4):

O[P
(+)
N ] = π[P

(+)
N ] = {π(x) |x ∈ P

(+)
N }. (7)

Using the definitions above, we introduce the global indicator of nonclassicality QN of an
N -dimensional quantum system as the following ratio:

QN =
volume of the orbit subspace O[P

(+)
N ]

volume of the orbit space O[PN ]
. (8)

In order to make this definition self-consistent, we assume that

• O[PN ], Ω
(+)
N [�], P

(+)
N , and O[P

(+)
N ] are open connected sets in R

n;3

3In support of this assumption, note that the WF is certainly nonnegative for any state whose Bloch vector
lies inside the ball of radius r∗(N) =

√
N + 1/(N2 − 1).
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• the volume of the orbit space in (8) is associated with the measure induced by the
quotient mapping π from a certain Riemannian metric on PN .4

In order to perform efficient computations of QN , it is necessary to have, instead of the implicit

definitions (6) and (7), a more constructive representation of the space O[P
(+)
N ]. With this aim,

we remind the reader of some facts about the stratified structure of the state space PN . First
of all, note that a U(N)-automorphism of the Hilbert space of an N -level quantum system
induces the adjoint action of SU(N) on the state space:

g · � = g�g†, g ∈ SU(N). (9)

The group action (9) establishes an equivalence relation onPN and gives rise to an SU(N) orbit
classification. Formally, a subgroup Hx ⊂ SU(N) is defined as the isotropy group (stabilizer)
of a point x ∈ PN ,

Hx = {g ∈ SU(N) | g · x = x},
and points x, y ∈ PN are said to be of the same type if their stabilizers Hx and Hy are
conjugate subgroups of SU(N). The orbit type of a point x ∈ PN is given by the conjugacy
class [Hx] of the corresponding isotropy group. Up to conjugation in SU(N), the isotropy
groups Hx are in a one-to-one correspondence with the Young diagrams corresponding to
the possible decompositions of N into nonnegative integers. Hence, for given N , with any
[Hα], α = 1, 2, . . . , P (N), one can associate a stratum P[Hα], defined as the set of all points of

PN whose stabilizer is conjugate to Hα:
5

P[Hα] :=
{
x ∈ PN | Hx is conjugate to Hα

}
. (10)

The union of the sets P[Hα] gives the decomposition of the state space PN into orbit types:

PN =
⋃

orbit types

P[Hα]. (11)

Having in mind the above notions and argumentation, we can formulate the following assertion.

Proposition I. Let r↓ = {r1, r2, . . . , rN} and π↑ = {πN , πN−1, . . . , π1} be the eigenvalues of
a density matrix � and the SW kernel Δ(ΩN |ν), arranged in decreasing and increasing order,
respectively. Then:

(i) The Wigner function W�(θ) of any state � ∈ PN is bounded, and there exist θ−,θ+ ∈
ΩN such that

W�(θ−) = inf
θ∈ΩN

W�(θ), W�(θ+) = sup
θ∈ΩN

W�(θ).

(ii) If �1, �2 ∈ P[Hα], then the extreme values of the corresponding Wigner functions are
related as follows:

inf
θ

W�1(θ) = inf
θ

W�2(θ), sup
θ

W�1(θ) = sup
θ

W�2(θ). (12)

(iii) O[P
(+)
N ] can be identified with the dual cone of the subset O[PN ] ⊂ R

N−1:

O[P
(+)
N ] =

{
π ∈ O[P∗

N ] | (r↓,π↑) ≥ 0 for every r ∈ O[PN ]
}
, (13)

where the dual pairing ( , ) in (13) is

(r↓,π↑) = r1πN + r2πN−1 + · · ·+ rNπ1. (14)

4In the next section, the global indicator will be computed with respect to the metric corresponding to the
Hilbert–Schmidt distance between density matrices [15].

5The strata P(Hα) are determined by this set of equations and inequalities.
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The correctness of the above proposition stems from the following observations. First,
according to our construction, an N -level system is associated with a symplectic manifold ΩN ,
which is compact. Second, the Wigner distributions of trace-class operators are continuous
functions (cf. the discussion in [16]). Hence, according to the multivariable Weierstrass extreme
value theorem, the Wigner function attains its extreme values on ΩN . Moreover, the absolute
maximum and minimum must occur at a critical point of the WF in ΩN or at a boundary
point of ΩN . Some technical details of the proof of Proposition I are given in the appendix.

The article is organized as follows. The next section is devoted to a brief exposition of
necessary facts about the WF of finite-dimensional systems, mainly borrowed from our recent
articles [10,11]. In Sec. 3, we present a reinterpretation of the Wigner distributions as functions
defined on the space of unistochastic matrices and describe their continuation to the whole
Birkhoff polytope. With the aid of this extension, the global extrema of the WF are derived.

In Sec. 4, using the lower and upper bounds on the WF for the orbit subspace O[P
(+)
N ], the

global Q-indicators for N = 2 (qubit) and N = 3 are obtained. Final remarks are collected in
Sec. 5.

2. Basic settings

The Wigner function of an N-level system. A density matrix � and the Stratonovich–
Weyl kernel Δ(ΩN |ν) obey the following decompositions into the Lie algebra su(N) and its
dual su(N)∗:

� =
1

N
IN +

1

N
ı su(N), (15)

Δ(ΩN |ν) = 1

N
IN + κ

1

N
ı su(N)∗, (16)

where κ =
√
N(N2 − 1)/2 is a normalization constant. It is convenient to use the orthonormal

Hermitian basis λ = (λ1, λ2, . . . , λN2−1) of su(N) and rewrite the density matrix (15) in the
Bloch form

�ξ =
1

N

(

I +

√
N (N − 1)

2
(ξ,λ)

)

, (17)

where ξ stands for the (N2 − 1)-dimensional Bloch vector. In parallel to (17), we will exten-
sively use the singular value decomposition (SVD) of the SW kernel:

Δ(ΩN |ν) = 1

N
U(ΩN )

⎛

⎝I + κ
∑

λs∈h
μs(ν)λs

⎞

⎠U †(ΩN ), (18)

where h is the Cartan subalgebra in su(N). Under these conventions, the algebraic equations
in (3) define the following family of Wigner functions:

W
(ν)
ξ (θ1, θ2, . . . , θd) =

1

N

[
1 +

N2 − 1√
N + 1

(n, ξ)

]
. (19)

In (19), the dependence of the Wigner function on a point of the phase space ΩN with coor-
dinates6 (θ1, θ2, . . . , θd) is encoded in the (N2 − 1)-dimensional vector n given by the linear
superposition

n = μ3(ν)n
(3) + μ8(ν)n

(8) + · · ·+ μN2−1(ν)n
(N2−1). (20)

6The number d of independent variables θ in the Wigner function varies depending on the dimension of the
isotropy group of the SW kernel: d = dimC F

N
d1,d2,...,ds

.
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The real coefficients μ3(ν), μ8(ν), . . . , μN2−1(ν) characterize a family of Wigner functions
through their dependence on the coordinates ν of the moduli space PN (ν). The moduli space
PN (ν) is a spherical polyhedron on the unit sphere,

μ2
3(ν) + μ2

8(ν) + · · · + μ2
N2−1(ν) = 1, (21)

which corresponds to a chosen order of the eigenvalues of the SW kernel.7 The orthonormal

vectors n(3),n(8), . . . ,n(N2−1) in (20) are specified by N − 1 basis elements λ3, λ8, . . . , λN2−1

of the Cartan subalgebra h ⊂ su(N):

n(s2−1)
μ =

1

2
tr

(
Uλs2−1U

†λμ

)
.

Finally, it is worth mentioning that the Wigner function (19) is a normalized distribution,
∫

ΩN

dΩN W�(ΩN ) = 1, (22)

with the measure dΩN determined from the normalized Haar measure dμSU(N) on the SU(N)
group manifold:

dμSU(N) =
1

NVol(H)
dΩN × dμ(H).

Here, Vol(H) is the volume of the isotropy group of the SW kernel computed with respect to
the measure dμ(H) induced by the corresponding embedding of H into SU(N).

The orbit space of an N-level system. Similarly to (18), writing down the SVD of a
density matrix � with fixed, say decreasing, order of the eigenvalues r = (r1, r2, . . . , rN ),

� = U

⎛

⎜
⎝

r1 · · · 0
...

. . .
...

0 · · · rN

⎞

⎟
⎠U †, (23)

we realize the orbit space O[PN ] as an ordered (N − 1)-simplex:

CN−1 = {r ∈ R
N

∣
∣∣
∣

N∑

i=1

ri = 1, 1 ≥ r1 ≥ r2 ≥ . . .≥ rN−1 ≥ rN ≥ 0}. (24)

In the present note, we mainly focus on the Wigner functions (19) of a qubit (N = 2) and
qutrit (N = 3) and thus deal with a 1-simplex (line segment) and a 2-simplex (triangle),
respectively.

3. The Wigner distribution as a function on the Birkhoff polytope

In this section, we rewrite the Wigner distribution in the form of a function on the so-called
Birkhoff polytope BN , see [17]. The Birkhoff polytope BN is the polytope of bistochastic, or
doubly stochastic, N ×N complex matrices, obeying the following conditions:

Bij ≥ 0,
N∑

i=1

Bij = 1,
N∑

j=1

Bij = 1.

Precisely speaking, the Wigner function of an N -level system is defined on the subset of
bistochastic matrices called unistochastic. If a matrix B is expressible via a unitary matrix U
as

Bij =| Uij |2 for any i, j = 1, 2, . . . N,

7A detailed description of the moduli space PN (ν) is presented in [11].
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then it is said to be unistochastic. The following proposition establishes this relation.

Proposition II. Assign to a matrix B ∈ BN the following bilinear form on R
N
+ :

(x,y)B = (x, By) =
∑

ij

Bijxiyj. (25)

Then the Wigner quasiprobability distribution of an N -level system can be identified with the
bilinear form (25) with a matrix B from the subset UN ⊂ BN of unistochastic matrices8:

W�(ΩN ) =
(
r↓,π↓

)

B

∣∣
∣∣
B=|U |2

, (26)

evaluated at the ordered vectors r↓ and π↓ whose components are the eigenvalues of a density
matrix � and the SW kernel Δ, respectively.

Using Proposition II, we can study the problem of finding the global extrema of the WF
as follows. Observing that an analogous problem for the bilinear form ( · , · )B is well studied,
we define the continuation of the Wigner distribution as a function W (B) whose domain of
definition is the whole Birkhoff polytope:

W (B) :=
(
r↓,π↓

)

B
. (27)

Applying the Birkhoff–von Neumann theorem to the function W (B), one can find its global
maximum and minimum. The next step is to analyze the fate of the extrema after the re-
striction of (27) to the subspace of unistochastic matrices. The following conjecture aims to
answer this question.

Proposition III. The Wigner quasiprobability distribution function defined on the set of unis-
tochastic matrices attains the global maximum W (+) and the global minimum W (−) at the
permutation matrices

Pmin =

⎛

⎜
⎝

0 · · · 1
... 1

...
1 · · · 0

⎞

⎟
⎠ , Pmax =

⎛

⎜
⎝

1 · · · 0
... 1

...
0 · · · 1

⎞

⎟
⎠ , (28)

with the following values:

W (−) = lim
B→Pmin

W =
(
r↑,π↓

)
, (29)

W (+) = lim
B→Pmax

W =
(
r↓,π↓

)
. (30)

For a formal discussion of this conjecture, we refer to the appendix, while here we only give
two arguments in its support. The first one is the Birkhoff–von Neumann theorem [18, p. 36],
according to which B is the convex hull of all N ×N permutation matrices. There is at least
one decomposition of B of the form

BN =

k∑

i

κiPi,
∑

i

κi = 1, κi ≥ 0, (31)

with k ≤ (n − 1)2 + 1 permutation matrices Pi corresponding to the vertices of the Birkhoff
polytope. Due to this theorem, the bilinear form ( . , . )B assumes its extremum on the set of

8Note that for N ≥ 3 the set of unistochastic matrices is not convex.
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extreme points consisting of the permutations (28) mentioned in the conjecture:

min
B

(x, y)B = (x, y)Pmin
=

∑

i

x↑i y
↓
i , (32)

max
B

(x, y)B = (x, y)Pmax
=

∑

i

x↓i y
↓
i . (33)

The second argument in support of the conjecture is that the space of unistochastic matrices
contains all permutation matrices, and Pmin and Pmax are among them.

Therefore, for a given SW kernel with eigenvalues π↓ = {π1, π2, . . . , πN} and a density
matrix with spectrum r↓ = {r1, r2, . . . , rN}, the knowledge of the global minimum of the WF
provides information on the subset

O[P
(+)
N = {r ∈ CN−1 |

(
r↑,π↓

)
≥ 0 }. (34)

Using these results, in the next section we explicitly evaluate the rate of quantumness-
classicality for low-dimensional systems, such as a qubit and a qutrit.

4. The global indicator of classicality of a qubit and a qutrit

Summarizing the discussions of the previous section, the Wigner function satisfies the fol-
lowing inequality:

W
(−)
N ≤ W (ΩN ) ≤ W

(+)
N , (35)

where

W
(−)
N =

N∑

i=1

πirN−i+1, W
(+)
N =

N∑

i=1

πiri. (36)

Below, considering inequalities (35) for two low cases, N = 2 and N = 3, we will obtain an

explicit parametrization of the subspacesO[P
(+)
2 ] and O[P

(+)
3 ] of the orbit space corresponding

to a positive WF of a single qubit and a single qutrit.

The positivity of the lower bound W
(−)
2 . For a simplest N = 2 level system, a single

qubit, the density matrix expanded in terms of the Pauli σ-matrices is characterized by a
three-dimensional Bloch vector ξ = (ξ1, ξ2, ξ3):

� =
1

2
(I + (ξ,σ)) . (37)

The spectrum of the SW kernel for a qubit is defined from (18) up to permutations, and,
assuming that the eigenvalues are arranged in descending order, it is

spec (Δ2) =

{
1 +

√
3

2
,
1−√

3

2

}
. (38)

Taking into account the above expressions, the lower and upper bounds (36) for a qubit are

W
(∓)
2 =

1

2
∓

√
3

2
|ξ|. (39)

Therefore, the Wigner function of a qubit is positive definite inside the Bloch ball of radius
r∗(2) < 1/

√
3.
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The Q-indicator of a single qubit. Using the constraint on the states of a qubit with
nonnegative WF derived above, the global indicator of quantumness Q can be evaluated after
specifying a measure on the orbit space O[P2]. The measure dμ

H-S
on P2 associated with the

Hilbert–Schmidt ensemble of qubits has a product form

dμ
H-S

= (r1 − r2)
2 dr1 ∧ dr2 × dμ SU(2)

U(1)

, (40)

where dμ SU(2)
U(1)

is the measure on the coset SU(2)/U(1) induced by the normalized Haar measure

on SU(2). The factor in (40), which depends on the 1-simplex coordinates r1 and r2, defines a
measure on the orbit space O[P2]. Thus, the computation of the indicator Q of a qubit reduces
to the evaluation of the ratio of two simple integrals,

Q2 =
Vol

(
O[P

(+)
2 ]

)

Vol (O[P2])
=

1√
3∫

0

r2dr

1∫

0

r2dr

=
1

3
√
3
= 0.19245. (41)

The positivity of the lower bound W
(−)
3 . For further study, we introduce two types of

coordinates on the orbit space of a qutrit. The first parametrization takes into account the
algebraic structure of the density matrix of a qutrit state:

r1 =
1

3
+

1√
3
ξ3 +

1

3
ξ8, r2 =

1

3
− 1√

3
ξ3 +

1

3
ξ8, r3 =

1

3
− 2

3
ξ8. (42)

In terms of ξ3 and ξ8, the ordered 2-simplex is mapped to the domain O[P3] defined by the
following set of inequalities:

O[P3] :

{
ξ3, ξ8 ∈ R

∣
∣∣
∣ 0 ≤ ξ3 ≤

√
3

2
,

ξ3√
3
≤ ξ8 ≤ 1

2

}
. (43)

The second useful set of coordinates, (r, ϕ), on the orbit space of a qutrit is given by the
following map:

ξ3 =
√
3r sin

(ϕ
3

)
, ξ8 =

√
3r cos

(ϕ
3

)
, 0 ≤ ϕ ≤ π. (44)

Under the transformation (44), the ordered 2-simplex of a qutrit is mapped to the domain
on the upper half-plane with coordinates x = r cosϕ, y = r sinϕ outlined by the trisectrix of
Maclaurin (see the grey region in Fig. 1):

O[P3] :

{
r ≥ 0, ϕ ∈ [0, π]

∣
∣
∣∣ cos

(ϕ
3

)
≤ 1

2
√
3r

}
. (45)

According to the analysis in [11], the algebraic equations (3) for the eigenvalues of the SW
kernel of a qutrit have a one-parameter solution which can be written as

π1 =
1

3
+

2√
3
μ3 +

2

3
μ8, π2 =

1

3
− 2√

3
μ3 +

2

3
μ8, π3 =

1

3
− 4

3
μ8. (46)

Here, the parameters μ3 and μ8 are the Cartesian coordinates of a segment of the unit circle
with apex angle ζ:

μ3 = sin ζ, μ8 = cos ζ, 0 ≤ ζ ≤ π

3
. (47)
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Fig. 1. The trisectrix of Maclaurin intersecting the x-axis at two points, ( 1
2
√
3
, 0)

and (− 1√
3
, 0). On the (x, y) plane, the equation of this curve in polar coordi-

nates x = r cosϕ, y = r sinϕ reads as r(ϕ, 1√
3
) = 1

2
√
3 cos(ϕ/3)

. The orbit space

O[P3] of a qutrit is given by the grey domain.

It is worth noting that the apex angle ζ determines the value of a polynomial SU(3)-invariant
of degree 3 of the SW kernel Δ(Ω3)|ν):

cos(3ζ) = −27

16
det (Δ(Ω3|ν))− 11

16
,

with the moduli parameter

ν =
1

3
− 4

3
cos(ζ), ζ ∈ [0, π/3]. (48)

Having these ingredients for a density matrix (42) and the SW kernel (46), a straightforward
evaluation of (36) for N = 3 gives

W
(−)
3 =

1

3
− 4r√

3
cos

(
ζ +

ϕ

3
− π

3

)
, (49)

W
(+)
3 =

1

3
+

4r√
3
cos

(
ζ − ϕ

3

)
. (50)

From (49) it follows that the subspace of the orbit space O[P
(+)
3 ] where the WF is positive is

given by

O[P
(+)
3 ] :

{
r ≥ 0, ϕ ∈ [0, π]

∣
∣∣
∣ cos

(ϕ
3
+ ζ − π

3

)
≤ 1

4
√
3r

}
. (51)

Comparing (51) with the qutrit orbit space (45), we conclude that O[P
(+)
3 ] lies inside the

qutrit orbit space O[P3] as shown in Fig. 2. Here, a few comments on the shape of O[P
(+)
3 ]

are in order:

• for 0 ≤ r ≤ 1
4
√
3
, the lower bound W

(−)
3 is positive for all ζ and ϕ;

• for 1
2
√
3
≤ r ≤ 1√

3
, the lower bound W

(−)
3 is always negative;

• for intermediate values 1
4
√
3
≤ r ≤ 1

2
√
3
, the lower bound W

(−)
3 becomes negative only

for certain values of ζ and ϕ.
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(a) ζ = 0

(b) ζ = π
6

(c) ζ = π
3

Fig. 2. The state space of a qutrit divided into bands. The Wigner function
is always positive (necessarily has some negative values) inside (outside) the
region enclosed by the dashed inner (outer) semicircle independent of the choice
of the kernel. Inside the region enclosed by the kernel-dependent inner solid
curve, the Wigner function is always positive for a specific choice of the kernel.

The Q-indicator of a single qutrit. The global indicator of classicality of a qutrit is given
by the ratio of volumes

Q3 =
Vol

(
O[P

(+)
3 ]

)

Vol (O[P3])
. (52)

To evaluate these volume integrals, we need to specify a measure on the orbit space O[P3].
Similarly to the qubit case, we assume that the qutrit state space P3 is endowed with the
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Hilbert–Schmidt metric:

g = 4 tr (d�⊗ d�) . (53)

In terms of the Bloch coordinates ξ = (ξ1, ξ2, . . . , ξ8) of a qutrit,

� =
1

3

(
I+

√
3 (λ, ξ)

)
, (54)

the metric (53) gives the standard Euclidean volume form on P3:

ω =

(
8

3

)4

dξ1 ∧ dξ2 ∧ · · · ∧ dξ8. (55)

Now, in order to compute the corresponding induced form on the orbit space O[P3], we
rewrite (55) in terms of the SVD of the density matrix

� = UDU †. (56)

Since the measure of singular and degenerate matrices is zero, we consider a generic spectrum
D = diag||r1, r2, r3|| with eigenvalues 1 > r1 > r2 > r3 > 0 arranged in decreasing order. This
means that U is determined up to an element of the torus T of SU(3). Therefore, the volume
form in adaptive SVD coordinates is

ω = (r1 − r2)
2(r1 − r3)

2(r2 − r3)
2 dr1 ∧ dr2 ∧ dr3 ∧ ω

SU(3)/T
. (57)

For illustrative reasons, it is convenient to pass from the 2-simplex Cartesian coordinates
r1, r2, r3 to the polar variables r and ϕ introduced in (44). As a result, the volume form (57)
on the orbit space O[P3] reduces to the following expression:

ωO[P3] = r7 sin2 ϕdr ∧ dϕ. (58)

Computing the volume integrals in (52) with respect to the measure (58) on the orbit space
of a qutrit (45) and its subspace where the WF is positive, we find an explicit dependence of
the global indicator of classicality on the moduli parameter ζ of the SW kernel:

Q3(ζ)=

π∫

0

dϕ

1
4
√

3 cos (ϕ3 +ζ−π
3 )∫

0

r7 sin2(ϕ)dr

π∫

0

dϕ

1
2
√

3 cos
ϕ
3∫

0

r7 sin2(ϕ)dr

=
1

128

1+20 cos2 (ζ−π/6)

(−1+4 cos2 (ζ−π/6))5
. (59)

Fig. 3. The Q-indicator as a function of the moduli parameter ζ of the SW
kernel for the Hilbert–Schmidt ensemble of qutrits.

311



Straightforward calculations show that the indicator Q3(ζ) attains the absolute minimum

min
ζ∈[0,π

3
]
Q3(ζ) = Q3

(π
6

)
=

7

27 34
≈ 0.000675

at the qutrit moduli parameter ζ = π/6, corresponding to the SW kernel with spectrum

spec (Δ3) =

∥∥
∥∥
1 + 2

√
3

3
,
1

3
,
1− 2

√
3

3

∥∥
∥∥. (60)

In Fig. 3, the dependence of Q3 on the moduli parameter ζ is shown.

5. Summary

In the present article, we introduce a global indicator of classicality of a quantum N -
dimensional system. This indicator directly measures the portion of its unitary orbit space that
is associated with states admitting a conventional statistical interpretation in terms of true
probability distributions. The study revealed an interesting relation between the properties of
Wigner quasiprobability distributions and the structure of Birkhoff polytopes. It seems that
this relation deserves attention, and in our future publication we will return to the problem of
classical-quantum correspondence from this point of view.

Appendix

In this appendix, we discuss the problem of finding the global extrema for a function on the
unitary orbits of a Hermitian matrix.

Problem. Let A be a positive definite Hermitian matrix and B be a Hermitian matrix.
Consider the adjoint unitary orbit OB = gBg† with g ∈ SU(N). Find the global extrema of
the function

Φ(g) = tr(AgBg†). (61)

To find the extrema of (61), one can apply a standard method from calculus used to find
the critical points of functions. To be precise, consider matrices A and B whose spectrum is
of the following form:

μ↓(A) = {μ1(A)

k1(A)
︷ ︸︸ ︷
(1, . . . , 1); μ2(A)

k2(A)
︷ ︸︸ ︷
(1, . . . , 1); . . . ; μs(A)

ks(A)
︷ ︸︸ ︷
(1, . . . , 1)}, (62)

μ↓(B) = {μ1(B)

k1(B)
︷ ︸︸ ︷
(1, . . . , 1); μ2(B)

k2(B)
︷ ︸︸ ︷
(1, . . . , 1); . . . ; μs(B)

ks(B)
︷ ︸︸ ︷
(1, . . . , 1)}. (63)

The elements of the spectra of both matrices are arranged in decreasing order:

μ1(A) > μ2(A) > · · · > μs(A) and μ1(B) > μ2(B) > · · · > μs(B). (64)

The degrees of degeneracy (k(A), k(B)) of the matrices A and B are constrained by the rela-

tions
s∑

i=1
ki(A) = rA and

s∑

i=1
ki(B) = rB . The SVD decompositions

A = V DAV
†, B = WDBW

† (65)

are not unique, and a family of unitary matrices V and W in (65) can be built as follows.
Denote by V ↓ the unitary matrix constructed from the right eigenvectors of the matrix A
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arranged in accordance with the decreasing order of its eigenvalues. Then the most general
family of unitary matrices diagonalizing A reads as

V = V ↓

⎛

⎜
⎝

V1 · · · 0
...

. . .
...

0 · · · Vs

⎞

⎟
⎠P, (66)

where V1, . . . , Vs are arbitrary unitary matrices of order k1, . . . , ks, respectively, and P is a
transposition matrix

P = ‖ei1 ,ei2 , . . . ,eiN ‖,
with ej the N -dimensional vector having zeros everywhere except 1 in the jth position. The
right multiplication by P transposes the columns as j → ij, j = 1, . . . , N. Below, the same
construction will be used for a unitary matrix W as well.

Straightforward computations show that the necessary condition for an extremum of Φ(g)
can be written as

dΦ(g) = tr ([OB , A]wg) = 0, (67)

where

wg = dgg† =
ı

2

N2−1∑

a,i=1

(wg)
a
i λadϑ

i (68)

is the Maurer–Cartan 1-form on SU(N) . Equation (67) tells us that extrema of Φ(g) are

realized for all points of the orbits OB = gcBg†c commuting with A:9

[A,OB ] = 0. (69)

This equation has a solution gc = VW † with unitary matrices V and W diagonalizing A and
B, respectively. According to (66), the matrices V and W constitute a family of diagonalizing
unitary matrices. One can see that the set of corresponding critical points g = gc of Φ(g) is
discrete. As a result of (66), for given spec(A) and spec(B) the extrema are determined by
permutations P :

Φ(g)
∣
∣∣
g=gc

= tr(DADB) = tr
(
μ↓(A)P Tμ↓(B)P

)
.

Among these extrema, the minimum and maximum can be identified using a well-known result
on the majorization of two vectors x, y ∈ R

N (cf. [18, p. 49]):

〈x↓, y↑〉 ≤ 〈x, y〉 ≤ 〈x↓, y↓〉. (70)

Hence, finally, the global extrema of Φ(g) read

min
g∈gc

Φ(g) = tr
(
μ↓(A)μ↑(B)

)
, (71)

max
g∈gc

Φ(g) = tr
(
μ↓(A)μ↓(B)

)
. (72)

9Condition (67) is a system of linear homogeneous equations (wg)
a
i xa = 0 with unknowns xa and, apart

from the trivial solution xa = 0, can have other solutions corresponding to singular points occurring at

det ||(wg)
a
i || = 0. Recalling that det ‖wg‖ =

√
det ‖g

U(N)
‖ and recalling the explicit expression for the Haar

measure
√

det ‖g
U(N)

‖dϑ1 · · ·dϑN in terms of the eigenvalues of a U(N) element

√
det ||g

U(N)
|| = 1

(2π)NN !

∏
1≤i<j≤n

∣∣∣eiϑi − eiϑj

∣∣∣
2

,

we associate the set of singular solutions to (67) with the variety of possible types of degeneracies of the
eigenvalues of unitary matrices, ϑi1 = ϑi2 = · · · = ϑik .
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