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DESCRIBING THE ORBIT SPACE OF THE GLOBAL UNITARY ACTIONS FOR MIXED
QUDIT STATES

V. P. Gerdt,∗ A. M. Khvedelidze,† and Yu. G. Palii‡ UDC 512.81, 530.145

The unitary U(d)-equivalence relation on the space P+ of mixed states of a d-dimensional quantum system defines

the orbit space P+/U(d) and provides its description in terms of the ring R[P+]
U(d) of U(d)-invariant polynomials.

We prove that the semi-algebraic structure of P+/U(d) is completely determined by two basic properties of density
matrices, their semi-positivity and Hermiticity. In particular, it is shown that the Procesi–Schwarz inequalities in
the elements of the integrity basis for R[P+]

U(d) defining the orbit space are identically satisfied for all elements
of P+. Bibliography: 9 titles.

1. Introduction

The basic symmetry of isolated quantum systems is the unitary invariance. It determines equivalence relations
between the states and defines the physically relevant quotient space. For composite systems, the implementation
of this symmetry has very specific features leading to such a nontivial phenomenon as the entanglement of
quantum states.

The space P+ of mixed states of a d-dimensional binary quantum system is locus in quo for two unitary actions
of groups: the group U(d) and the tensor product group U(d1) ⊗ U(d2), where d1, d2 stand for the dimensions
of subsystems, d = d1d2. Both groups act on a state � ∈ P+ in the adjoint manner:

(Ad g )� = g � g−1. (1)

As a result of this action, one can consider two equivalence classes of �: the global U(d)-orbit and the local
U(d1) ⊗ U(d2)-orbit. The collection of all U(d)-orbits, together with the quotient topology and differentiable
structure, defines the “global orbit space,” P+/U(d), while the orbit space P+/U(d1) ⊗ U(d2) represents the
“local orbit space,” or the so-called entanglement space Ed1×d2 . The latter space is a stage for manifestations of
the intriguing effects occurring in quantum information processing and communications.

Both orbit spaces admit representations in terms of the elements of an integrity basis for the corresponding
ring of G-invariant polynomials, where G is either U(d) or U(d1)⊗U(d2). They can be obtained by implementing
the Procesi–Schwarz method, introduced in the 80s of the last century for describing the orbit space of an action
of a compact Lie group on a linear space [1,2]. According to Procesi and Schwarz, the orbit space is identified with
the semi-algebraic variety defined by the syzygy ideal for the integrity basis and the semi-positivity condition
Grad(z) ≥ 0 for a certain matrix, the so-called “gradient matrix,” which is constructed from the elements of the
integrity basis. In the present note, we address the problem of applying this generic approach to the construction
of P+ /U(d) and P+/U(d1)⊗U(d2). Namely, we study whether the semi-positivity of the Grad matrix introduces
new conditions on the elements of the integrity basis for the corresponding ring R[P+]G. Below it will be shown
that for the global unitary invariance, G = U(d), the semi-algebraic structure of the orbit space is determined
solely from the physical conditions on density matrices, their semi-positivity and Hermiticity. The conditions
Grad(z) ≥ 0 do not bring new restrictions on the elements of the integrity basis for R[P+]U(d). In contrast to
this case, for the local symmetries, the Procesi–Schwarz inequalities affect the algebraic and geometric properties
of the entanglement space.

Our presentation is organized as follows. In Sec. 2, the Procesi–Schwarz method is briefly stated in the form
applicable to the analysis of the adjoint unitary action on the space of states. In Sec. 3, the semi-algebraic
structure of P+/U(d) is discussed. The final section is devoted to a detailed consideration of two examples, the
orbit space of a qutrit (d = 3) and the global orbit space of a four-level quantum system (d = 4).
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2. The Procesi–Schwarz method

Here we briefly state the above-mentioned method for constructing the orbit space elaborated by Procesi and
Schwarz for the case of an action of a compact Lie group on a linear space [1, 2].

Consider a compact Lie group G acting linearly on the real d-dimensional vector space V . Let R[V ]G be
the corresponding ring of G-invariant polynomials on V . Let P = (p1, p2, . . . , pq) be the set of homogeneous
polynomials that form an integrity basis:

R[x1, x2, . . . , xd]G = R[p1, p2, . . . , pq].

The elements of the integrity basis define the polynomial mapping

p : V → R
q; (x1, x2, . . . , xd) → (p1, p2, . . . , pq). (2)

Since p is constant on the orbits of G, it induces a homeomorphism of the orbit space V/G and the image X of
the mapping p: V/G � X, see [1, 2]. In order to describe X in terms of P uniquely, it is necessary to take into
account the syzygy ideal of P, i.e.,

IP =
{
h ∈ R[y1, y2, . . . , yq] : h(p1, p2, . . . , pq) = 0

} ⊆ R[V ].

Let Z ⊆ R
q denote the locus of common zeros of all elements of IP ; then Z is an affine variety in R

q such that
X ⊆ Z. Denote by R[Z] the coordinate ring of Z, that is, the ring of polynomial functions on Z. Then the
following isomorphism takes place [3]:

R[Z] � R[y1, y2, . . . , yq]/IP � R[V ]G.

Therefore, the subset Z is essentially determined by R[V ]G, but in order to describe X, further steps are required.
According to [1,2], the necessary information about X is encoded in the semi-positivity of the q× q matrix with
elements given by the inner products of the gradients grad (pi):

‖Grad‖ij =
(
grad

(
pi

)
, grad

(
pj

))
.

Briefly summarizing all the above, the G-orbit space can be identified with the semi-algebraic variety defined
as the set of points satisfying the following two conditions:

(a) z ∈ Z, where Z is the surface defined by the syzygy ideal for the integrity basis of R[V ]G;
(b) Grad(z) ≥ 0.
With these basic facts in mind, one can pass to the construction of the orbit space P+/U(d). First we describe

the generic semi-algebraic structure and then exemplify it by considering two simple three- and four-level quantum
systems.

3. The semi-algebraic structure of P+/U(d)

The first step making the Procesi–Schwarz method applicable to the case we are interested in consists in the
linearization of the adjoint U(d)-action (1). For a unitary action, one can achieve this as follows. Consider the
space Hd×d of d× d Hermitian matrices and the mapping

Hd×d → R
d2
;

�11 = v1, �12 = v2, . . . , �1d = vd, �21 = vd+1 . . . , �dd = vd2 .

Then it can easily be verified that the linear representation on R
d2

defined by

v′ = Lv , L ∈ U(d)⊗U(d) ,

where the bar stands for the complex conjugation, is isomorphic to the initial adjoint U(d)-action (1).
Now, for the mapping (2), we need a corresponding integrity basis P = (p1, p2, . . . , pq) for the ring of invariant

polynomials. To construct it, the following observation is in order. Starting from the center Z(su(d)) of the
universal enveloping algebra U(su(d)), according to the well-known Gelfand theorem, one can define an isomor-
phic commutative symmetrized algebra of invariants S(su(d)), which is in turn isomorphic to the algebra of
invariant polynomials over su(d), see [4]. The latter provides a needed source of coordinates that can be used to
parameterize the orbit space P+/U(d). For our purposes, it is convenient to choose the integrity basis formed by
the so-called trace invariants. Namely, below we use the polynomial ring R[v1, v2, . . . , vd2 ]U(d) = R[t1, t2, . . . , td]
with n basis elements

tk = tr(�k), k = 1, 2. . . . , d. (3)
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In terms of the integrity basis (3), the Grad matrix reads

Grad(t1, t2, . . . , td) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

d 2t1 3t2 · · · dtd−1

2t1 22t2 2 · 3t3 · · · 2 · dtd
3t2 2 · 3t3 32t4 · · · 3 · dtd+1

...
...

...
...
...
...

dtd−1 2 · dtd 3 · dtd+1 · · · d2t2d−2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (4)

In (4), the polynomials tk with k > d are expressed as polynomials in (t1, t2, . . . , td). From (4) one can easily
obtain that

Grad(t1, t2, . . . , td) = χDisc(t1, t2, . . . , td)χT , (5)

where χ = (1, 2, . . . , d) and Disc(t1, t2, . . . , td) denotes the matrix

Disc(t1, t2, . . . , td) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

d t1 t2 · · · td−1

t1 t2 t3 · · · td
t2 t3 t4 · · · td+1

...
...

...
...
...
...

td−1 td td+1 · · · t2d−2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (6)

In turn, the matrix (6) can be written as the “square” Disc (t1, t2, . . . , td) = ΔΔT of the Vandermonde matrix

Δ(x1, . . . , xd) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 x1 x2
1 . . . xd−1

1

1 x2 x2
2 . . . xd−1

2

1 x3 x2
3 . . . xd−1

3
...

...
...

...
...
...

1 xd x2
d . . . xd−1

d

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (7)

whose columns are determined by the powers of the roots (x1, x2, . . . , xd) of the characteristic equation

det ‖x− �‖ = xd − S1x
d−1 + S2x

d−2 − · · ·+ (−1)d Sd = 0. (8)

The semi-positivity condition for the matrix (6) guarantees that the roots of (8) are real. Thus the semi-positivity
of the Grad matrix is equivalent to the condition that the eigenvalues of the density matrix � written in terms of
the U(d) polynomial scalars are real. Finally, noting that, by construction, the density matrices are Hermitian,
we see that the Procesi–Schwarz inequalities are satisfied identically on P+.

Summarizing, the algebraic structure of the orbit space P+/U(d) is completely determined by the inequalities
in the elements of the integrity basis for the polynomial ring R[t1, t2, . . . , td] originating from the Hermiticity and
semi-positivity conditions on the density matrices.

4. Two examples

The algebraic structure of the orbit space of a quantum system is highly intricate. The examples of d = 3
(qutrit) and d = 4 considered below demonstrate the degree of its complexity even for low-dimensional systems.

4.1. The orbit space of a qutrit. A qutrit is a 3-dimensional quantum system, and an integrity basis for the
ring of U(3)-invariant polynomials consists of the first-, second-, and third-order trace polynomials t1, t2, t3. For
illustrative purposes, below we consider the case of normalized density matrices, assuming that t1 = 1.1

The condition for the eigenvalues to be real is

0 ≤ 1
6

(
3t32 − 21t22 + 36t3t2 + 9t2 − 18t23 − 8t3 − 1

)
, (9)

1It is worth noting that the description of the qutrit orbit space is similar to the studies of the flavor symmetries of hadrons
performed more than forty years ago by Michel and Radicati [5] (cf. the adaptation of the method to the analysis of the space of
quantum states [6–8]).
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while the semi-positivity of the density matrices, stated as the nonnegativity of the coefficients of the characteristic
equation (8), reads

0 ≤ 1
2
(1− t2) ≤ 1

3
,

0 ≤ 1
6
(1− 3t2 + 2t3) ≤ 1

9
.

Solving the inequalities

1
3
≤t2 ≤ 1,

3
2
t2 − 1

2
≤t3 ≤ 3

2
t2 − 1

6
,

−4 + 18t2 −
√
2(3t2 − 1)3/2 ≤ 18t3 ≤ −4 + 18t2 +

√
2(3t2 − 1)3/2,

we get the intersection domain shown in Fig. 1. The triangular domain ABC bounded by the lines

AB : t3 =
1
18

(−4 + 18t2 +
√
2(3t2 − 1)3/2),

AC : t3 =
1
18

(−4 + 18t2 −
√
2(3t2 − 1)3/2),

BC : t3 =
3
2
t2 − 1

2
,

with vertices2 A( 13 ,
1
9 ), B(1, 1), and C( 12 ,

1
4 ), represents the orbit space of the qutrit in the parametrization by

the trace polynomial coordinates.

Fig. 1. The triangular domain ABC as the orbit space of the qutrit.

Now it is in order to discuss the correspondence between the above algebraic results and the known classifica-
tion of orbits with respect to their stability group. With this issue in mind, consider the Bloch parametrization
for the qutrit:

ρ =
1
3

(
I3 +

√
3 ξ · λ

)
, (10)

2Note that the straight line BC is tangent to the curve AB at the point B:

dt3

dt2
= 1 +

1

2
√
2
(3t2 − 1)1/2,

dt3

dt2

∣
∣
∣
t2=1

=
3

2
.
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where ξ = (ξ1, ξ2, · · · , ξ8) ∈ R
8 denote the Bloch vector and λ is the vector whose components are the elements

(λ1, λ2, · · · , λ8) of a basis of the algebra su(3), say the Gell–Mann matrices

λ1 =

⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ , λ2 =

⎛

⎝
0 −i 0
i 0 0
0 0 0

⎞

⎠ , λ3 =

⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ ,

λ4 =

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , λ5 =

⎛

⎝
0 0 −i
0 0 0
i 0 0

⎞

⎠ , λ6 =

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ ,

λ7 =

⎛

⎝
0 0 0
0 0 −i
0 i 0

⎞

⎠ , λ8 =
1√
3

⎛

⎝
1 0 0
0 1 0
0 0 −2

⎞

⎠ ,

(11)

obeying the relations
[λi, λj ] = 2ıfijkλk, tr (λiλj) = 2δij , (12)

with nonvanishing structure constants

f123 = 2f147 = 2f246 = 2f257 = 2f345 = −2f156 = −2f367 =
2√
3
f458 =

2√
3
f678 = 1. (13)

To analyze the adjoint orbit O� that passes through the point �, we define the set of tangent vectors

li = lim
θ1,θ2,...θ8→0

∂

∂θi

[
U

(
θ1, θ2, . . . θ8

)
�U

(
θ1, θ2, . . . θ8

)]
= ı[λi, �]. (14)

By definition, the dimension of the orbit dim(O�) is given by the dimension of the tangent space to the orbit TO�

and, therefore, equals the number of linearly independent vectors among the eight tangent vectors l1, l2, . . . , l8.
This number depends on the point � and, according to a well-known theorem from linear algebra, is given by
the rank of the so-called Gram matrix

Aij =
1
2
‖tr(lilj)‖. (15)

In the Bloch parametrization (10), we easily find that

Aij =
4
3
fimsfjnsξmξn . (16)

To estimate the rank of the matrix (15), it is convenient to pass to the diagonal representative of the matrix �:

� = W

⎛

⎝
x1 0 0
0 x2 0
0 0 x3

⎞

⎠W+ , (17)

where W ∈ SU(3)/S3 and the descending order of the eigenvalues is chosen:

1 ≥ x1 ≥ x2 ≥ x3 ≥ 0.

The latter constraints allow one to avoid double counting due to the S3 ⊂ U(3) symmetry of permutations of
eigenvalues of the density matrix. Using the principal axis transformation (17) and taking into account the
adjoint properties of the Gell–Mann matrices W+λiW = Oijλj with O ∈ SO(8), the matrix Aij can be written
as

Aij = OikA
diag
kl OT

lj . (18)

The matrix Adiag
kl in (18) is the matrix (15) constructed from the vectors ldiagi = i[λi, �diag] tangent to the orbit

of the diagonal matrix �diag := diag(x1, x2, x3).
Since we are interested in determining rank|A|, relation (18) allows us to reduce this question to the eval-

uation of the rank of the diagonal representative �diag. For diagonal matrices, the Bloch vector is ξdiag =
(0, 0, 0, ξ3, 0, 0, 0, ξ8). Taking into account the values of the structure constants from (13), the expression for
|Adiag| reads

Adiag =
1
3
diag

(
4ξ23 , 4ξ

2
3 , 0, (ξ3 +

√
3ξ8)2, (ξ3 +

√
3ξ8)2, (ξ3 −

√
3ξ8)2, (ξ3 −

√
3ξ8)2, 0

)
. (19)

From (19) we conclude that there are orbits of three different dimensions:
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• orbits of maximal dimension dim(O�) = 6,
• orbits of dimension dim(O�) = 4,
• the zero-dimensional orbit, the single point ξ = 0.

The above algebraic description of the orbits O� corresponds to their classification based on the analysis of
the group of transformations G�, the isotropy group (or stability group) that stabilizes the point � ∈ O�. Orbits
of different dimensions have different stability groups; for points lying on an orbit of maximal dimension, the
stability group is the Cartan subgroup U(1) ⊗ U(1) ⊗ U(1), while the stability group of points with diagonal
representative λ8 is U(2)⊗U(1). The dimensions of the listed orbits agree with the general formula

dimO� = dimG− dimG� . (20)

Since the isotropy groups of any two points on an orbit coincide up to conjugation, the orbits can be partitioned
into sets with equivalent isotropy groups.3 These sets are known as “strata.”

In conclusion, we mention the relations between the triangle ABC depicted in Fig. 1 and the corresponding
strata. The domain inside the triangle ABC corresponds to the principal stratum with stability group U(1) ×
U(1)×U(1). The discriminant is positive, |Disc| > 0, the density matrix has three distinct real eigenvalues, and
the representative matrix reads 1

3 (I3 +
√
3 (ξ3λ3 + ξ8λ8)) with ξ3 and ξ8 subject to the following constraints:

0 < 1− ξ23 − ξ28 < 1,

0 < (2ξ8 − 1)(1−
√
3ξ3 + ξ8)(1 +

√
3ξ3 + ξ8) < 1.

The coefficient S3 vanishes at the line BC. The boundary line BC except for the vertices B and C also belongs
to the principal stratum, while the points B and C belong to a stratum of lower dimension. On the sides AB and
AC the discriminant is zero, |Disc| = 0, hence the density matrix has three real eigenvalues and two of them are
equal. At the point B, two eigenvalues of � vanish. The lines AB \ {A} and AC \ {A} represent the degenerate
4-dimensional orbits whose stability group is U(2)⊗ U(1). Finally, the point A is the zero-dimensional stratum
corresponding to the maximally mixed state � = 1

3 I3. The details of the orbit types are collected in the table
below.

dimO Stratum Stability group Representative matrix Constraints

6 The interior
of the triangle
ABC

U(1)⊗ U(1)⊗ U(1) 1
3 (I3+

√
3
(
ξ3λ3 + ξ8λ8

)
) Disc>0, S2>0, S3>0

Boundary:
BC/{B,C} U(1)⊗ U(1)⊗ U(1) 1

3

(
I3+

√
3
(
ξ3λ3 + 1

2λ8

))
Disc>0, S2>0, S3=0

4
Boundary:
AB/{A}
AC/{A}

U(2)⊗ U(1)

1
3

(
I3 +

√
3 ξ8λ8

)

1
3 (I3 +

√
3ξ8

(√
3λ3 + λ8

)
)

1
3

(
I3 +

√
3ξ8

( −√
3λ3 + λ8

)) Disc=0, S2≥0, S3≥0

0 Point: {A} U(3) 1
3 I3 Disc = S2 = S3 = 0

Table 1. The strata decomposition for the orbit space of the qutrit.

3The isotropy group of a point � depends only on the algebraic multiplicity of the eigenvalues of the matrix �.
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4.2. The orbit space of a four-level quantum system. The density matrix � of a 4-level quantum system
in the Bloch form reads

ρ =
1
4

(
I4 +

√
6 
ξ · 
λ

)
, (21)

where the traceless part of � is given by the inner product of the 15-dimensional Bloch vector 
ξ = {ξ1, . . . , ξ15} ∈
R

15 with the λ-vector whose components are the elements of the Hermitian basis of the Lie algebra su(4):

λiλj =
1
2
δijI4 + (dijk + i fijk)λk, i, j, k = 1, . . . , 15.

The corresponding integrity basis for the polynomial ring R[P+]U(4) consists of three U(4)-invariant polynomials,
the Casimir scalars C2,C3,C4:

C2 = 
ξ · 
ξ, C3 =

√
3
2
dijkξiξjξk , C4 =

3
2
dijkdlmkξiξjξlξm. (22)

The semi-positivity of (21) can be stated as the nonnegativity of the coefficients S2, S3, and S4 of the characteristic
polynomial (8):4

S2 =
3
8
(1− C2) ≥ 0,

S3 =
1
16

(1− 3C2 + 2C3) ≥ 0, (23)

S4 = det ρ =
1
256

((1− 3C2)2 + 8C3 − 12C4) ≥ 0.

Now we are in a position to compute the Grad matrix in terms of the SU(4) Casimir scalars:

Grad =

⎛

⎝
4C2 6C3 8C4

6C3 9C4 12C2C3

8C4 12C2C3 4(C2
3 + 3C2C4)

⎞

⎠ . (24)

Passing to the equivalent matrix QGradQT with Q = diag(2, 3, 2), we arrive at the following form for the
Procesi–Schwarz inequalities:

C2 + C2
3 + 3C2C4 + C4 ≥ 0 , (25)

C2
3

(−4C2
2 + C2 + C4 − 1

)
+ C4

(
3C2

2 + 3C2C4 + C2 − 4C4

) ≥ 0 , (26)

−4C3
2C

2
3 + 3C2

2C
2
4 + 6C2C

2
3C4 − C4

3 − 4C3
4 ≥ 0 . (27)

The domain describing the semi-positivity (23)–(25) of ρ and its residual part obtained by imposing the condition
of the semi-positivity of the Grad matrix (25)–(27) are depicted in Fig. 2.

Fig. 2. On the left: ρ ≥ 0. On the right: ρ ≥ 0 ∩Grad ≥ 0.

4For details, we refer to [9].
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