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Abstract

The fate of entanglement of spins for two heavy constituents of a bound state moving in a
strong laser field is analyzed within the semiclassical approach. The bound state motion as a
whole is considered classically beyond the dipole approximation and taking into account the
magnetic field effect by using the exact solution to the Newton equation. At the same time the
evolution of constituent spins under the laser influence is studied quantum mechanically. The
spin density matrix is determined as a solution to the von Neumann equation with the effective
Hamiltonian, describing spin—laser interaction along the bound state classical trajectory. Based

on the solution, the dynamics of concurrence of spins is calculated for the maximally
entangled Werner states as well as for an initially uncorrelated state.

PACS numbers: 42.50.Ct, 03.65.Ud, 03.67.Bg, 34.80.Qb

1. Introduction

The entanglement of quantum states is a fundamental resource
in quantum communication and computation [1]. In spite of
the enormous progress in theoretical and experimental studies,
the problem of effective control over entanglement and other
quantum characteristics of multi-particle states as yet remains
unsolved. Over the last two decades, special attention was
devoted to models based on the usage of a coherent laser
radiation. In most cases, for instance in the Cirac—Zoller
model of quantum computation with cold trapped ions [2],
the laser frequency and polarization play a role in the relevant
control parameters. However, the recent impressive success
in the construction of high-intensity lasers [3] offers an
alternative control parameter, the intensity of the coherent
electromagnetic radiation. Indeed, entering the regime of a
high intensity, a variety of new physical phenomena have
been discovered (see, e.g., [4] and references therein). Very
interesting expositions on a strong laser influence on spins of
single particles [5] as well on atoms [6] have been predicted.
Evidently, it deserves attention to investigate whether the new
effects due to the laser intensity can be used for the purposes
of quantum engineering.

Moving toward this direction, it is worth emphasizing that
the entanglement description in the presence of a strong laser
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radiation is a highly complex problem owing to the following
circumstances:

(a) The dynamics of a non-relativistic charged particle
driven by a low-intensity laser is fully determined
by the electric component of electromagnetic field.
The electric field dominance together with the dipole
approximation provides a consistent solution to the
equation of motion for the classical trajectory of a
charged particle [7] in a way not affecting its spin
dynamics [8]. This scheme works perfectly well for
various applications of low-intensity lasers [9]. With a
laser intensity large enough, the relativistic corrections
to the electric charge motion become unavoidable. This
requires one to abandon the electric dipole approximation
and take into account the magnetic field influence [10-13]
on classical trajectory as well as on the particle spin
evolution.

(b) Since in dealing with a high-intensity laser the relativistic
description is inevitable, it is necessary to extend
the conventional non-relativistic quantum formalism for
the entanglement phenomena to the relativistic case.
Today, in spite of the undertaken efforts, we are still
far from having a complete picture of the relativistic
entanglement.

© 2013 The Royal Swedish Academy of Sciences Printed in the UK
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In subsequent sections, taking into account these
observations, we adopt the conventional semiclassical attitude
to the dynamics of charged particles in an electromagnetic
background. The semiclassical motion of a binary bound state
driven by a high-intensity monochromatic and elliptically
polarized laser radiation is modeled and studied in the context
of dynamics of entanglement. We address the question of how
the intensity of a laser can affect the correlations between
constituent spins. The analysis of the entanglement in a strong
laser background presented here was developed out of the
recent studies [14, 15].

In the spirit of the Wentzel-Kramers—Brillouin (WKB)
approximation, the binary composed system motion as a
whole is studied classically, assuming that the back reaction of
spin of the constituents on the particle dynamics is negligible
(see this approximation in [16, 17]). Our analysis is based
on the exact solution to the Hamilton—Jacobi equations for
the trajectory of a charged particle interacting with the
electromagnetic plane wave [14]. In doing so, the spin
evolution will be treated quantum mechanically, as required
by a spin nature, using the von Neumann equation for the
spins density matrix with the leading relativistic corrections
included. Furthermore, the spin-radiation interaction is
encoded in the effective spatially homogeneous Hamiltonian
which is determined solely by the bound state classical
trajectory (see discussions on this approximation in [5]).

2. Semiclassical model for strong laser—bound state
interaction

Consider a massive (Mp), electrically charged (—gp)
bound state composed of two charged (™, e®), massive
(m™, m®), spin-1/2 particles interacting with a laser
radiation modeled by the monochromatic plane wave
propagating along the z-axis:

At,x) = a(s cos(wp€), v 1 —e%sin(w &), 0), E=1t— g
(D

In (1) the parameter ¢ € [0, 1] denotes the light polarization
and w, is the wave frequency. The constant a determines the
dimensionless laser field strength parameter [18, 19]
2 _ gz @’
M3t

setting the scale for the intensity of a laser—bound state
interaction.

The semiclassical picture is mathematically formulated
as follows. Let us divide all configuration variables into three
parts: the center-mass coordinate

R=m"r,+m®r,)/ Mg,

the relative coordinate between constituents r = r, — r}, and
their spin variables. Correspondingly, the Hilbert space H is
decomposed as

H=Hcm ® Hrm @ Hspin.

The dynamics on 7 is assumed to be driven by the
following interactions:

e The electric charge of the bound state has a point-like
distribution, peaked at the position of its center of mass
R with a ‘point-like’ part of the laser—charge interaction
Ve described by the conventional radiation scattering
of the electric charge —gp, moving with the velocity
vr =dR / dr

Vo := I8 e - A, R).
C

e The degrees of freedom of the constituents evolve in time
and interact with each other (V) as well as with a laser
radiation (Vsr)

VB =Vo(r) +Vss(r), Vss(r) :=Vs(r)S®S,

where Vj(r) and Vs(r) are scalar functions of the relative
distance r = |r, — r}| between constituents, and the Pauli
matrices ¢ = (o1, 03, 03) are used to describe the spin
of constituents, S = %’6. The spin-laser coupling Vg, is
determined by the magnetic moments of constituents in
the relativistically modified Larmor form

VoL :=—Q"(t,r,) - S™ — P, rp) - SV,

where the vector Q) reads

@0~ 8" (g Lro ) sl o x g
—m( —Z[U X ])+ﬁ[v X a ]
2
E and B in (2) are, respectively, the electric and magnetic
components of a laser field evaluated along the trajectory
of the ith particle (with the gyromagnetic ratio g)
moving with the velocity v and acceleration a” seen
in the laboratory frame. The term in parentheses is the
magnetic field in the instantaneous rest frame of a charged
particle (Galilei boosted), while the last contribution
in (2) is the leading relativistic Thomas precession
correction [20] due to the non-vanishing curvature of the

particle trajectory, see, e.g., [7].

Gathering all the above together, the evolution of a bound
state traveling in the laser background is governed by the total
Hamiltonian

H = H0+VSS+VCL+VSL,

where Hj is the Hamiltonian of free spinless constituents.

3. The terse summary of computation

3.1. Evolution of center of mass motion of bound state

In the leading semiclassical approximation the contribution to
the phase of wave function that comes from the laser—spin
interaction term Vgp, is negligibly small. This term will come
into play later on, when we turn to a study of dynamics of spin
degrees. Therefore the density matrix of our system admits the
charge and spin decomposition

P= CalVa) ® 3)
a==%
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where two states |[{y) are linearly independent WKB
solutions to the Schrodinger equation with the Hamiltonian
Hy+ Vss+ Ve, and g, is the density matrix of constituent
spins. This Hamiltonian admits separation of the relative and
absolute motion, and for the last, one can use the exact
solution [14] to the analogous Hamilton—Jacobi problem
for a point-like charged particle. According to [14], the
Hamilton—Jacobi generating function for a spinless particle
traveling in an arbitrary plane wave background of the form
A, :=1(0,A,(§),0) reads

FE )= —cimc—TII,)&E+c

&
x/ du/(me—T1)2+ W, ), @)
0
where
62 2 e
WE ML) =—— Al +2- AL -T1.
C C

The constants 1, and IT; are determined from the initial
value of the particle velocity. With the aid of (4) the standard
calculations give the leading semiclassical wave function

(x, 1) = el eié exp %f(s, o).

1
JIOFToE]
To make formulae more compact, let us impose the initial
condition on the classical trajectory R(t =0) =0 and fix
the frame, where the time-average value of the component
of particle velocity orthogonal to the electromagnetic
wave propagation direction vanishes, ({(v,)) = 0. From the
generating function (4), it follows that the bound state center
of mass moves along the trajectory:

c | &2 )
R.(t) = —w—L T2 arcsin[u sn(u, )], (®)]

1—¢2 , dn(u,
Ry([):i o pen(u, w)+dn(u, @) L ©)
oL | 1—-2¢2 1+u

R.(t) = ct — — am(u, p). %)
wL

The trajectory (5)—(7) is expressed in terms of the Jacobian
elliptic functions sn(u, u), cn(u, u), dn(u, ) and the
amplitude function am(u, u) [21]. The argument u := w| ¢
of these functions is the laboratory frame time ¢ scaled by
the laser frequency w| =y, w non-relativistically Doppler
shifted by y, = 1 — v,;(0)/c. The modulus p is determined by
the laser and the particle characteristics

y2ut=(1-26% 0"

In (5)-(7) the modulus belongs to the fundamental
domain 0 < ? < 1. The solution outside this interval can be
reconstructed from it by using the modular properties of the
Jacobian functions. For the corresponding details, see [14].

3.2. The evolution of spin degrees

The semiclassical calculations imply that the spin density
matrix o in the decomposition (3) satisfies the spin evolution
equation written in the form of the von Neumann equation

o(t) = —% [Hs(1). o(t)]. ®)

The effective spin Hamiltonian Hg is defined as the projection
of the Hamiltonian Vgg + Vg, to the classical trajectory of the
constituent particles:

Hs(t) = Vss + Vs 9

Particles classical trajectory

To evaluate (9), we follow the spirit of the Born—Oppenheimer
approximation [22]. Namely, we ‘freeze’ the relative motion
of constituents inside the bound state, i.e. approximate their
relative trajectory by the mean value (r(#)) =0 and neglect
all contributions of order v;/c, where v is the relative velocity
of constituents. A straightforward evaluation of the effective
laser—spin Hamiltonian (9) gives

Hs=-B"().S®I-1®S-BP )+ H), (10)

where B9 (1), i = (n, p), for g9 = (e /m?) (Mg /qp) g
read

B (1) =2V T = [ + DG, w) = v entu. ).

B () =17 [(@ + Ddnt w) - y.(1 = p))] sn(u. ).

i 1) o
BO(1)= —n' V12 [z — ydnu, w)].
Similarly, the spin—spin interaction term H; in (10)
originates from Vgg under the same static approximation for
the spatial relative degrees of freedom:

hH;=gS®S. an

The constant g in (11) is determined by the spin—spin potential
evaluated at the mean value of the relative distance between
the constituents, g := 7 Vs(0).

4. Dynamics of entanglement

Now one can analyze the dynamics of entanglement under
the environment coupling [23] realized in our model by a
background laser radiation. We postpone for a future analysis
a generic case and consider the dynamics of density matrices
of a special type only.

4.1. Werner states.

Consider first a family of entangled mixed states, the so-called
Werner states [24], characterized by a single real parameter p
that measures the overlap of a given Werner state with the
maximally entangled pure Bell state

1
QW2=Z(I+[70'®O'). (12)
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For 1 < p <1 the density matrix (12) describes the mixed
entangled state.

To find the fate of the entanglement of the initial Werner
state, we use the expression for the evolution operator U (t) =
X(t)W(t) given in the appendix. Since the entanglement
properties are invariant under the local unitary transformation
of the form W(t) = Un)(t) ® Upy(¢), only the action of
the operator X (¢#) may affect the entanglement. With this
observation one can easily evaluate the leading, in a laser
intensity, change of the density matrix

i
d0w = ﬁ[Vl, owl.

This gives the expression

1 . 3.
Sow = —58n pAsin(wri) |:COS(4gl) o0 + 7 sin(4gr) 0[121] ,

where
A = g,(n) _g(p),
O] =0, ®0, —0,®0,(u,v=0,1,2,3),

and oy is the unit 2 x 2 matrix. As a result, one can obtain
that in the leading order in a laser intensity the concurrence is
stable under the influence of a laser background:

3p—1
3 .

The same strategy can be applied to the initially uncorrelated
spin state

C(ow) = max <0,

4.2. Initially uncorrelated spins

1 1 1
00=— <I+Ol E (ooz+030) + B 5 (003 _030)) .

4

Our calculations show that the concurrence, in leading order
in n, is

Cloo) =max (0, 4nlBgAQ —V1-a?),  (13)
where
b
o) = o +4g sin“(w /2 +2g)t
+ sinz(wL/2—2g)t.
wp —4g

This example demonstrates the possibility of formation
of the entanglement solely due to the effects of a laser
field intensity. Note that, remaining within the dipole
approximation and ignoring the intensity influence on the spin
dynamics, we will obtain the vanishing concurrence rather
than the above derived result (13).

5. Concluding remarks

In the present paper aimed to understand the dynamics of
entanglement under a strong field influence, we formulated

a model for the bound state composed of two heavy charged
spin-1/2 particles traveling in a laser field. The relative motion
of constituents was treated within the Born—Oppenheimer
method [22] and the semiclassical approximation has been
used to find the evolution operator. Our studies show the
following:

e The entanglement between constituents with different
gyromagnetic ratios evolves in a manner strongly
dependent on the intensity of a laser beam as well as on
the coupling between spins.

e There are cases when the entanglement properties reveal
stability in leading order. This happens particularly for
the Werner states of the spin density matrix.

e There is a possibility to attain the entanglement
manipulating with the laser intensity. In particular, in our
model uncorrelated initial state evolving in laser field
acquires non-trivial concurrence merely due to the strong
laser intensity.

The last observation may have an impact on very
interesting and promising studies of the nonlinear effects in
spin—laser interactions. It may open an alternative way for
the manipulation with entanglement of spins using a laser
intensity as a control parameter.

It is worth noting that the methods suggested in this paper
are adequate and well adapted to description of processes in
the transition from the non-relativistic to relativistic regime
only. For the completeness of the studies, the fully relativistic
treatment is necessary. Today, its elaboration remains an open
and intriguing research area.
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Appendix

Consider (8) for spins evolving in the linearly polarized plane
wave (¢ =0). The spin density matrix o, obeying a certain
initial condition at # =0, is given by the unitary evolution
operator U

o) =U("e0) U*(®).

It is convenient to pass to the ‘interaction picture’ U (t) =
W ()X (t), i.e. factor out from U the operator W(t) :=
U™ () ® UP () that describes the dynamics of spins, (n) and
(p), in a laser background, but not interacting with each other
while precessing. The unknown operator X (¢) is subject to the
equation

X(1) = —% HI(1) X (1) (A1)
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with the Hamiltonian (11) written in the ‘interaction picture’

H(t):=W*H;W = gh (cos ¥_ 6 @ ¢ +sin¥_ oy12)),
(A2)
where

1
ﬁ40:9@—ﬁ@=5nAmm4u

To obtain (A.2) the expression U (1) =exp (3 0?(1) oy)
with

209 @) =1 @Y + 1) sn(u, p) — arcsin(u sn(u, i)

has been used. Note that ¥ (¢) depends nonlinearly on the
laser intensity 1 and only for small intensities n < 1 reduces
to the well-known expression for the angle characterizing the
non-relativistic precession

20NR = n g(n) sin(wr t).

The solution to (A.l) is expressed in terms of the
time-ordered exponent

s t
X (1) =e8VWo®o (exp% / V[(l’)d‘L’) .
0
Here

Y(t) = /t dr cos 9_(t)
0

and
3
Vi(t) :=gh sin_ |:cos(4g1//(t)) ofi2) + 1 sin(4gy (1)) 0[30]] .

For the first factor in X (¢) one can use the remarkable Eulerian
representation

1

elV o8 — 5e””+§e"¢ |:COSZ‘(//+iO’ Qo sin21pi|.
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