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JlaHHas craThs TOCBAIIEHA M3YUYCHHIO 33/1addl "KBAaHTOBOW cemapalelbHOCTH" — MaTeMaThde-
CKOH mpo0JieMe, KOTopasi JISKUT B OCHOBE KBAaHTOBOW WH(OPMATHKH U TEOPUU KBAHTOBBIX KOM-
myHukanuid. [Ipobmema cemapaOGeTbHOCTH COCTOWT B pa3paboTke A(DPEKTUBHBIX aaTOpPHUTMOB
ompeIeeHs] BOZMOKHOCTU MPEACTABICHUSI BEKTOPa COCTOSHUS COCTAaBHOM KBAaHTOBOW CHCTEMBI
B BHUJIC TIPOU3BEACHHS COCTOSIHUN, ONUCBIBAIOIINX €€ TOJICUCTEMBI. B paboTe 00CyKIaroTcs Teo-
PETHKO-BEPOSATHOCTHBIC aCIEKThl JaHHOW MpoOJeMBl W MPUBEISHBI PE3yJbTAaThl PACUETOB T'eO-
METPUYECKON BEPOSITHOCTH CenapadesbHOCTH/TICPEyTAHHOCTA COCTOSIHUN KBAaHTOBBIX CHCTEM,
COCTOSIIUX U3 IBYX KyOUTOB M Mapbl KyOUT-KyTpHTA.

KiroueBrsie cimoBa: KBaHTOBas MH(pOpMaIHs, MepemyTaHHOCTh, CIIy9ailHbIe MaTPHIIbI, CTATHCTH-
geckas Mepa.
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The present article addresses the so-called "quantum separability problem", the mathematical is-
sue that lies in foundations of quantum information and communication theory. The separability
problem consist in elaboration of efficient computational algorithms for determination of whether
a given state of a composite quantum system admits representation in a product form, with fac-
tors corresponding to each subsystem. The measurement theoretical aspects of this problem are
discussed and the geometric probability of the mixed separable/entangled states in quantum sys-
tems composed from 2-qubits and qubit-qutrit pairs are computed.

Key words: quantum information, entanglement, random matrices, statistical measures.

1. Introduction
The detailed estimation of "quantumness resource" for a given quantum system is the ba-
sic issue in theory of processing with quantum information and communications. This problem
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is in a strong interplay with the fundamental property of quantum word, existence for compos-
ite systems the so-called, entangled states [1]". It turns that, more the entangled states a system
has, more quantum weirdness it exposes. In order to qualitatively describe the "quantumness"
of a given system it is reasonable to "count" the entangled states. From the measurement theo-
retical point of view, (cf. [2-4]) "counting" of the entangled states corresponds to the determi-
nation of a relative volume of the entangled states with respect to all possible states. This num-
ber defines the geometric probability of the entangled states [5].

In other words, the geometric separability /entanglement probability is the probability for
a positive definite Hermitian matrix, distributed in accordance with a measure defined on the
space of states, to be the separable/entangled matrix. This is what we call the theoretical meas-
urement formulation of quantum separability problem. The separability problem is a subject of
intense current research. It is considered difficult, and computationally has been shown to be
NP-hard (cf. [6-8]). In the present note we intend to discuss the measurement theoretical aspect
of this problem only and to give the results of our calculations for the geometric probability of
mixed separable/entangled states for systems of 2-qubits and qubit-qutrit pairs.

The article is organized a follows. From the beginning ingredients necessary for compu-
tations are introduced. In the section I the method of generation of random density matrices,
distributed in accordance with the Hilbert-Schmidt and Bures metric defined on the space of
states of a finite-dimensional quantum system, is sketched. Next section is devoted to the
statement of algorithms for selecting the separable matrices among all randomly generated ma-
trices. Concluding, the results of our numerical calculations for the geometric probabilities of
binary systems composed from two qubits and qubit-qutrit pairs will be given and briefly
commented.

2. Generating random matrices

Here, adopting the method of the so-called induced measures (cf. [9,10]), the generation
of random density matrices distributed according to the Hilbert-Schmidt and Bures probability
measures are described.

According to [9,10], the starting position for the generation procedure consist in the us-
age of the well-known Ginibre ensemble of random matrices [11]. The Ginibre ensemble is de-
fined as follows. Let M(C,n) is the space of nxn matrices whose entries are complex num-
bers and the conventional linear measure on M(C,n) is fixed. Assume that the elements of an
arbitrary matrix Z € M(C,n) are independent identically distributed standard normal complex

random variables

1 . .
p(zij):;eXP(_V;’j D, i,j=12,...,n.

Using the joint probability distribution

" According to the definition a composite quantum system is in classically correlated/separable state if
the later represents a convex combination of the product states. A state that is not separable is said to be
the entangled.
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n

P(Z)= Hlp(zl-j) z%exp(—Tr(ZTZ)) (1)
i,j= i

the Ginibre's measure for probability distribution is given as:
dug (2) = P(z)Tr(dZ*dz). )

Having the random Ginibre matrices the generation of elements from both the Hilbert-Schmidt
and the Bures ensembles becomes easily achievable applying the following simple algorithms.

The Hilbert-Schmidt ensemble. In order to generate the Hilbert-Schmidt states,

P(0)ys = ©(0)d(1-0), 3)

consider a square nxn complex random matrix Z from the Ginibre ensemble. Introducing, for
given Z , the matrix

YAVA

B Tr(z*z)’ @

Ons

it is easy to convinced that o by construction is Hermitian, positive definite matrix with a unit
norm. Furthermore, when matrices Z are generated in Ginibre form, the matrices o represent
elements from the Hilbert-Schmidt ensemble (3).

The Bures ensemble. The Bures measure [12] originates from the statistical distance be-

tween quantum states [13] and can be derived from the following metric corresponding to the
infinitesimal form of the quantum fidelity between states:

ds = %Tr(Gdg), (5)

where, unknown G is subject to the equation dp = Go+ oG . The density matrix distributed in

accordance with the Bures measure can be generated as follows [10]. Consider the random ma-
trix of the form:

I+U)ZZ"1+U™)
%8 = + + |’
Tr[(IHU)ZZ (I+U )}

(6)

where complex matrix Z belongs to the Ginibre ensemble, while U is an unitary matrix, dis-
tributed according to the Haar measure on the unitary group U(n). It can be shown that the

probability distribution for matrices gg coincides with the Bures one [10].

3. Selecting the separable matrices
Now we address the question how to find the separable density matrices among elements
from the generated ensembles. The complete answer to this question for a generic case of an
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arbitrary nxn matrices is unknown. However, for a binary system, composed from two qubits
(2®?2) and qubit-qutrit pairs (2 ® 3 ), there exist well-established criterion.

The separability criterion. Perhaps the most useful tool for qualifying separability is the
famous Peres-Horodecki criterion [14,15], which is based on the idea of the partial transposi-
tion. The partial transpose pT 5 of a density matrix o for the binary system (4 ® B ) with re-
spect to the second subsystem B is defined as

P’ =I®To, (7)

where 7' stands for the standard transposition operation in the subsystem B . According to the
Peres-Horodecki a given state o in dimensions 2®2 and 2®3 are separable if its partially

transposed matrix is semi-positive and only then. Unfortunately, this criterion is not universal.
For higher dimensions, there are entangled states with a positive partial transpose (PPT), e.g.,
even for binary 3®3 system one can find the counterexample for the Peres-Horodecki crite-
rion. Having in mind that ,for systems we are interested in, the Peres-Horodecki criterion is ap-
plicable, a search for separable matrices among to the generated density matrices reduces to the
checking of the positivity of their partial transpositions.

Positivity of the density matrices. Positive semi-definiteness of the Hermitian nxn ma-
trix o implies non-negativity of its eigenvalues:

X, 20, k=12,...,n. (8)

Since the eigenvalues {x} are non-polynomial functions of elements of the density matrix
o the usage of inequalities (8) is not helpful computationally. Fortunately, for the Hermitian

matrices the inequalities (8) are equivalent to the non-negativity of the first n -symmetric poly-
nomials in eigenvalues, the coefficients of characteristic equation for the matrix o

S, >0, k=12,...n (9)

The coefficients S, , being the polynomial functions of density matrix, are expressible in terms

of the traces of powers of the density matrix ¢, = Tr(pk ),

10 0
| L 4 2
k-1
e 1 T I

and therefore are more attractive from the computational point of view. For further details see
e.g., [16,17] and references therein.
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4. Geometric probability
Gathering all above preliminary information one can define the separability probabilit for
a bipartite systems of 2-qubits or qubit-qutrit as

I
,Psep(g‘p-i— NB,) :&a (11)

where the integrals in (11) are defined over the following spaces: ‘B, 1is the total space of
states, if3+ the image of ‘3, under the partial transposition map I®T. The intersection

BN B . represents the subset of ‘B3, invariant under the partial transposition map 1® T:

BB ={pePIOTpeR, | .

The measure dp in integrals (11) is determined by the Riemannian metrics defined on the

space of density matrices. Noting, that the volume of space of states in terms of both Hilbert-
Schmidt metric [18] and Bures metric [19] is known, the problem of determination of separa-

bility probability reduces to the evaluation of the integral over the set 3, N B .

5. Results and concluding comments
Even from the first glance it is clear that a straightforward calculation of the multidimen-

sional integral over the set P, N B . 1s not a simple task. To avoid very cumbersome computa-
tions it is instructive to proceed with numerical methods, adopting the Monte-Carlo ideology.

Generating random density matrices, distributing according a certain measure, and then
counting the number of matrices satisfying the PPT conditions:

S2>0,  k=12,..,n, (12)

we will determine the separability probability. The results of our numeric experiments are
listed in the Table 1, where the fractional approximations for the probabilities are given in the
last column.

Table 1. Probabilities for 2-qubits and qubit-qutrit pairs.

Quantum System Separable ‘ Entangled | Rational | Primes
Hilbert-Schmidt metric
8 2’
2®2 24.24% 75.76% —
33 3*¥11
1 4
2®3 3.73% 96.27% 1o _2
429 3*¥11*13
Bures metric
2®2 7.3% 92.7% SLEN 79
10843 7*1549
2®3 0.1% 99.9% _D_ __P
63499 11%13*443
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Concluding it is necessary to note, that our numerical computations strongly supports the
fractional value 8/33 for qubits pairs separability probability, that had been conjectured by
P.B. Slater few years ago [20]. However, a rigorous analytical derivation of this result, and
other simple rational values, given in the Table 1, remains an interesting unsolved yet problem.
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