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ON THE RING OF LOCAL POLYNOMIAL INVARIANTS FOR A PAIR OF ENTANGLED
QUBITS

V. Gerdt,* A. Khvedelidze,* and Yu. Paliif UDC 517 986

The entanglement characteristics of two qubits are encoded in the invariants of the adjoint action of the group
SU(2) ® SU(2) on the space of density matrices P, defined as the space of 4 X 4 positive semidefinite Hermitian

matrices. The corresponding ring C[‘B+]SU(2)®SU(2) of polynomial invariants is studied. A special integrity basis
for C[‘ILL]SU@)@SU(Q) is described, and the constraints on its elements imposed by the positive semidefiniteness of
density matrices are given explicitly in the form of polynomial inequalities. The suggested basis is characterized
by the property that the minimum number of invariants, namely, two primary invariants of degree 2,3 and one
secondary invariant of degree 4 appearing in the Hironaka decomposition of C[P4+ }SU(2)®SU(2), are subject to the
polynomial inequalities. Bibliography: 32 titles.

1. INTRODUCTION

According to the quantum theory, the nonlocality of the quantum word manifests itself in a way that is very
different from the intuitive classical views At the very outset of the quantum epoch, reflections on that fact
created a variety of paradoxes, starting from the Einstein Podolsky Rosen paradox and the famous Schrédinger
cat neither dead nor alive [1 3] Only towards the end of the 20th century, with advances in technology,
when controlling quantum coherence became reality, the pragmatic approach to the problem posed questions
concerning the practical usage of quantum nonlocality The time for the realization of quantum communications
and creation of a quantum computer came [4]

The difference between quantum and classical correlations has a very transparent mathematical background
One can already formulate it comparing the basic states of classical and quantum computers, bits and qubits
While an arbitrary n bit string can be transformed into another one by a so called “local transformation” acting
on its constituent bits, in the quantum case this is true for one qubit states only In other words, the action of
“local transformations” ceases to be transitive for multi qubit systems [5, 6] The action of local transformations
splits the space of an arbitrary quantum system into equivalence classes, each class being characterized by
different nonlocal properties [7] Therefore the problem of classification of nonlocalities in a system of n qubits
reduces to the mathematical problem of description of orbits of the “local” group action on the space of states
[8, 9] The corresponding orbit space, &y, is termed as the “entanglement space” [5, 6] For its characterization,
the mathematical formalism based on the classical theory of invariants (cf [10, 11]) is often applied In this
approach, in order to separate orbits, i e , to introduce coordinates on FE,,, one uses polynomials in the elements
of the density matrices invariant under the local transformations

The entanglement space has a highly nontrivial geometric and topological structure [6, 12] The complexity
of &, rises sharply as the number of qubits grows This makes computations very tedious However, for the
simplest, 2 qubit, system, the approach based on the classical theory of invariants allows one to obtain a series
of important algebraic results clarifying the properties of &, see [9, 13, 14]

There is one further complication with the description of £, According to physical requirements, density
matrices should be positive semidefinite [15 17] Therefore, the space of the local group action is not a linear
space, but rather a certain semialgebraic variety 84 Applying the classical theory of invariants to the con
struction of the orbit space, one should take into account this circumstance In the present article, this problem
is analyzed, and a detailed solution for the case of 2 qubits is obtained For this reason, the semidefiniteness
of density matrices is formulated explicitly in the form of polynomial inequalities in the scalars of the adjoint
action of the group SU(2) ® SU(2) Moreover, an integrity basis for the polynomial ring C[; [SUP®SUR) that
includes the minimum number of elements subject to the above inequalities will be presented

Our plan is as follows We start, in Secs 2 and 3, with a brief review of necessary notions from quantum
mechanics placing them into a context suitable for the characterization of entanglement within the classical
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theory of invariants Further, in Sec 4, we derive a system of polynomial inequalities in the Casimir operators
of the enveloping algebra su(4) that describes the space P34 Taking into account these inequalities, in the last
section we construct an integrity basis for the ring C[9, |SV(2@SU()

2. THE SPACE OF STATES

A generic mixed state of an n level quantum system is described by an n x n complex matrix, the density
matrix o (see [15, 16]) satisfying the following conditions?:
(i) Hermicity: o = o™,
(ii) finite trace: Tr(p) =1,
(i) positive semidefiniteness: o > 0
The mixed states form a subspace B of the space of Hermitian n x n matrices It is instructive, before
considering a generic n level system, to start with the simplest two level quantum mechanical model

2.1. Qubit

In the quantum theory of information, an abstract quantum mechanical model with two classical states (levels)
holds a special place and, independently of its physical realization, bears the universal name qubit

The state of a qubit is given by a density matrix that coincides with the standard density matrix of the
nonrelativistic spin 1/2:

;(1+a~a), (1)

where o is the set of Pauli matrices? and « is the expectation defined as

Q:

a=Tr(op)

In the representation (1), requirements (i) and (ii) are taken into account by construction Condition (iii)
restricts the parameter space to the unit ball
a® <1, (2)

while for pure states of the qubit, the expectation « lies in the Bloch 2 sphere
o’ =1 (3)

2.2. Qudit

By analogy with a qubit, a special term for a state of a d level quantum system, “qudit,” was introduced The
generalization of the representation (1) to the case of qudits reads as follows (see [18]):

g=fl(ﬂd+\/d(d21)£-x>, @

where &€ = (A) € R”~! is a (d> — 1) dimensional Bloch vector In the expansion (4), the components of the
vector A = (A1, A2,  ,Ag2_1) represent the elements of the algebra su(d) normalized by the conditions

2 .
Aidj = d 0ijla + (dijk + @ fijie) e,

where d;; is the Kronecker symbol, d;;, and f;;, are the structure constants of the algebra, totally symmetric
and antisymmetric, respectively:

1 .
dape = 4 Tr({>\aa >\b}>\6)7 fabc = _;1 Tr(P\a: >\b]>\c):

IThe special class of idempotent matrices, satisfying g? = p, corresponds to the so-called pure states, whose description reduces
to the usage of rays in a Hilbert space. A mixed state is a mixture of pure states.
2The explicit form of the g-matrices is given below, in Sec. 5, formulas (24).
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with
{Aaa >\b} = >\a>\b + >\b>\a: [Aaa >\b] = >\a>\b - >\b>\a

As in the case of a qubit, properties (i) and (ii) of the density matrix of a qudit are already taken into account
in the decomposition (4) The nonnegativity requirement (iii) imposes further restrictions, more subtle than

(2) A complete characterization of the qudit Bloch vector space B(Rdz_l) in an arbitrary dimension is an open
problem However, some general properties of this space are already known Particularly, it can be shown that
B(R¥~1) is a convex subset of the (d2 — 1) dimensional unit ball

€ <1, (5)

and all pure states are concentrated on its surface More precisely, pure states of the qudit are determined by
the equation

£=1 ¢EVE=E, (6)

where

&VEr:= \/d(d; 2 di o diin&i&;

2.3. Composite states

From the standpoint of quantum information theory, of greatest interest are states composed of several qubits
According to the composite system axiom of quantum theory [4], the space of states of the system obtained by
joining two systems A and B is a subspace of the tensor product of their individual Hilbert spaces H4 and Hp:

HCHa®HB (7)

The definition (7), in conjunction with the superposition principle, is the source of the appearance of corre
lations in the joint system that have no classical analog If a mixed state p, describing the joint system A + B,
admits a (not necessarily unique) representation of the form

M M
o= wief @of, wi>0, > wi=1, (8)
i=1 =1

where 93-4 and gf are the density matrices of the subsystems, then this joint state is called separable [7] For
such a state, correlations between the subsystems are classically conceivable But the states of the form (8) are
far from exhausting all possible states of the combined system States that cannot be written in the form (8)
are called entangled

For a pair consisting of an r qudit and an s qudit, it is useful to represent the density matrix in the so called
Fano form [19, 20]:

r’—1 s2—1 r?—1s%2-1

1

0= Hrs—FZaiAl‘@Hs-‘-ZbiHr@Ti“‘ZZcij)\i(@Tj (9)

s i=1 i=1 i=1 j=1
In Eq (9), the matrices A\; and 7; are basis elements of the algebras su(r) and su(s), respectively The real
(r> — 1) x (s> — 1) matrix C = ||c;;|| is the so called “correlation matriz” The meaning of the parameters
a= (a1, ,a,2_1)and b= (b, ,bs2_;) becomes clear after performing the partial trace operation (see [5])

(4) 1 () 1
0 =Tpl= (Ir+a-A), ¢ :=Tal= I;+b-7) (10)

The vectors a and b are Bloch vectors for the subsystems whose states are described by the matrices o(4) and
o'P) | respectively

The entanglement properties of density matrices (9), as well as of more general multipartite systems, admit a
formulation in terms of invariants of the so called local group [9] In the next section, the corresponding notions
will be introduced
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3. THE ENTANGLEMENT SPACE

3.1. The local invariance

On the space of density matrices of an n level system, the adjoint action of the group SU(n) is defined:
0o — J=U'U (11)

If a quantum system is obtained by combining r subsystems with ny,n2, ,n, levels together, the nonlocal
properties of the composite system are in correspondence with a certain decomposition of the unitary operations
(11) Namely, among all the unitary actions we distinguish the group of so called local unitary transformations
(LUT)

SU(n1) ® SU(n2) ® --- @ SU(n,), (12)

acting independently on the density matrix of each subsystem:
o) = g =gl g g eSUMmy), i=12, r (13)

Two states of the composite system connected by a LUT transformation (12) have the same nonlocal properties
They can be changed only by the remaining unitary actions from

SU(n (14)
SU(n1) ® SU(n2) ® --- ® SU(n,)’
generating the class of nonlocal transformations

As was mentioned in the introduction, the action of LUT is not transitive The equivalence of states with
respect to the action (12) gives rise to a decomposition of the space of matrices into equivalences classes (orbits)
The union of these classes, i e , the orbit space, is usually called the “entanglement space” &,

3.2. The orbit space and local polynomial invariants

The main motivation for the study of &, is the necessity to work out qualitative criterions and quantitative
measures for degrees of nonlocality [6, 12]

As was mentioned above, a canonical method for describing the orbit space &, is the theory of invariants [11]
Within this approach, starting from the works by Linden and Popescu, a series of interesting results clarifying
the mathematical contents of the entanglement phenomenon have been obtained Considerable progress has been
achieved for pure states As an example, we refer to the construction of Hilbert series for multipartite systems
of qubits [21] and the classification of pure entangled states based on the theory of hyperdeterminants [22]

The analysis of the orbit space for systems in mixed states is much more vague The general questions
concerning the construction of a basis for the ring of local invariants for mixed states were considered in [13, 14]
With this aim, algorithmic methods of computer algebra were used [23, 24] 3

According to the theory of invariants [11], the ring of polynomial invariants C[V]“, of a linear space V over
the field of complex numbers C, under the action of a group G is the graded algebra

CV1¢ = & As,
k=1

where Ay is the space of homogeneous invariant polynomials of degree k

The special unitary groups SU(n) belong to the class of reductive algebraic groups The ring of invariants for
these groups is finitely generated [11], and C[V]“ is the Cohen Macaulay algebra [26] However, the straight
forward application of this construction to problems of quantum entanglement is complicated by the fact that
the space V' on which the group G acts is not a linear space As was emphasized in the introduction, density
matrices are positive semidefinite, and, therefore, the representation space V' is a nonlinear semidefinite algebraic

3Unfortunately, the application of the existing algorithmic methods, including the Grébner bases technique, to the analysis of the
ring of polynomial invariants for multipartite systems is not effective due to the sharp growth of the number of algebraic operations
with the increase of the number of qubits.
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manifold Below we suggest a solution to this issue, exemplified by the problem of describing the system of a
qubit pair

Let us start with the construction of the ring C[ Hyx4 ]SU(2)®SU(2) of invariants of the adjoint action on the
space of 4 x 4 Hermitian matrices Hyx4 In order to define the ring C[, |SV(®SU() note that the space of
positive definite matrices P is a subspace of Hyx4 invariant under the action of SU(4) As we demonstrate
below, the subset 3, admits a representation as a set of polynomial inequalities?

P,(€,,85,84) >0, a=1,2,3, (15)

in three invariants, €5, €3, and €4, of the enveloping algebra of the group SU(4) On the other hand, since
€, ¢3, ¢, are at the same time invariants of SU(2) @ SU(2), one can construct a basis in C[Hyyxq |SVZ®SUR)
that includes these invariants As a result, having this basis and taking into account the inequalities (15), we will
be able to characterize the ring C[, ]3V(®SU(2) completely According to the considerations in the subsequent
sections, a basis of the ring can be chosen in such a way that only the primary invariants of degree 2, 3 and one
secondary invariant of degree 4 present in the Hironaka decomposition of the ring (see [11]) are constrained by
the polynomial inequalities (15)

4. THE NONNEGATIVITY OF THE DENSITY MATRIX

To succeed in our program of constructing an optimal homogeneous basis for the ring C[3 [SUR®@5U() et
us start with the requirement of positive semidefiniteness of density matrices Below this requirement will be
formulated in the form of inequalities constraining the values of invariants of the adjoint action of the group
SU(n) on P

4.1. P, in terms of Casimirs of SU(n)

A Hermitian operator is positive semidefinite if and only if all its characteristic numbers are nonnegative The
condition of nonnegativity of a Hermitian operator can be formulated solely in terms of the coefficients of its
characteristic equation:

Iz —o| =" — Siz" ' + Sz 2 — +(=1)"S, =0 (16)

The coefficients Sy in Eq (16) are the sums of principal minors of kth order:

_ gl ik _
Sk_ Z Q(ll Zk)’ k_la T

1<ii< <ig<n

Since the matrix g is Hermitian, all its characteristic numbers are real If they are nonnegative, then all Sy
are nonnegative as well, since Sy are symmetric polynomials in the roots x; of the characteristic equations:

k
Sk = Z H Ti;

1<ii< <ip<nj=1

The converse statement is correct as well; the nonnegativity of the coefficients Sy implies the nonnegativity of
the roots z The proof of this observation [27] follows from the Descartes theorem [30]: the number of positive
roots (taking into account their multiplicities) equals the number of sign changes in the sequence of coefficients
of the polynomial equation

Thus the nonnegativity of a density matrix can be written in an invariant way as the condition of nonnegativity
of the coefficients of its characteristic equation:

Sk > 0, k= 1, y T (17)

4A description of 34 similar to that given here can be found in [27-29].
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We give, for further use, the explicit form of a few first coefficients Sy, written in terms of the n dimensional
Bloch vector &€ [27, 28]:

1n-1
52:2! n (1—5'5):
SB:31!(nfly)lgn*2)(173£.§+2(£\/€)'5),
54:41!(n—1)(n7;2)(”*3)(1f6§.§+8(£\/€)'5

n—1 9 n—2
#3006 €V (€VE)

Apart from the restrictions (17), there are upper bounds on Sy due to the normalization condition Tr(p) = 1,
Tr(o*) < 1 for k > 2 Note that the equality is achieved for pure states, and the maximum values of Sy are
achieved for equal eigenvalues z; of the density matrix

Finally, the positive semidefiniteness and normalizability conditions for the density matrices of an n level
system can be written as the following set of inequalities:

0 Kot S 1 k=2 n 18
< < =

“n-1Dn-2) (nh—-k+1) =" ’ ’ (18)
The coefficients S, k& = 1, ,n, of the characteristic equation are invariants of the adjoint action of the

group SU(n) They are algebraically independent and can be represented as polynomials in the Casimir operators
of the corresponding enveloping algebra Below, the case n = 4, related to the 2 qubit system, is considered in
detail, and inequalities (18) are rewritten directly in terms of the Casimir operators of the enveloping algebra
su(4)

4.2. Restrictions on invariants of su(4)

The group SU(4) has three Casimir operators whose expressions in terms of the components of the 15
dimensional Bloch vector £ (see (4)) can be written as

C3=£VE-E, (20)
Cy=EVE-EVE (21)

Fia. 1. The allowed region for the values of the Casimirs €,, €3, &,
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Since the coefficients Sy, Ss,.S3 of the characteristic equation of the density matrix for an arbitrary 4 level
system are expressible via these Casimir operators,

3
Sy = 8(1 — &),
1
S3 = 16(1 — 3¢, + 2¢3),
1
Sy = 256((1 —3¢5)% + 8¢5 — 12¢),

the set (18) reduces to the following constraints on SU(4) invariants:

0 § Q:2 § ]-7
0 <3¢ —2¢; <1, (22)
0<(1—-3¢)%+8¢;—12¢,<1

In the space spanned by the invariants €5, €3, €, , inequalities (22) define a bounded domain, which is depicted
on Fig 1

5. THE RING OF LOCAL INVARIANTS C[3, |3V()®SU(2)

Consider the density matrix of two qubits parameterized in the Fano form [18, 19]:
1
9:4[I[2®H2+a-a®1[2+H2®b'a+cijoi®oj], (23)

where 3 component vectors a = (a1,as2,a3), b = (b1, b2, b3) are the Bloch vectors of the constituent qubits, and
0, i =1,2,3, are the Pauli matrices forming a basis of the algebra su(2):

(0 ) (1) e d )

The correlation matrix C' of the pair of qubits has 9 elements c;;, 7,j = 1,2,3
First, following our program of constructing the ring of invariants C[]SU(?)®5U(2) gutlined in Sec 32, we
identify the space of parameters a,b, and C' with R'®, for a moment ignoring all restrictions implied by the
condition of nonnegativity of density matrices Besides, we linearize the adjoint action (11) of the local group
SU(2) ® SU(2):
Va — Vi=LagVp A B=1, 15, (25)

with a 15 x 15 matrix L € SU(2) ® SU(2) ® SU(2) ® SU(2)

Thus our preliminary task is to build the ring of polynomial invariants of the linear action of the group
SU(2) ® SU(2) ® SU(2) ® SU(2) on the linear space R'> Note that the linearization (25) allows us to use a
prompt following from the Molien formula for the generating function of invariants for a representation 7g of a

compact group G, see [24]:
1
M(qg)= [ d 26
0= [ 446 4o 10— 0

kg

where the integral is taken over the group G with the Haar measure d ug
The Molien function provides information on the structure of the ring of polynomial invariants First, its
formal expansion in powers of the parameter ¢, the so called Hilbert Poincare series

M(q) = did" € Z[q,

k>0

points out the dimension, dj, of the space of homogeneous invariants of degree k£ Second, being a rational
function, (26) admits, for ¢ < 1, a (non unique) representation of the form

deg Jr
q
0

M) =, =
D= 1w, (1 - gresten)
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From this form of the Molien function one can conclude on the number and order of the primary (K;, i =

1,2, ,n) and secondary (J;, i = 1,2, ,r) invariants of the Cohen Macaulay algebra
CVI9 =P N ClKL K>, K (27)
k=0

As computations show, the Molien function for mixed states of two qubits can be written as (see [13, 14])

Mlg) = L+g* +¢° +3¢° +2¢" +2¢° +3¢° + ¢"° + "' +¢*°
v (1-q)(1—¢*)3(1—¢*)*(1 —q*)*(1 - ¢%)

According to (28), a basis of the ring consists of 10 primary invariants of degrees 1,2,2,2,3,3,4,4,4,6 and 15
secondary invariants of degrees 4,5,6,6,6,7,7,8,8,9,9,9,10,11,15

A more detailed information on the dependence of invariants on the coefficients of the decomposition (23)
can be extracted using the so called method of multi parameter generating functions [24] In our case, the
multi parameter generating function depends not only on one parameter ¢, but is a function of three parameters,
F(a,b,c) The contribution from the variables a, b, and ¢;; to the Molien function is now taken with a weight
determined by the independent parameters a, b, and ¢, respectively

It is worth noting that the generating function F'(a,b,c) was found as early as in the middle 1970s [31, 32],
in connection with the so called “missing index” problem, which arose in the nuclei spectrum classification
The corresponding mathematical formulation of the problem and its solution can be found, e g, in [31] In the
remaining part of our presentation, we will mainly follow the article [32]

Consider the space of all polynomials in fifteen variables a;,b;,c;j ¢,5 = 1,2,3 In view of the adjoint action
of the local group, the space of Bloch parameters is decomposed into irreducible representations of the group
SO(3) ® SO(3) More precisely, the variables a;, b;, ¢;; are being transformed according to the representations
D; x Dy, Dy x Dy, and Dy x Dy, respectively Since the subspace P 4[a;, bi,c;i;] of homogeneous polynomials
in the variables a;, b;, ¢;; of degree s, t, ¢ is invariant under the action of SU(2) @ SU(2), all invariants C' can be
classified according to their degrees of homogeneity, C'(59)

Following the construction suggested in [32], consider the following set of invariants:®

¢ 3 invariants of second degree,

(28)

0(002) _ ciicij, C200) — giq; 0020 — pp- (29)

e 2 invariants of third degree,

1
Cl = g1 Ciik€asyCiaCiBChy, CMMY = a;eizby; (30)
e 4 invariants of fourth degree,
0(004) = cmcwcjacjg, 31

C%) = a;0;¢i0¢ja,
0(022) = babgcmcig,

112 :
CM?) = €1k €asr@ibaCisChy;

e 1 invariant of fifth degree,

C™M) = gici0¢5008bj; (35)
e 4 invariants of sixth degree,
c(123) — €ijkDiCajaacarcaibl, (36)
O = gicincincipcrpar, (37)
CO%) = bicaicajcsicsrbe, (38)
C3) = ¢, 5 a0caibicyjcsjas; (39)

5In the expressions below, we always assume that the summation is over all repeated indices from one to three.
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e 2 invariants of seventh degree,

o214 _ €ijkbiCaj@aCaLCAICYIAL, (40)
c(124) — €aBy0aCBibjCyrCsKCsIbL; (41)

e 2 invariants of eighth degree,
0(125) _ €ijkDiCajCalDICAKCAmMCymay, (42)
C(215) — €aBv0aCRiCsi Qs CykCok Colbi; (43)

e 2 invariants of ninth degree,
CB) = €44,00CpiCsi05CyjCoj CokCok s )
C(036) _ €ikDiCajCatbiCRECEMCym CysDs (45)

From these invariants a basis of C[P ]SV(?)®5U(2) can be build As a criterion for its construction, we choose
the principle of using a basis with the minimum number of elements involved in the definition of B, Having in
mind this rule and noting that the space PB4 is defined in terms of the Casimir operators (19) (21) of the group
SU(4), we expand €2, €3, ¢, in terms of the local invariants (29) (31) introduced above:

1

¢y = 3 (0(200) + 0(020) + 0(002)), (46)
¢y = o) 0(003), (47)
¢, = (13 [2(0(200)0(020) 1+ 0(202) 4 o(022) _ 0(112)) + (0(002))2 B 0(004)] (48)

From Eqs (46) (48) it follows that one can consider the Casimir operators €a, €3, €, as basis elements instead
of the scalars C'(°02) '(003) "and C(112)

Bearing in mind this observation and using the results of [14], where the ring C[R® |SU)®SU(2) wag described,
we define the following set consisting of 10 primary invariants, including the Casimir operators €5, €3:

deg=1, K;=1, (49)
deg =2, K, =05, Ky =C® K, =00, (50)
deg =3, K;=¢3, Ko =CUY, (51)
deg =4, K;=C, Ky =C®?) | Ky =002 (52)
deg =6, Kyo=C00 4002 (53)

and 15 secondary invariants, including the Casimir operator &g,

(=
=]

deg = 10, J5 = J1J3,
deg = ].]., Jﬁ = J2J3,
deg = ].5, J7 = J1J2J3

deg =4, J, =¢4, (54)
deg =5, Jy= ot (55)
deg =6, J;=CC0_c02) g —c02) 5 — o3 (56)
deg =7, Jip=0C%Y, Ji =02, (57)
deg =8, Jio= 0(215), Jiz = 0(125), (58)
deg =9, Jy=J1Ja, Jig = CC% g5 = 059, (59)
(60)
(61)
(62)

D
[\

We conclude that the set of homogeneous invariants (49) (62) is a basis for the ring C[]SV(2)®5U®).

15
CIp. SOV = (B J, C[K1, K2, Ko, (63)
k=0

under the condition that two primary invariants K, K5 and one secondary invariant J; satisfy inequalities (22)
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6. CONCLUSION

An important problem of the quantum theory of information is qualitative and quantitative characterization
of purely quantum correlations caused by the entanglement of quantum states The theory of classical invariants
provides tools for the study of the corresponding entanglement space, i e, the orbit space of the action of the
group of local transformations on the space of states of composite systems For the case we are interested in, the
system of two qubits in a mixed state, the local transformations of density matrices form the group SU(2)®SU(2)
Its adjoint action, on the space of Hermitian unit trace matrices identified with R'®, determines the principal
orbit space .

O := R ,
SU(2) ® SU(2)
of dimension
dimO=15-2x3=9

However, the orbit space defined in this way is not the entanglement space & Due to the nonnegativity of
density matrices, the space of physical states is 8, C R'® 1In the present article, we suggest a description of
B+ based on polynomial inequalities in the Casimir operators of the enveloping algebra su(4) Furthermore,
we show how these restrictions can be effectively taken into account when constructing a basis for the ring
C[P, 13UV in which only two primary invariants of degree 2, 3 and one secondary invariant of degree 4
in the Hironaka decomposition are constrained by the polynomial inequalities (22)

In conclusion, it is important to emphasize that without inequalities (22), the usage of local invariants for
“coordinatization” of the entanglement space & is not correct We leave the analysis of consequences imposed
by these constraints on the geometry of & C O for future publications

ACKNOWLEDGMENTS

This work was supported in part by the Georgian National Science Foundation research grant GNSF/ST08/4
405, by the Russian Foundation for Basic Research grant No 10 01 00200, and by the Ministry of Education
and Science of the Russian Federation grant No 3810 2010 2

Translated by A Khvedelidze

REFERENCES

1 A Einstein, B Podolsky, and N Rosen, “Can quantum mechanical description of physical reality be considered
complete?” Phys Rev, 47,777 780 (1935)

2 J Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge Univ Press, Cambridge (1987)

3 A Aspect, “Bell’s theorem: the naive view of an experimentalist,” in: R A Bertlmann and A Zeilinger (eds ),
Quantum [Un/speakables: From Bell to Quantum Information, Springer Verlag, Berlin (2002)

4 M A Nielsen and I L Chuang, Quantum Computation and Quantum Information, Camridge Univ Press,
Cambridge (2000)

5 V Vedral, Introduction to Quantum Information Science, Oxford Univ Press, New York (2006)

6 I Bengtsson and K Zyczkowski, Geometry of Quantum States An Introduction to Quantum Entanglement,
Cambridge Univ Press, Cambridge (2006)

7 R F Werner, “Quantum states with Einstein Podolski Rosen correlations admitting a hidden variable mo

del,” Phys Rev A, 40, 4277 4281 (1989)

J Schlienz and G Mabhler, “Description of entanglement,” Phys Rev A, 52, 4396 4404 (1995)

N Linden and S Popescu, “On multi particle entanglement,” Fortschr Phys , 46, 567 578 (1998)

10 H Weyl, The Classical Groups: Their Invariants and Representations, Princeton Univ Press, Princeton
(1939)

11 V L Popov and E B Vinberg, “Invariant theory”, in: Algebraic Geometry IV, Encycl Math Sci, 55,
Springer Verlag (1994), pp 123 273

12 M Kus and K Zyczkowski, “Geometry of entangled states,” Phys Rev A, 63, 032307 (2001)

13 M Grassl, M Rotteler, and T Beth, “Computing local invariants of qubit systems,” Phys Rev A, 58,
1853 1856 (1998)

14 R C King, T A Welsh, and P D Jarvis, “The mixed two qubit system and the structure of its ring of local
invariants,” J Phys A, 40, 10083 10108 (2007)

©

377



15
16
17
18
19

20
21

22

23
24

25

26

27
28

29

30
31

32

J von Neumann, “Warscheinlichtkeitstheoritischer Aufbau der Quantenmechanik,” Nachrichten Géttingen,
245 272 (1927)

L D Landau, “Das Ddmpfungsproblem in der Wellenmechanik,” Z f Physik, 45, 430 441 (1927)

K Blum, Density Matriz Theory and Applications, Plenum Press, New York (1981)

F T Hioe and J H Eberly, “N Level coherence vector and higher conservation laws in quantum optics and
quantum mechanics,” Phys Rev Lett, 47, 838 841 (1981)

U Fano, “Description of states in quantum mechanics by density matrix and operator techniques,” Rev Mod
Phys , 29, 74 93 (1957)

U Fano, “Pairs of two level systems,” Rev Mod Phys, 55, 855 874 (1983)

J G Luque and J Y Thibon, “The polynomial invariants of four qubits,” Phys Rev A, 63, 042303 (2003)

J G Luque and J Y Thibon, “Algebraic invariants of five qubits,” J Phys A, 39, 371 377 (2005)

A Miyake, “Classification of multipartite entangled states by multidimensional determinants,” Phys Rev A,
67, 012108 (2003)

B Sturmfels, Algorithms in Invariant Theory, Springer Verlag, Wien (1993)

H Derksen and G Kemper, Computational Invariant Theory, Encycl Math Sci, 130, Springer Verlag, Berlin
(2002)

B Buchberger, “Grébner bases an algorithmic method in polynomial ideal theory,” in: N K Bose (ed ),
Multidimensional Systems Theory, D Reidel, Dordrecht (1985), pp 184 232

M Hochster and J Roberts, “Rings of invariants of reductive groups acting on regular rings are Cohen

Macaulay,” Adv Math , 13, 125 175 (1974)

G Kimura, “The Bloch vector for N level systems,” Phys Lett A, 314, 339 349 (2003),

M S Byrd and N Khaneja, “Characterization of the positivity of the density matrix in terms of the coherence
vector representation,” Phys Rev A, 68, 062322 (2003)

S Kryszewski and M Zachcial, “Positivity of the NV x N density matrix expressed in terms of polarization
operators,” J Phys A, 39, 5921 5931 (2006)

E B Vinberg, A Course in Algebra [in Russian], Factorial, Moscow (2002)

B R Judd, W Miller Jr, J Patera, and P Winternitz, “Complete set of commuting operators and O(3)
scalars in the enveloping algebra of SU(3),” J Math Phys, 15, 1787 1799 (1974)

C Quesne, “SU(2)®SU(2) scalars in the enveloping algebra of SU(4),” J Math Phys , 17,1452 1467 (1976)

378



	Abstract

	1. Introduction
	2. The space of states
	2.1. Qubit
	2.2. Qubit

	2.3. Composite states

	3. The entanglement space
	3.1. The local invariance
	3.2. The orbit space and local polynomial invariants

	4. The nonnegativity of the density matrix
	4.1. $\goth{P}_+$ in terms of Casimirs of  SU(n)
	4.2. Restrictions on invariants of  su(4)

	5. The ring of local invariants C,P

	6. Conclusion
	Acknowledgments
	References


