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ON THE HAMILTONIAN FORMULATION OF GAUGE THEORIES
IN TERMS OF PHYSICAL VARIABLES

A. M. Khvedelidze UDC 517.958:530.145

We examine the Hamiltonian aspects of gauge theories related to the problem of description of
gauge-invariant observables. The method of reformulation of non-Abelian gauge theory entirely in terms
of gauge-invariant unconstrained canonical variables is exemplified in detail for the SU(2) Yang–Mills
theory. We present the equivalent unconstrained Hamiltonian system in the form of a nonlocal field theory
of six fields which can be identified with particles carrying “nonrelativistic spin 2 and spin 0.” Based
on this form of unconstrained theory, an effective, low-energy, nonlinear, sigma-model-type Lagrangian is
derived. The long-wavelength approximation for the obtained nonlocal unconstrained theory is studied.
In particular, for zero-order approximation the relation between SU(2) gauge theory and the well-known
integrable many-body Euler–Calogero–Moser system is discussed.

1. Introduction

The notion of the gauge invariance is the basis of modern theories of fundamental electroweak and
strong interactions. Despite the fact that the roots of gauge invariance go back to the classical elec-
trodynamics developed in the XIXth century, the complete understanding of its importance belongs to
the XXth century. Inspired by the ideas of Riemannian geometry, Herman Weyl was the first who used
invariance under an arbitrary scale change of metric tensor as a constructive principle to provide the
unification of gravitation and electromagnetism [123]. Although this first form of gauge theory was not
successful, later works of Fock [43], London [80,81], and Weyl [124] gave a form of the gauge description
of electromagnetism which is today referred to as U(1)-gauge theory.

A generalization of the U(1)-gauge theory was suggested in 1938 by Klein [70]. He made the first
attempt to apply the non-Abelian gauge symmetry SU(2)×U(1) to electromagnetic and weak interactions,
but it was too early for the physical community to accept this idea. Only after the work of Yang and
Mills [128] did the concept of isotopic local gauge invariance become the subject of intensive study. Great
progress was achieved in the next two decades; the non-Abelian electroweak theory and non-Abelian
theory of strong interaction of quarks and gluons (quantum chromodynamics) were created. There are
several reviews on the very interesting history of the appearance, transmutation, and understanding of
the gauge invariance in physics [63,97,107,120,127].

As was emphasized in [63], it took almost a century to formulate the nonuniqueness of the gauge
potential that exists despite the uniqueness of the electromagnetic fields. Passing from the geometric
setting of gauge theory to the dynamical realization in the form of a variational problem for gauge poten-
tial encounters problems unknown to the classical mechanics of the XIXth century. Treating Maxwell’s
equations as Euler–Lagrange equations for a certain variational problem leads to a Lagrangian function
which is degenerate (singular), i.e., its Hessian is zero. The conventional classical treatment including the
Hamiltonian formulation of such a dynamical system is impossible. This property is common for all theo-
ries possessing local invariance, i.e., invariance under the transformations whose parameters are arbitrary
functions of space-time points. In the middle of the XXth century, Dirac and Bergman elaborated a new
Hamiltonian formalism, which is now referred to as the generalized Hamiltonian formalism applicable to
theories with a degenerate Lagrangian function. Theories whose singularity is caused by the local gauge
invariance strongly differ from the other ones; for such theories, the principle of deterministic evolution
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is violated. Gauge systems have so-called pure gauge degrees of freedom, whose dynamics is completely
unpredictable. Only the variables with uniquely predictable dynamics have a physical meaning, and the
complete set of these variables represents the physical variables in gauge theory. For the case of Abelian
electrodynamics, the conventional choice of physical variables consists of their identification with the
transverse components of the gauge potential. In the case of non-Abelian gauge theories, this problem
is much more complicated. Dealing with the problem of the identification and elimination of the pure
gauge degrees of freedom, two approaches, perturbative and nonperturbative, are used. The conventional
perturbative gauge-fixing method [42] works successfully for the description of high-energy phenomena; it
ascribes the transverse components of the non-Abelian gauge field as physical variables, but fails in appli-
cations in the infrared region. The different nonperturbative reductions of gauge theories were elaborated
during the last few decades [8,10,22–24,31,51,55,57,60,66,67,69,77,94,96,103,108,113,122]. The object of
these investigations is the search for a representation of the gauge-invariant variables which is suitable for
a description of the infrared limit of Yang–Mills theory but unfortunately up to now has been rather com-
plicated for practical calculations. In this paper, we state one such attempt to represent the gauge theory
in terms of the canonical physical variables only, following the Dirac generalized Hamiltonian formalism
[38,58,117] and using the method of Hamiltonian reduction (see [47–50,111] and the references therein).
In the next section, we briefly recall this general reduction-scheme formalism in order to set the formalism.
Section 3 presents the application of this formalism to the SU(2) Yang–Mills field theory. A canonical
transformation to the set of adapted coordinates is performed in terms of which the Abelianization of
the Gauss law constraints reduces to an algebraic operation and the pure gauge degrees of freedom drop
out from the Hamiltonian after projection onto the constraint shell. For the remaining gauge-invariant
fields, two representations are introduced, where the three fields which transform as scalars under spatial
rotations are separated from the three rotational fields. In Sec. 4, relations between the Yang–Mills theory
and the well-known integrable many-body Calogero–Moser system are discussed. In Sec. 5, we present the
generalization of our formalism to the case of classical action for Yang–Mills fields including the boundary
terms, the so-called topological Pontryagin invariant. Section 6 is devoted to the discussion of effective
theories corresponding to non-Abelian gauge theories in the low-energy region. An effective, low-energy,
nonlinear sigma-model-type Lagrangian is derived, which out of the six physical fields involves only one
of the three scalar fields and two rotational fields summarized in a unit vector. Finally, in Sec. 7, we make
several remarks on quantization of gauge theories and give our conclusions.

In the Appendix, we list several notations and formulas for nonrelativistic spin 0, 1, and 2 used in
the text.

2. Gauge Invariance and Constrained Dynamics

Below, we briefly recall the general reduction formalism for obtaining the unconstrained Hamiltonian
system from the initial gauge-invariant formalism in the framework of Dirac constraint theory in order
to set the formalism. The Dirac and Faddeev gauge-fixing methods as well as the Hamiltonian reduction
method are also described. The Hamiltonian reduction method is exemplified by considering the Yang–
Mills system in (0 + 1)-dimensions.

2.1. Reduction of constrained systems with first-class constraints. The procedure of reduction of
the phase space of a singular system is a generalization of the reduction method of a system of differential
equations possessing a Lie group symmetry. The well-known results for this type of reduction in the
number of the degrees of freedom are embodied in the famous Liouville theorem on first integrals in
involution. Interest in these has revived in connection with the study of Hamiltonian systems with a local
(gauge) symmetry. Since the work of Bergmann and Dirac at the beginning of the 1950s, it has become
clear that the role of integrals of motion in a Hamiltonian system with gauge symmetry is played by
the first-class constraints. Although the reduction in the number of degrees of freedom due to first-class
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constraints has many common features with the classical case, there are very important differences.1 In
order to explain these peculiarities of the reduction procedure and to make the notes self-contained, we
first summarize some definitions and recall the main facts of the Dirac theory of generalized Hamiltonian
dynamics into the appropriate context. We discuss these ideas for a mechanical system, i.e., a system
with a finite number of degrees of freedom, to separate these aspects from the difficulties connected with
infinitely many degrees of freedom in field theory.

2.1.1. The definition of reduced phase space. Let us consider a system with the 2n-dimensional
Euclidean phase space Γ spanned by the canonical coordinates qi and their conjugate momenta pi and
endowed with the canonical simplectic structure {qi, pj} = δ

j
i . Suppose that the dynamics is constrained

to a certain (2n−m)-dimensional submanifold Γc determined by m functionally independent constraints

ϕα(p, q) = 0, (2.1.1)

which are assumed to be of first class,

{ϕα(p, q), ϕβ(p, q)} = fαβγ(p, q)ϕγ(p, q), (2.1.2)

and complete in the sense that

{ϕα(p, q),HC(p, q)} = gαγϕγ(p, q), (2.1.3)

where HC(p, q) is the canonical Hamiltonian. Due to the presence of these constraints, the Hamiltonian
system admits a generalized dynamics described by the extended Poincare–Cartan form

Θ :=
n∑
i=1

pidqi −HE(p, q)dt (2.1.4)

with the extended Hamiltonian HE(p, q) that differs from the canonical Hamiltonian HC(p, q) by a linear
combination of constraints with arbitrary multipliers uα(t):

HE(p, q) := HC(p, q) + uα(t)ϕα(p, q). (2.1.5)

The completeness condition (2.1.3) with HC replaced by HE implies that for first-class constraints, the
functions uα(t) cannot be fixed in internal terms of the theory. This implies that the system possesses a
local symmetry and that the coordinates split up into two sets: one set whose dynamics is governed in an
arbitrary way and another set with a uniquely determined behavior. Recalling the Dirac definition [33]
of a physical variable as a dynamical variable F with the property

{F (p, q), ϕα(p, q)} = dαγ(p, q)ϕγ(p, q), (2.1.6)

one can conclude that the first set of coordinates does not affect the physical quantities which are defined
on some subspace of the constraint surface Γc. Indeed, if we consider (2.1.6) as a set of m first-order
linear differential equations for F , then, due to the integrability condition (2.1.2), this function can be
completely determined by its values in the 2(n−m)-dimensional submanifold of its initial conditions [40].
This subspace of the constraint shell represents the reduced phase space Γ∗. This definition of reduced
phase space is implicit. The main problem is to find the set of 2(n − m) “physical coordinates” Q∗i
and P ∗i that span this reduced phase space and pick out the other additional m pairs which have no
physical significance and represent the pure gauge degrees of freedom. Several approaches to its solution
are known. Below we briefly discuss the corresponding methods of practical construction of the physical
and the gauge degrees of freedom with and without gauge fixing.

1Presumably, Shanmugadhasan [111] was the first who employed the classical Lie–Cartan reduction method (see, e.g.,
[1, 21, 85, 100, 102]) in the framework of generalized Hamiltonian dynamics to the reduction in the number of degrees of
freedom instead of the conventional gauge-fixing method.
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2.1.2. Reduced phase space with the Dirac gauge-fixing method. General principles for imposing
gauge fixing constraints onto the canonical variables in the Hamiltonian approach were proposed by
Dirac in connection with the canonical formulation of gravity [35]. According to the Dirac gauge-fixing
prescription, one starts with the introduction of as many new “gauge” constraints

χα(p, q) = 0 (2.1.7)

as there are first-class constraints (2.1.1), with the requirement

det ‖{χα(p, q), ϕβ(p, q)}‖ �= 0. (2.1.8)

This allows one to find the unknown Lagrange multipliers uα(t) from the requirement of conservation of
the gauge conditions (2.1.7) in time2

χ̇α = {χα,HC}+
∑
β

{χα, ϕβ}uβ = 0 (2.1.9)

and thus to determine uniquely the dynamics of the system. A striking result of Dirac is the observation
that such a kind of fixation of Lagrange multipliers u(t) is equivalent to the following way of proceeding.
One can drop both constraints (2.1.1) and the gauge-fixing conditions (2.1.7) and at the same time achieve
the reduction to the unconstrained theory by using the Dirac brackets

{F,G}D := {F,G} − {F, ξs}C
−1
ss′ {ξs′ , G} (2.1.10)

instead of the Poisson brackets, where ξ denotes the set of all constraints (2.1.1) and (2.1.7) and C−1 is
the inverse of the Poisson matrix Cαβ := {ξα, ξβ}. In this method, all coordinates of the phase space are
treated on an equal footing and all information on both initial and gauge constraints is absorbed into
the Dirac brackets, which describe an effective reduction in the number of degrees of freedom from n to
n−m:

n∑
i=1

{qi, pi, }P.B. = n,
n∑
i=1

{qi, pi, }D.B. = n−m.

The inclusion of gauge constraints in addition to the initial constraints allows one to take the constraint
nature of the canonical variables into account by changing the initial canonical symplectic structure to a
new one defined by the Dirac brackets. The new canonical structure, being dependent on the choice of
gauge-fixing conditions, is very complicated in general, and it is not clear how to deal with it, in particular,
when we are quantizing the theory. However, there is a special case where the Dirac bracket coincides
with the canonical one and looks like the Poisson bracket for an unconstrained system defined on Γ∗:

{F,G}D
∣∣∣
ϕ=0, χ=0

=
n−m∑
i=1

{
∂F

∂Q∗i

∂G

P ∗i
−
∂F

∂P ∗i

∂G

Q∗i

}
. (2.1.11)

This representation of the Dirac bracket means that in terms of the conjugate coordinates Q∗i and P
∗
i

(i = 1, . . . , n−m), the reduced phase space is parametrized such that the constraints vanish identically
and any function F (p, q) given on the reduced phase space becomes

F (p, q)
∣∣∣
ϕ=0,χ=0

= F (P ∗, Q∗)

(see [117]). Thus, in the Dirac gauge-fixing method, the problem of definition of “true dynamical degrees
of freedom” reduces to the problem of a “lucky” choice of the gauge condition.

2Everywhere below, the dot over a letter denotes the derivative with respect to the time variable.
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2.1.3. Reduced phase space with the Faddeev gauge-fixing method. An alternative to the Dirac
gauge-fixing procedure was proposed in the well-known paper of Faddeev [40] devoted to the method of
path-integral quantization of a constrained system. In contrast to the Dirac method, the main idea of the
Faddeev method is to introduce an explicit parametrization of the reduced phase space. As in the Dirac
method, one introduces gauge-fixing constraints χα(p, q) = 0, but now with the additional “Abelian”
property

{χα(p, q), χβ(p, q)} = 0, (2.1.12)

and requirement (2.1.8) is fulfilled. Now, in accordance with the Abelian character of gauge conditions
(2.1.12), there exists a canonical transformation to new coordinates

qi �→ Qi := Qi (q, p) , pi �→ Pi := Pi (q, p)

such that m of the new P ’s coincide with the constraints χα:

Pα = χα (q, p) . (2.1.13)

Condition (2.1.8) allows one to resolve constraints (2.1.1) for the coordinates Qα in terms of (n − m)
canonical pairs (Q∗i , P

∗
i ), which span the 2(n−m)-dimensional surface Σ determined by the equations

Pα = 0, Qα = Qα (Q
∗, P ∗) .

After this construction has been carried out, the problem is to prove that the surface Σ coincides with the
true reduced phase space Γ∗, which is independent of the choice of the gauge-fixing conditions. In other
words, it is necessary to find a criterion for gauge conditions to be admissible. A radical method to solve
this problem is not to use any gauge conditions at all. In Sec. 2.1.4, we give a brief description of such an
alternative gaugeless scheme inspired by the classical Hamiltonian reduction approach to construct the
reduced phase space of systems possessing rigid symmetries.

2.1.4. The Hamiltonian reduction method for constrained systems. If the theory contains only
Abelian constraints, one can find a parametrization of the reduced phase space as follows. According to
a well-known theorem (see, e.g., [125]), it is always possible to find a canonical transformation to a new
set of canonical coordinates

qi �→ Qi := Qi (q, p) , pi �→ Pi := Pi (q, p) (2.1.14)

such that m of the new momenta, say, (P 1, . . . , Pm), become equal to the Abelian constraints ϕα:

Pα = ϕα(q, p). (2.1.15)

In terms of the new coordinates (Q,P ) and (Q∗, P ∗), the canonical equations have the form

Q̇∗ = {Q∗,Hphys}, Q̇ = u(t),

Ṗ ∗ = {P ∗,Hphys}, Ṗ = 0,
(2.1.16)

with the physical Hamiltonian

Hphys(P
∗, Q∗) ≡ HC(P,Q)

∣∣∣
Pα=0

, (2.1.17)

where Hphys depends only on (n−m) pairs of new gauge-invariant canonical coordinates (Q
∗, P ∗) and the

form of the canonical system (2.1.16) expresses the explicit separation of the phase space into physical
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and unphysical sectors:

2n







q1
p1
...
qn
pn


 �→

2(n−m)

{(
Q∗

P ∗

)

2m

{(
Q

P

)
physical variables.

unphysical variables.

(2.1.18)

Arbitrary functions u(t) enter into part of the system of equations containing only the ignorable coor-
dinates Qα and momenta Pα. A straightforward generalization of this method to the non-Abelian case
is impossible since the identification of momenta with constraints is forbidden due to the non-Abelian
character of the constraints. However, there exists the possibility of replacement of the constraints ϕα by
an equivalent set of new constraints Φα,

Φα = Dαβϕβ , det ‖D‖
∣∣∣
ϕ=0
�= 0, (2.1.19)

describing the same surface Γc but forming an Abelian algebra. There are different proofs of this statement
based on the resolution of constraints [58,117], exploiting gauge-fixing conditions [9], or using the direct
method of constructing the Abelianization matrix as the solution of a certain system of linear first-order
differential equations [48].3 Therefore, for non-Abelian systems, the construction of the Abelianization
matrix and the implementation of the above-mentioned transformation (2.1.14) to the new set of Abelian
constraint functions Φα completes the reduction of the phase space without using gauge-fixing functions,
solely in internal terms of the theory.

Before applying the Hamiltonian reduction method to the construction of the reduced phase space
of Yang–Mills fields in (3 + 1)-dimensional space, it seems worth setting forth our approach to the same
problem in (0 + 1)-dimensional space.

2.2. Example: SU(2) Yang–Mills fields in (0 + 1) dimensions. In order to explain our main idea
on how to construct the physical variables, we start with the non-Abelian Christ–Lee model [23,106]. The
Lagrangian of this model is

L :=
1

2
(Dtx)i(Dtx)i −

1

2
V (x2), (2.2.1)

where xi and yi are the components of three-dimensional vectors and the covariant derivative Dt is defined
by the formula

(Dtx)i := ẋi + gεijkyjxk. (2.2.2)

This model represents the Dirac–Yang–Mills theory in (0 + 1)-dimensional space-time and inherits its
local gauge invariance in the form of SO(3) gauge invariance.

Performing the Legendre transformations

piy =
∂L

∂ẏi
, pi =

∂L

∂ẋi
= ẋi + gε

ijkyjxk,

we obtain the canonical Hamiltonian

HC =
1

2
pipi − εijkxjpkyi + V (x

2), (2.2.3)

and identify three primary constraints piy = 0 as well as three secondary constraints

Φi = εijkxjpk = 0 (2.2.4)

3In all cases, the proofs use the large freedom in the canonical description of the constrained systems. Apart from the
ordinary canonical transformations, there exist generalized canonical transformations [12], i.e., those which preserve the form
of all constraints of the theory as well as the canonical form of the equations of motion. The Abelianization transformation
(2.1.19) is of course noncanonical, but it belongs to this class of generalized canonical transformations.
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forming the SO(3) algebra

{Φi,Φj} = εijkΦj. (2.2.5)

One easily verifies that the secondary constraints are functionally dependent, xiΦi = 0. Now we perform
the Abelianization procedure and choose

Φ
(0)
1 := x2p3 − x3p2, Φ

(0)
2 := x3p1 − x1p3

as the two independent constraints forming the algebra

{Φ
(0)
1 ,Φ

(0)
2 } = −

x1
x3
Φ
(0)
1 −

x2
x3
Φ
(0)
2 . (2.2.6)

The general iterative scheme of the construction of the Abelianization matrix [48] consists of two steps for

this simple case. First, let us exclude Φ
(0)
1 from the right-hand side of Eq. (2.2.6). This can be achieved

by performing the transformation

Φ
(1)
1 := Φ

(0)
1 , Φ

(1)
2 := Φ

(0)
2 + CΦ

(0)
1 ,

where the function C satisfies the partial differential equation

{Φ
(0)
1 , C} = −

x2
x3
C +

x1
x3
.

Writing down a particular solution of this equation,

C(x) =
x1x2

x22 + x
2
3

,

we obtain the algebra for new constraints

{Φ
(1)
1 ,Φ

(1)
2 } = −

x2
x3
Φ
(1)
2 .

Now let us perform the second transformation

Φ
(2)
1 := Φ

(1)
1 , Φ

(2)
2 := BΦ

(1)
2 ,

where the function B satisfies the equation

{Φ
(2)
1 , B} =

x2
x3
B.

A particular solution of this equation is B(x) = 1
x3
. As a result of the above two transformations, the

Abelian constraints equivalent to the initial non-Abelian ones have the form

Φ
(2)
1 = x2p3 − x3p2,

Φ
(2)
2 =

1

x3

[
(x3p1 − x1p3) +

x1x2

x22 + x
2
3

(x2p3 − x3p2)

]
.

(2.2.7)

Now we are ready to perform a canonical transformation to new variables so that the two new
momenta will coincide with the Abelian constraints (2.2.7)4

pθ :=
(�x · �p)x1 − �x2p1√
x22 + x32

, pφ := x2p3 − x3p2. (2.2.8)

4Here we introduce the compact notation for the three-dimensional vectors �x and �p and multiply the constraint Φ
(2)
2 by

the factor
√
x22 + x32 to deal with constraints of the same dimension. This multiplication conserves the Abelian character

of the constraints since {Φ(2)1 ,
√
x22 + x32} = 0.
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It is easy to verify that the contact transformation from the Cartesian coordinates to the spherical coor-
dinates

x1 = r cos θ,

x2 = r sinφ sin θ,

x3 = r cosφ sin θ,

r =
√
x12 + x22 + x32,

θ = arccos
x1√

x12 + x22 + x32
,

φ = arctan

(
x2
x3

)
,

(2.2.9)

is just the required transformation. Indeed, using the corresponding generating function

F [�x; pr, pθ, pφ] = pr
√
x12 + x22 + x32 + pθ arccos

x1√
x12 + x22 + x32

+ pφ arctan

(
x2
x3

)
,

we obtain

p1 =
∂F

∂x1
= pr cos θ − pθ

sin θ

r
,

p2 =
∂F

∂x2
= pr sin θ sinφ+ pθ

sinφ cos θ

r
+ pφ

cosφ

r sin θ
,

p3 =
∂F

∂x3
= pr sin θ cosφ+ pθ

cosφ cos θ

r
− pφ

sinφ

r sin θ
,

and convince ourselves that in terms of these new variables, two independent constraints pθ = 0 and
pφ = 0 are in accordance with (2.2.8). It is worth noting here that, starting with the set of reducible
constraints (2.2.4) and performing the above transformation (2.2.9), one obtains the representation

Φ1 = −pφ,

Φ2 = −pθ cosφ+ pφ sinφ cot θ,

Φ3 = pθ sinφ+ pφ cosφ cot θ,

adapted to the Abelianization. The corresponding Abelianization matrix for the reducible set of con-
straints is

D :=
1

d


 −d2 sinφ− d3 cosφ, d1 sinφ, d1 cosφ,
(d2 cosφ− d3 sinφ) cot θ, −d3 − d1 cosφ cot θ, d2 + d1 sinφ cot θ,

cot θ, sinφ, cosφ,


 ,

with arbitrary �d and d := d1 cot θ+d2 sinφ+d3 cosφ. This example demonstrates two important features
of the Abelianization procedure:

(i) it is not necessary to work with an irreducible set of constraints since the Abelianization procedure
automatically leads to an irreducible set of constraints;

(ii) in certain special coordinates, the problem of the solution of differential equations reduces to the
solution of a simple algebraic problem.

In terms of the new canonical variables, the canonical Hamiltonian (2.2.3) becomes

HC =
1

2
p2r +

1

2r2

(
p2θ +

p2φ

sin2 θ

)
− pφyφ − pθyθ + V (r) (2.2.10)

with the physical momentum

pr =
(�x · �p)

√
x12 + x22 + x32

and

yφ := y1 + y2 sinφ+ y3 cosφ cot θ,

yθ := y2 cosφ− y3 sinφ.
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As a result, all unphysical variables are separated from the physical variables r and pr and their dynamics
is governed by the physical Hamiltonian obtained from the canonical Hamiltonian by setting pφ and pθ
in (2.2.10) equal to zero:

Hphys =
1

2
p2r + V (r). (2.2.11)

This simple example of a model with non-Abelian gauge symmetry shows that the reduced system has
a nontrivial topological structure of a phase space [106] (the domain of the configuration variable r is
[0,∞]) and this fact leads to important consequences after the quantization of the system.

3. Unconstrained SU(2) Yang–Mills Theory

In this section, we give a Hamiltonian formulation of classical SU(2) Yang–Mills field theory entire-
ly in terms of gauge-invariant variables and separate these variables into scalars under ordinary space
rotations and into “rotational” degrees of freedom. It will be shown that this naturally leads to their
identification as fields with “nonrelativistic spin 2 and spin 0.” Furthermore, the separation into scalar
and rotational degrees of freedom will turn out to be very well suited for the study of the infrared limit
of unconstrained Yang–Mills theory.

3.1. Elimination of gauge degrees of freedom. The conventional Yang–Mills action for SU(2) gauge
fields Aaµ(x)

S[A] := −
1

4

∫
d4x F aµνF

aµν , F aµν := ∂µA
a
ν − ∂νA

a
µ + gε

abcAbµA
c
ν (3.1.1)

is degenerate. From the definition

Pa :=
∂L

∂(∂0A
a
0)
, Eai :=

∂L

∂(∂0Aai)

of the canonical momenta it follows that the phase space spanned by the variables (Aa0, P
a) and (Aai, Eai)

is restricted by three primary constraints P a(x) = 0. In this case, according to the Dirac procedure, the
evolution of the system is governed by the total Hamiltonian containing three arbitrary functions λa(x):

HT :=

∫
d3x

[
1

2

(
E2ai +B

2
ai(A)

)
−Aa0 (∂iEai + gεabcAbiEci) + λa(x)P

a(x)

]
, (3.1.2)

where Bai(A) := εijk
(
∂jAak +

1
2gεabcAbjAck

)
is the non-Abelian magnetic field. From the conservation of

the primary constraints P a = 0 in time, one obtains the non-Abelian Gauss-law constraints

Φa := ∂iEai + gεabcAciEbi = 0. (3.1.3)

Although the total Hamiltonian (3.1.2) depends on arbitrary functions λa(x), it is possible to extract the
dynamical variables which have uniquely predictable dynamics. Furthermore, they can be chosen to be
free of any constraints. Such an extracted system with predictable dynamics without constraints is called
unconstrained.

The non-Abelian character of the secondary constraints

{Φa(x),Φb(y)} = gεabcΦc(x)δ(x − y) (3.1.4)

is the main obstacle for the corresponding projection to the unconstrained phase space. One can try to
proceed here in the same way as was explained for the finite-dimensional mechanical system. For Abelian
constraints Ψα({Ψα,Ψβ} = 0), the projection to the reduced phase space can be simply achieved in the
following two steps. One performs a canonical transformation to new variables such that part of the
new momenta Pα coincide with the constraints Ψα. After the projection onto the constraint shell, i.e.,
setting in all expressions Pα = 0, the coordinates canonically conjugate to the Pα drop out from the
physical quantities. The remaining canonical pairs are then gauge invariant and form the basis for the
unconstrained system. For the case of non-Abelian constraints (3.1.4), in previous section the mechanism
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of conversion constraints into the Abelian form was described. However, in the case of field theory, this
approach becomes very complicated because it is necessary in general to solve certain functional equations.
Below, we show how it is possible to avoid this complicated step by a “clever” choice of the canonical
variable. We show that one can find canonical coordinates such that the Abelianization procedure of
constraints becomes a simple algebraic procedure.

3.1.1. Canonical transformation and Abelianization of the Gauss law. The problem of Abelian-
ization is considerably simplified when studied in terms of coordinates adapted to the action of the gauge
group. The knowledge of the SU(2) gauge transformations

Aµ → A
′
µ = U

−1(x)

(
Aµ −

1

g
∂µ

)
U(x), (3.1.5)

which leaves Yang–Mills action (3.1.1) invariant, directly prompts us with the choice of adapted coordi-
nates by using the following point transformation to the new set of Lagrangian coordinates qj (j = 1, 2, 3)
and six elements Sik = Ski (i, k = 1, 2, 3) of the positive-definite symmetric (3× 3) matrix S

Aai (q, S) := Oak (q)Ski −
1

2g
εabc

(
O (q)∂iO

T (q)
)
bc
, (3.1.6)

where O(q) is an orthogonal (3 × 3)-matrix parameterized by qi.5 In what follows, we show that in
terms of these variables, the non-Abelian Gauss law constraints (3.1.3) depend only on the qi’s and their
conjugated momenta pi’s and after Abelianization become pi = 0. The unconstrained variables Sik and
their conjugate Pik are gauge invariant, i.e., commute with the Gauss law, and represent the basic variables
for all observable quantities.6 Transformation (3.1.6) induces a point canonical transformation linear in
the new canonical momenta Pik and pi. Using the corresponding generating functional depending on the
old momenta and the new coordinates,

F3 [E; q, S] :=

∫
d3z Eai(z)Aai (q(z), S(z)) , (3.1.7)

one can obtain the transformation to new canonical momenta pj and Pik

pj(x) :=
δF3
δqj(x)

= −
1

g
Ωjr

(
Di(S)O

TE
)
ri
, (3.1.8)

Pik(x) :=
δF3
δSik(x)

=
1

2

(
ETO +OTE

)
ik
, (3.1.9)

where

Ωji(q) := −
i

2
Tr

(
OT (q)

∂O (q)

∂qj
Ji

)
, (3.1.10)

(Ji)mn := iεmin are the (3 × 3)-matrix generators of SO(3), and the corresponding covariant derivative
Di(S) in the adjoint representation

(Di(S))mn := δmn ∂i − ig
(
Jk

)
mn
Ski. (3.1.11)

5In the strong coupling limit, representation (3.1.6) reduces to the so-called polar representation for arbitrary quadratic
matrices for which the decomposition can be proven to be well defined and unique (see, e.g., [84]). In the general case, we
have the additional second term which takes into account the inhomogeneity of the gauge transformation and (3.1.6) has to
be regarded as a set of partial differential equations for qi’s. The uniqueness and regularity of the suggested transformation
(3.1.6) depends on the imposed boundary conditions. In the present work, the uniqueness and regularity of the change of
coordinates is assumed as a reasonable conjecture without a search for the appropriate boundary conditions.
6The freedom to use other canonical variables in the unconstrained phase space corresponds to another fixation of the

six variables S in representation (3.1.6). This observation clarifies the connection with the conventional gauge-fixing method
(see [24]).

522



A straightforward calculation based on linear relations (3.1.8) and (3.1.9) between the old and new
momenta leads to the following expression for the field strengths Eai in terms of the new canonical
variables:

Eai = Oak (q)

[
P ki + εkis

∗D−1sl (S)
[(
Ω−1p

)
l
− Sl

]]
, (3.1.12)

where ∗D−1 is the inverse of the matrix operator

∗Dik(S) := −i (J
mDm(S))ik (3.1.13)

and

Sk(x) := εklm (PS)lm −
1

g
∂lPkl. (3.1.14)

Using representations (3.1.6) and (3.1.12), one can easily convince oneself that the variables S and
P make no contribution to the Gauss law constraints (3.1.3):

Φa = Oas(q)Ω
−1
sj(q)pj = 0. (3.1.15)

Here and in (3.1.12), we assume that the matrix Ω is invertible. The equivalent set of Abelian constraints
is

pa = 0. (3.1.16)

They are Abelian due to the canonical structure of the new variables.

3.1.2. Projection to the reduced phase space. After having rewritten the model in terms of the
new canonical coordinates and after the Abelianization of the Gauss law constraints, the construction of
the unconstrained Hamiltonian system is straightforward. In all expressions, we can simply set pa = 0. In
particular, the Hamiltonian in terms of the unconstrained canonical variables S and P can be represented
by the sum of three terms:

H[S,P ] =
1

2

∫
d3x

[
Tr(P )2 +Tr(B2(S)) +

1

2
�E2(S,P )

]
. (3.1.17)

The first term is the conventional quadratic “kinetic” part and the second term the “magnetic potential”
term, which is the trace of the square of the non-Abelian magnetic field

Bsk := εklm

(
∂lSsm +

g

2
εsbcSblScm

)
. (3.1.18)

It is interesting that after the elimination of the pure gauge degrees of freedom, the magnetic field strength
tensor is the commutator of the covariant derivatives (3.1.11): Fij = [Di(S),Dj(S)].

The third, nonlocal term in Hamiltonian (3.1.17) is the square of the antisymmetric part of the
electric field (3.1.12), Es := (1/2)εsijEij , after projection onto the constraint surface. It is given as the
solution of the system of differential equations7

∗Dls(S)Es = gSl, (3.1.19)

with the derivative ∗Dls(S) defined in (3.1.13). Note that the vector Si(x) defined in (3.1.14) coincides, up
to divergence terms, with the spin density part of the Noetherian angular momentum, Si(x) := εijkA

a
jEak,

after transformation to the new variables and projection onto the constraint shell.8 The solution �E of

7Note that for the solution of this equation, we need to impose boundary conditions only on the physical variables S, in
contrast to Eq. (3.1.6) for which boundary conditions only for the unphysical variables qi are needed.
8Note that the presence of this divergence term destroys the so(3) algebra of densities due to the presence of Schwinger

terms

{Si(x),Sj(y)} = εijkSk(x)δ(x− y) + εijsPsk(x)∂
x
kδ(x− y),

but maintains the value of spin and its algebra if one neglects the surface terms.
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differential equation (3.1.19) can be expanded in a (1/g)-series. The zero-order term is

E(0)s = γ
−1
sk εklm (PS)lm , (3.1.20)

where γik := Sik − δik Tr(S) and the first-order term is defined by the formula

E(1)s :=
1

g
γ−1sl

[
(rot �E(0))l − ∂kPkl

]
(3.1.21)

from the zero-order term. The higher terms are then obtained by the simple recurrence relations

E(n+1)s :=
1

g
γ−1sl (rot

�E (n))s. (3.1.22)

One easily recognizes in these expressions the conventional definition of the covariant curl operation [86]
in terms of the covariant derivative

curlS(ei, ej) :=
〈
∇eiS, ej

〉
−

〈
∇ejS, ei

〉
calculated in the basis ei :=

(
γ1/2

)
ij
∂j and γij :=

〈
ei, ej

〉
with the corresponding connection∇eiej = Γ

l
ijel,

e.g.,

E
(1)
ij = curlS(ei, ej). (3.1.23)

3.2. The reduced system in terms of scalar and rotational degrees of freedom. In the previous
section, we have obtained the unconstrained Hamiltonian system in terms of physical fields represented
by a positive-definite symmetric matrix S. The initial gauge fields Ai transform as vectors under spatial
rotations. We would now like to study the transformation properties of the corresponding reduced matrix
field S. For systems possessing some rigid symmetry, it is well known to be very useful for practical
calculations to pass to a coordinate basis such that a subset of variables is invariant under the action
of the symmetry group. In this section, we perform the explicit separation of the rotational degrees of
freedom, which vary under rotations, from the scalars.

3.2.1. Transformation properties of the physical fields under space rotations. In order to search
for a parametrization of the unconstrained variables in Yang–Mills theory adapted to the action of the
group of spatial rotations, we study the corresponding transformation properties of the field S. The total
Noetherian angular momentum vector for SU(2) gluodynamics is

Ii = εijk

∫
d3x

(
EajA

a
k + xkEal

∂Aal
∂xj

)
. (3.2.1)

After elimination of the gauge degrees of freedom, it reduces to

Ii =

∫
d3xεijk ((PS)jk + xk Tr (P∂jS)) , (3.2.2)

where surface terms have been neglected.
Under infinitesimal rotations in 3-dimensional space, δxi = ωijxj, generated by (3.2.2), the physical

field S transforms as

δωSij = εsmnωmn{Sij , Is} = ωmn (Σ
mnS)ij + orbital part transf. (3.2.3)

with the matrices Σmn

(Σ)mn(il)(sj) := (δilδ
m
k δ
n
s + δ

m
i δ
n
l δsj)− (m↔ n), (3.2.4)

which describes the SO(3) rotations of a 3-dimensional second-rank tensor field S

S′ik = Ril(ω)Rkm(ω)Slm. (3.2.5)

It is well known that any symmetric second-rank tensor can be decomposed into its irreducible components,
one spin-0 component and five components of a spin-2 field by extraction of its trace [16]. On the other
hand, it can be diagonalized via a main axis transformation, which corresponds to a separation of diagonal
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fields, which are invariant under rotations, from the rotational degrees of freedom. In the following
sections, we investigate both representations and their relation to each other.

3.2.2. The unconstrained Hamiltonian in terms of spin-2 and spin-0 fields. As was shown in the
previous section, six independent elements of the matrix field S can be represented as a mixture of fields
with nonrelativistic spin 2 and spin 0. In order to put the theory into a more transparent form explicitly
showing its rotational invariance, it is useful to perform a canonical transformation to the corresponding
spin-2 and spin-0 fields as new variables. To achieve this, let us decompose the symmetric matrix S into
the irreducible representations of the SO(3) group

Sij(x) =
1
√
2
YA(x) T

A
ij +

1
√
3
Φ(x) Iij, (3.2.6)

where the field Φ is proportional to the trace of S as the spin-0 field and the 5-dimensional spin-2 vector
Y(x) with components YA labeled by its value of spin along the z-axis, A = ±2,±1, 0.9 The symbol I
denotes the unit (3× 3)-matrix; five traceless basis (3× 3)-matrices TA are listed in the Appendix.

The momenta PA(x) and PΦ(x) canonical conjugate to the fields YA(x) and Φ(x) are the components
of the corresponding expansion for the P variable

Pij(x) =
1
√
2
PA(x) T

A
ij +

1
√
3
PΦ(x) Iij . (3.2.7)

For the magnetic field B, we obtain the expansion

Bij(x) =
1
√
2
HA(x) T

A
ij +

1
√
2
hα(x) J

α
ij +

1
√
3
b(x) Iij (3.2.8)

with the components

HA :=
1

2
c
(2)
AβB∂βY

B +
g
√
3

(
1
√
2
∗YA − ΦYA

)
, (3.2.9)

hα :=
1

2
d
(1)
αBγ∂γY

B +

√
2

3
∂α Φ, (3.2.10)

b :=
g
√
3
(
1

2
Y2 − Φ2), (3.2.11)

in terms of the structure constants c
(2)
AβC and d

(1)
αBγ of the algebra of the spin-1 matrices J

α and the spin-2

matrices TA listed in the Appendix, and another five-dimensional vector

∗YC := d
(2)
CABY

AY B, (3.2.12)

where the constants d
(2)
ABC are explicitly given in the Appendix. Finally, we obtain the reduced Hamiltonian

in terms of spin-2 and spin-0 field components

H[P,Y, PΦ,Φ] :=
1

2

∫
d3x

(
P2(x) + �E2(x) + P 2

Φ
(x) +H2(x) + �h2(x) + b2(x)

)
, (3.2.13)

with expressions (3.2.9) for the magnetic-field components and the antisymmetric part �E of the electric
field given by (3.1.20)–(3.1.22), expressing S and P in terms of Y, Φ and P, PΦ via (3.2.6) and (3.2.7).

9Everywhere below, 3-dimensional vectors are topped by an arrow and their Cartesian and spherical components are
labeled by small Latin and Greek letters respectively, while the 5-dimensional spin-2 vectors are written in boldface and their
“spherical” components labeled by capital Greek letters. For the lowering and raising of the indices of 5-dimensional vectors,
the metric tensor ηAB = (−1)AδA,−B is used.
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In order to discuss the transformation properties of the spin-2 fields Y under spatial rotations, we rewrite
angular-momentum vector (3.2.2) in terms of the fields Y,P and Φ, PΦ

Ii = Si + εijk

∫
d3xxj(PΦ∂kΦ+ PA∂kY

A), (3.2.14)

with the spin part

Si = i(Ji)ABY
APB, (3.2.15)

where the three (5 × 5) matrices Jk are the elements of the so(3) algebra. They are explicitly shown in
the Appendix. The Ii’s generate the transformation of the 5-dimensional vector Y under infinitesimal
rotations δxi = εijkωkxj in the 3-dimensional space:

δωY
A = ωk{Y

A, Sk} = −i(J
k)ABY

B. (3.2.16)

For finite spatial rotations R(ω), we have

Y ′A = DAB(ω)YB, (3.2.17)

where

DAB(ω) = Tr(R(ω)TAR
T (ω)TB) (3.2.18)

is the well-known 5-dimensional spin-2 D-function related to the orthogonal (3×3)-matrix R(ω) (see [16]).
Transformation rule (3.2.17) is in accordance with (3.2.5).

Note that for a complete investigation of the transformation properties of the reduced matrix field
S under the whole Poincaré group, one should also include the Lorentz transformations. But we restrict
ourselves to the isolation of the scalars under spatial rotations and can treat S in terms of “nonrelativistic
spin-0 and spin-2 fields” in accordance with the conclusions obtained in [60].

3.2.3. Separation of scalar and rotational degrees of freedom. In this section, we introduce a
parametrization of the 5-dimensional Y field in terms of three Euler angles and two variables which are
invariant under spatial rotations. Transformation property (3.2.17) prompts us with the parametrization

YA(x) = DAB(χ(x))M
B(x) (3.2.19)

in terms of the Euler angles χi = (φ, θ, ψ) and some 5-vector M. The special choice

M(ρ, α) = ρ

(
−
1
√
2
sinα, 0, cosα, 0, −

1
√
2
sinα

)
(3.2.20)

corresponds to the main-axis transformation of the original symmetric (3× 3)-matrix field S(x),

S(x) = RT (χ(x))Sdiag (φ1(x), φ2(x), φ3(x))R(χ(x)), (3.2.21)

where D(χ) is related with R(χ) by (3.2.18) and the rotational invariant variables Φ, ρ, and α are related
with the diagonal elements φi by

10

φ1 :=
1
√
3
Φ +

√
2

3
ρ cos

(
α+
2π

3

)
,

φ2 :=
1
√
3
Φ +

√
2

3
ρ cos

(
α+
4π

3

)
,

φ3 :=
1
√
3
Φ +

√
2

3
ρ cosα.

(3.2.22)

10Similar variables were used as density and deformation variables in the collective model of Bohr in nuclear physics [14]
and as a parametrization for the square of the eigenvalues of the rotational invariant part of the gauge field by [87] in the
representation proposed in [113].
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As was mentioned in the first part of the paper, the matrix S is symmetric and positive definite; therefore,
the variables φi are positive:

φi ≥ 0, i = 1, 2, 3, (3.2.23)

and the domain of definition for the variables α and ρ can be taken as

0 ≤ ρ ≤
√
2Φ and α ≤

π

3
(3.2.24)

respectively. Therefore, the main-axis transformation of the symmetric second-rank tensor field S induces
a parametrization of five spin-2 fields Y A in terms of three rotational degrees of freedom, the Euler
angles χi = (ψ, θ, φ), which describe the orientation of the “intrinsic frame,” and two invariants ρ and α
represented by the 5-vector M. We can hence use either ρ, α, and the spin-0 field Φ, or the three fields
φi (i = 1, 2, 3) as three scalars under spatial rotations.

In what follows, we use main-axis representation (3.2.21). The momenta πi and pχi canonical con-
jugate to the diagonal elements φi and the Euler angles χi can easily be found using the generating
function

F3 [φi, χi; P ] :=

∫
d3xTr (SP ) =

∫
d3xTr

(
RT (χ)Sdiag(φ)R(χ)P

)
(3.2.25)

as

πi(x) =
∂F3
∂φi(x)

= Tr
(
PRTαiR

)
,

pχi(x) =
∂F3
∂χi(x)

= Tr

(
∂RT

∂χi
R [PS − SP ]

)
,

where αi are diagonal matrices with the elements (αi)lm = δliδmi. Together with the off-diagonal matrices
(αi)lm = |εilm|, they form an orthogonal basis for symmetric matrices, shown explicitly in the Appendix.
The original physical momenta Pik can then be expressed in terms of the new canonical variables as

P (x) = RT (x)

(
3∑
s=1

πs(x)αs +
1
√
2

3∑
s=1

Ps(x)αs

)
R(x), (3.2.26)

where

Pi(x) :=
ξi(x)

φj(x)− φk(x)
(cyclic permutation i �= j �= k) (3.2.27)

and the ξi’s are given in terms of the Euler angles χi = (ψ, θ, φ) as

ξk(x) :=M(θ, ψ)klpχl ,

M(θ, ψ) :=


 sinψ/ sin θ cosψ − sinψ cot θ
− cosψ/ sin θ sinψ cosψ cot θ

0 0 1


 . (3.2.28)

Note that the ξi’s are SO(3) left-invariant Killing vectors satisfying the relations

{ξi(x), ξj(y)} = −εijkξk(x)δ(x − y).

The antisymmetric part �E of the electric field appearing in the unconstrained Hamiltonian (3.1.17) is
given by the following expansion in a (1/g)-series similar to (3.1.20)–(3.1.22):

Ei = R
T
is

∞∑
n=0

E(n)s ,
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with the zero-order term

E
(0)
i := −

ξi
φj + φk

(cyclic permutation i �= j �= k), (3.2.29)

the first-order term given from E(0) via

E
(1)
i :=

1

g

1

φj + φk

[(
(∇Xj �E

(0))k − (∇Xk
�E(0))j

)
− Ξi

]
(cyclic permutation i �= j �= k), (3.2.30)

and the higher-order terms of the expansion determined via the recurrence relations

E(n+1)i :=
1

g

1

φj + φk

(
(∇Xj �E

(n))k − (∇Xk
�E(n))j

)
. (3.2.31)

The components of the covariant derivatives ∇Xk in the direction of the vector field Xi(x) := Rik∂k,

(∇Xi �E)b := XiEb + Γ
d
ibEd, (3.2.32)

are determined by the connection depending only on the Euler angles

Γbia :=
(
RXiR

T
)
ab
. (3.2.33)

It is easy to verify that the connection Γbia can be written in the form

Γbia = i(J
s)ab(M

−1)skXiχk, (3.2.34)

using the matrixM given in terms of the Euler angles χi = (ψ, θ, φ) in (3.2.28), which expresses the dual
nature of the Killing vectors ξi in (3.2.28) and the Maurer–Cartan 1-forms ω

i defined by

RdRT =: ωiJ i, ωi = (M−1)ikdχk. (3.2.35)

Finally, the source terms Ξk in (3.2.30) are given as

Ξ1 = Γ
1
22(π1 − π2) +

1

2
X1π1 − Γ

2
23P2 − Γ

1
23P1 − 2Γ

1
12P3 +X2P3 + (2↔ 3) (3.2.36)

and its cyclic permutations Ξ2 and Ξ3.
Therefore, the unconstrained Hamiltonian takes the form

H =
1

2

∫
d3x


 3∑
i=1

π2i +
1

2

∑
cycl.

ξ2i
(φj − φk)2

+
1

2
�E 2 + V


 , (3.2.37)

where the potential term

V [φ, χ] =
3∑
i=1

Vi[φ, χ] (3.2.38)

is the sum of

V1[φ, χ] =
(
Γ112φ[12] −X2φ1

)2
+

(
Γ113φ[13] −X3φ1

)2
+

(
Γ123φ[13] − Γ

1
32φ[12] + gφ2φ3

)2
(3.2.39)

and its cyclic permutations, φ[ij] = φi − φj . We see that through the main-axis transformation of the
symmetric second-rank tensor field S, the rotational degrees of freedom, the Euler angles χ, and their
canonical conjugate momenta pχ have been isolated from the scalars under spatial rotations and appear
in the unconstrained Hamiltonian only via the three Killing vector fields ξk, the connections Γ, and the
derivative vectors Xk.
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4. SU(2) Yang–Mills Fields and Calogero–Moser Systems

In this section, we discuss the correspondence between the dynamics of 3-particles with internal
degrees interacting by pairwise 1/r3 forces on a line (Euler–Calogero–Moser system [45,126]) and SU(2)
Yang–Mills theory with spatially constant gauge fields (SU(2) Yang–Mills mechanics ([3,30,54,65,89,116]
and the references therein)).

The Euler–Calogero–Moser model is an extension of the famous Calogero–Sutherland–Moser models
[18–20,93,118,119] (for generalizations, see [98,99,101,102]) with additional dynamical internal degrees of
freedom included. It is interesting that these types of models arises in various areas of theoretical physics
like the 2-dimensional Yang–Mills theory [13, 52, 75, 76, 90], black-hole physics [44], spin chain systems
[56,112], generalized statistics [15,79,104], higher-spin theories [121], level dynamics for quantum systems
[74], quantum Hall effect [5,64] and many others. An attractive feature of these generalizations is that they
maintain the integrability property of the original Calogero–Sutherland–Moser system. For the general
elliptic version of the Euler–Calogero–Moser system, action-angle-type variables were constructed and the
equations of motion were solved in terms of Riemannian theta-functions [72]; the canonical symplectic
form of this model is represented in terms of algebro-geometric data [6] using the general construction of
Krichever and Phong [73].

In recent past years, a remarkable relation between the Calogero–Moser systems and the exact so-
lutions of four-dimensional supersymmetric gauge theories was found [109, 110]. It was recognized that
the so-called Seiberg–Witten spectral curves are identical to the spectral curves of the elliptic SU(N)
Calogero–Moser system [88]. Furthermore, the generalization of these relations to the N = 2 supersym-
metric gauge theories with general Lie algebras and an adjoint representation of matter hypermultiplet
were derived in [25–27] (for a review of the recent results, see, e.g., [28,29,59]).

Despite the existence of such a correspondence established on very general grounds, relations between
gauge theories and integrable models are far from being understood.

Below, we point out a simple direct correspondence between the SU(2) Yang–Mills theory and the
Euler–Calogero–Moser model. This correspondence follows from the sequence of reductions of degrees of
freedom thanks to different kinds of symmetries. First, based on the results obtained in the previous sec-
tion, we restrict our consideration only to the zero-order derivative expansion of a nonlocal unconstrained
Lagrangian of SU(2) gluodynamics. We shall see that this approximation is equivalent to the supposition
of the spatial homogeneity of gauge fields and reduces the Yang–Mills field theory to the 9-dimensional
degenerate matrix Lagrangian model. After elimination of pure gauge degrees of freedom and rewriting
the unconstrained matrix model in terms of special coordinates adapted to the action of rigid symmetry,
one can arrive at the conventional form of the Euler–Calogero–Moser Hamiltonian. More precisely, we
demonstrate that the unconstrained SU(2) Yang–Mills mechanics represents the Euler–Calogero–Moser
system of type ID3, i.e., the inverse-square interacting 3-particle system with internal degrees of freedom
related to the root system of the simple Lie algebra D3 [98, 99, 102], and is embedded in a fourth-order
external potential written in the superpotential form.

In addition, to this reduction due to the continuous symmetry of the system, we discuss another
possibility of relating the Yang–Mills mechanics to higher-order matrix models using the discrete symme-
tries. We explore the method of constructing generalizations of the Calogero–Sutherland–Moser models
elaborated recently by Polychronakos [105]. This method consists of using the appropriate reduction of
the original Calogero model by a subset of its discrete symmetries to an invariant submanifold of the phase
space. Representing the Euler–Calogero–Moser system with a special external potential as a symmetric
(6 × 6)-matrix model, we show that such a matrix model, after projection onto the invariant submani-
fold of the phase space using a certain subset of discrete symmetries, is equivalent to the unconstrained
SU(2) Yang–Mills mechanics. Finally, we give a Lax-pair representation for the equations of motion of
the SU(2) Yang–Mills mechanics in the limit of the zero coupling constant. In this paper, we restrict our
consideration to the classical level; one can find some results on quantization of Yang–Mills mechanics in
[68] and the references therein.
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4.1. Yang–Mills mechanics as an unconstrained matrix model. In this section, we show that
the supposition of spatial homogeneity of the gauge connection A reproduces the results of zero-order
derivative expansions for the nonlocal unconstrained Lagrangian derived in Sec. 3.

If we assume the spatial homogeneity

L∂iA = 0 (4.1.1)

of the gauge connection A, then the action of the SU(2) Yang–Mills theory reduces to the action for a
finite-dimensional model, the so-called Yang–Mills mechanics (YMM) described by the degenerate matrix
Lagrangian

LYMM =
1

2
tr
(
(DtA)(DtA)

T
)
− V (A). (4.1.2)

The entries of the (3 × 3)-matrix A are nine spatial components Aai := Aai of the connection A :=
Yaeadt+Aaieadx

i, where ea = σa/2i, σa are the Pauli matrices, and Dt denotes the covariant derivative
(DtA)ai = Ȧai + gεabcYbAci. Due to the spatial homogeneity condition (4.1.1), all dynamical variables Ya
and Aai are functions only of time. The part of the Lagrangian corresponding to the self-interaction of
the gauge fields is gathered in the potential V (A):

V (A) =
g2

4

(
tr2(AAT )− tr(AAT )2

)
. (4.1.3)

To express the Yang–Mills mechanics in the Hamiltonian form, we define the phase space endowed with
the canonical symplectic structure and spanned by the canonical variables (Ya, PYa) and (Aai, Eai), where

PYa =
∂L

∂Ẏa
= 0, Eai =

∂L

∂Ȧai
= Ȧai + gεabcYbAci. (4.1.4)

According to these definitions of the canonical momenta (4.1.4), the phase space is restricted to the three
primary constraints

P aY = 0 (4.1.5)

and the evolution of the system is governed by the total Hamiltonian HT = HC + u
a
Y (t)P

a
Y , where the

canonical Hamiltonian is given by the relation

HC =
1

2
tr(EET ) +

g2

4

(
tr 2(AAT )− tr(AAT )2

)
+ gYa tr(JaAE

T ) (4.1.6)

and the matrix (Ja)bc equals (Ja)bc = −εabc. The conservation of constraints (4.1.5) in time entails the
further condition on the canonical variables

Φa = g tr(JaAE
T ) = 0 (4.1.7)

that reproduces the homogeneous part of the conventional non-Abelian Gauss-law constraints. They are
the first-class constraints obeying the Poisson-bracket algebra

{Φa,Φb} = εabcΦc. (4.1.8)

In order to project onto the reduced phase space, we use the well-known polar decomposition

Aai(φ,Q) = Oak(φ)Qki, (4.1.9)

for an arbitrary (3×3)-matrix, whereQij is a positive-definite symmetric (3×3)-matrix andO(φ1, φ2, φ3) =
eφ1J3eφ2J1eφ3J3 is an orthogonal matrix O ∈ SO(3). Assuming that the matrix Aai is nondegenerate, we
can treat the polar decomposition as a uniquely invertible transformation from the configuration variables
Aai to the new set of six Lagrangian coordinates Qij and three coordinates φi. As follows from further
consideration, the variables parametrizing the elements of the group SO(3) (the Euler angles (φ1, φ2, φ3))
are the pure gauge degrees of freedom.
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The field strength Eai in terms of the new canonical variables is

Eai = Oak(φ)

[
Pki + εkil(γ

−1)lj
[
ξLj − Sj

]]
, (4.1.10)

where ξLa are three left-invariant vector fields on SO(3):

ξL1 =
sinφ3
sinφ2

P1 + cosφ3 P2 − cotφ2 sinφ3 P3,

ξL2 =
cosφ3
sinφ2

P1 − sinφ3 P2 − cotφ2 cosφ3 P3,

ξL3 = P3,

Sj = εjmn(PQ)mn is the spin vector of the gauge field, and

γik = Qik − δik trQ. (4.1.11)

Reformulation of the theory in terms of these variables allows one to easily achieve the Abelianization
of the secondary Gauss-law constraints. Using representations (4.1.9) and (4.1.10), one can convince
oneself that the variables Qij and Pij make no contribution to secondary constraints (4.1.7)

Φa = Oab(φ)ξ
L
b = 0. (4.1.12)

Hence, assuming that the matrix

M =



sinφ1
sinφ2

cosφ1 − sinφ1 cot φ2
− cosφ1sinφ2

sinφ1 cosφ1 cot φ2
0 0 1


 (4.1.13)

is nondegenerate, we find the set of Abelian constraints equivalent to the Gauss law (4.1.7):

Φ̃a = Pa = 0. (4.1.14)

After having rewritten the model in this form, we are able to reduce the theory to physical phase space by
a straightforward projection onto the constraint shell. The resulting unconstrained Hamiltonian defined
as a projection of the total Hamiltonian onto the constraint shell

HYMM := HC(Qab, Pab)
∣∣∣
Pa=0, PaY =0

(4.1.15)

can be written in terms of Qab and Pab as follows:

HYMM =
1

2
trP 2 −

1

det2 γ
tr(γMγ)2 +

g2

4

(
tr 2Q2 − trQ4

)
, (4.1.16)

whereMmn = (QP − PQ)mn denotes the gauge-field spin tensor.

4.2. Yang–Mills mechanics as the motion of a particle on a stratified manifold. In the previous
section, the unconstrained dynamics of the SU(2) Yang–Mills mechanics was identified with the dynamics
of the nondegenerate matrix model (4.1.16). The configuration space Q of the real symmetric (3 × 3)-
matrices can be endowed with the flat Riemannian metric

ds2 = Tr
(
dQ2

)
(4.2.1)

whose isometry group is formed by orthogonal transformations

Q′ = RQRT . (4.2.2)

Since the unconstrained Hamiltonian system (4.1.16) is invariant under the action of this rigid group, we
are interested in the structure of the orbit space given as a quotient Q/SO(3). Important information
on the stratification of the space Q/SO(3) of orbits can be obtained from the so-called isotropy group
of points of the configuration space which is defined as a subgroup of SO(3) leaving point x invariant,
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RxRT = x. Orbits with the same isotropy group are collected into classes called strata. Therefore, as for
the case of a symmetric matrix, the orbits are uniquely parametrized by the set of ordered eigenvalues
x1 ≤ x2 ≤ x3 of the matrix Q. One can classify the orbits according to the isotropy groups which are
determined by the degeneracies of the matrix eigenvalues:

(1) principal orbit-type strata, if all eigenvalues are unequal, x1 < x2 < x3, then the isotropy group
Z2 ⊗ Z2 is the smallest;

(2) singular orbit-type strata forming the boundaries of the orbit space with
(a) two coinciding eigenvalues x1 = x2, x2 = x3, or x1 = x3; the isotropy group is SO(2)⊗ Z2;
(b) all three eigenvalues are equal, x1 = x2 = x3, and the isotropy group coincides with the isometry
group SO(3).

In the subsequent sections, we show that the dynamics of the Yang–Mills mechanics which takes place
on principal orbits is governed by the ID3 Euler–Calogero-model Hamiltonian with the external potential
V (3) := g2/2

∑
i<j

x2ix
2
j , while for singular orbits the corresponding system is either the A2-Calogero model

with the external potential V (2) := g2/2(x4 + 2x2y2) for singular orbits of type (a) or a one-dimensional
system with quartic potential V (1) := 3/2g2x4 for singular orbits of type (b).

4.2.1. Dynamics on principal orbit strata. To write down the Hamiltonian describing the motion
on the principal orbit strata, we introduce the coordinates along the slices xi and along the orbits χ.
Namely, we decompose the nondegenerate symmetric matrix Q into the product

Q = RT (χ1, χ2, χ3)DR(χ1, χ2, χ3),

where R is an SO(3)-matrix parametrized by the Euler angles χi := (χ1, χ2, χ3) and D = diag(x1, x2, x3)
is a diagonal matrix, and consider it as a point transformation from the physical coordinates Qab and Pab
to xi, pi and χi, pχi . The Jacobian of this transformation is the relative volume of orbits

J :=

∣∣∣∣∣det
∣∣∣∣
∣∣∣∣ ∂Q∂xk ,

∂Q

∂χk

∣∣∣∣
∣∣∣∣
∣∣∣∣∣ =

∏
i<k

| xi − xk | (4.2.3)

and is regular for this stratum x1 < x2 < x3.
By using the generating function

F [xi, χi; P ] = tr (QP ) = tr
(
RT (χ)D(x)R(χ)P

)
, (4.2.4)

the canonical conjugate momenta can be found in the form

pi =
∂F

∂xi
= tr

(
PRTαiR

)
, pχi =

∂F

∂χi
= tr

(
RT
∂R

∂χi
(PQ−QP )

)
,

where αi are the diagonal terms of the orthogonal basis for the symmetric (3 × 3)-matrices used above
and listed in the Appendix. Then the original physical momenta Pik can be expressed in terms of the
new canonical variables by the formula

P = RT
(
3∑
s=1

P̄sαs +
3∑
s=1

Psαs

)
R, (4.2.5)

where P̄s = ps,

Pi = −
1

2

ξRi
xj − xk

(cyclic permutation i �= j �= k),
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and the SO(3) right-invariant Killing vectors are

ξR1 = pχ1 ,

ξR2 = − sinχ1 cotχ2 pχ1 + cosχ1 pχ2 +
sinχ1
sinχ2

pχ3,

ξR3 = cosχ1 cotχ2 pχ1 + sinχ1 pχ2 −
cosχ1
sinχ2

pχ3.

They satisfy the Poisson-bracket algebra

{ξRa , ξ
R
b } = εabcξ

R
c . (4.2.6)

Thus, finally, we obtain the following physical Hamiltonian defined on the unconstrained phase space:

HYMM =
1

2

3∑
a=1

p2a +
1

4

3∑
a=1

k2aξ
2
a + V

(3)(x), (4.2.7)

where

k2a =
1

(xb + xc)2
+

1

(xb − xc)2
(cyclic permutation a �= b �= c) (4.2.8)

and

V (3) =
g2

2

∑
a<b

x2ax
2
b . (4.2.9)

Note that the potential term in (4.2.9) has symmetry beyond the cyclic one. This fact allows us to
write V (3)(x1, x2, x3) in the form

V (3)(x1, x2, x3) =
∂W (3)

∂xa

∂W (3)

∂xa
, a = 1, 2, 3, (4.2.10)

with the superpotential W (3) = x1x2x3.
This completes our reduction of the spatially homogeneous Yang–Mills system to the equivalent

unconstrained system describing the dynamics of the physical dynamical degrees of freedom. We see
that the reduced Hamiltonian HYMM on the principal orbit strata is exactly the Hamiltonian of the
Euler–Calogero–Moser system of type ID3, i.e., is of the inverse-square interacting three-particle system
with internal degrees of freedom and related to the root system of the simple Lie algebra D3 [98,99,102]
embedded in the fourth-order external potential (4.2.10).

4.2.2. Dynamics on a singular stratum. Introduction of the additional constraints

x1 − x2 = 0

or
x1 − x2 = 0, x1 − x3 = 0

defines the invariant two- and one-dimensional strata.
One can repeat the above consideration for these singular strata and derive the following uncon-

strained Hamiltonians:

two-dimensional strata

H
(2)
Sing =

1

2
p2x +

1

4
p2y +

1

4

l(l + 1)

(x− y)2
+
g2

2
(x4 + 2x2y2), (4.2.11)

where the constant l(l + 1) denotes the value of the square of the particle internal spin, and
one-dimensional strata

H
(1)
Sing =

1

6
p2x + 3/2g

2x4. (4.2.12)
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4.3. Yang–Mills mechanics and discrete reduction of the Euler–Calogero–Moser system. In
this section, we demonstrate how the SU(2) Yang–Mills mechanics arises from the higher-dimensional
matrix model after projection onto a certain invariant submanifold determined by the discrete symme-
tries. To demonstrate this, it is useful to represent the Euler–Calogero–Moser system in the form of a
nondegenerate matrix model.

4.3.1. Euler–Calogero–Moser system as a geodesic motion on symmetric matrices. Let us
consider the Hamiltonian system with the phase space spanned by the (N × N)-symmetric matrices X
and P . The symplectic structure is given by the Poisson bracket

{Xab, Pcd} =
1

2
(δacδbd − δadδbc) .

The Hamiltonian of the system defined as

H =
1

2
trP 2 (4.3.1)

describes free motion in the matrix configuration space. The following statement holds: The Hamiltonian
(4.3.1) rewritten in special coordinates coincides with the Euler–Calogero–Moser Hamiltonian

H =
1

2

N∑
i=1

p2i +
1

2

N∑
i�=j

l2ij
(xi − xj)2

(4.3.2)

with nonvanishing Poisson brackets for the canonical variables11

{xi, pj} = δij {lab, lcd} =
1

2
(δaclbd − δadlbc + δbdlac − δbclad) .

To find the adapted set of coordinates in which the Hamiltonian (4.3.1) coincides with the Euler–
Calogero–Moser Hamiltonian (4.3.2), let us introduce new variables

X = O−1(θ)Q(q)O(θ),

where the orthogonal matrix O(q) is parametrized by N(N−1)
2 elements, e.g., the Euler angles

(θ1, · · · , θN(N−1)
2

), and Q = diag ‖q1, . . . , qN‖ denotes a diagonal matrix. This point transformation

induces the canonical transformation, which we can obtain using the generating function

F4 =
[
P, q1, . . . , qN , θ1, . . . , θN(N−1)

2

]
= tr[X(q, θ)P ]. (4.3.3)

Using the representation

P = O−1


 N∑
a=1

ᾱaP̄a +

N(N−1)
2∑

i<j=1

αijPij


O, (4.3.4)

where the matrices (ᾱa, αij) form an orthogonal basis in the space of the symmetric (N × N)-matrices
under the scalar product

tr(ᾱaᾱb) = δab, tr(αijαkl) = 2δikδjl, tr(αaαij) = 0, (4.3.5)

11This system is the spin generalization of the Calogero–Moser model. Particles are described by their coordinates xi and
momenta pi together with internal degrees of freedom of angular momentum type lij = −lji. A similar model was introduced
in [45], where the internal degrees of freedom satisfy the following Poisson-bracket relations:

{lab, lcd} = δbclad − δadlcb.
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one can obtain that P̄a = pa and the components Pab are represented via the O(N) right-invariant vector
fields lab:

Pab =
1

2

lab
xa − xb

.

From this, it is clear that the Hamiltonian (4.3.1) coincides with the Euler–Calogero–Moser Hamilton-
ian (4.3.2).

The integration of the Hamilton equations of motion

Ẋ = P, Ṗ = 0

derived by using the Hamiltonian (4.3.1) gives the solution of the Euler–Calogero–Moser Hamiltonian
system as follows: for the x-coordinates, we need to calculate the eigenvalues of the matrix X = X(0) +
P (0)t, while the orthogonal matrix O, which diagonalizes X, determines the time evolution of internal
variables.

Now, in order to find connections between the motion on the space of symmetric matrices and
the Yang–Mills mechanics, let us consider the classical Hamiltonian system of N particles on a line
with internal degrees of freedom embedded in an external field with the potential V (x1, x2, . . . , xN ) and
described by the Hamiltonian

H =
1

2

N∑
i=1

p2i +
1

2

N∑
i�=j

l2ij

(xi − xj)2
+ V (N)(x1, x2, . . . , xN ). (4.3.6)

The particles are described by their coordinates xi and momenta pi together with the internal degrees of
freedom of angular momentum type lij = −lji. The nonvanishing Poisson brackets are

{xi, pj} = δij, {lab, lcd} = δaclbd − δadlbc + δbdlac − δbclad.

The external potential V (N)(x1, x2, . . . , xN ) is constructed in terms of the superpotential W
(N):

V (N)(x1, x2, . . . , xN ) = −
1

4

N∑
a=1

∂W (N)

∂xa

∂W (N)

∂xa
, (4.3.7)

where W (N) is given as12

W (N) = i
√
x1x2 . . . xN . (4.3.8)

Below it is useful to treat the internal degrees of freedom entering into the Hamiltonian (4.3.6) in
the Cartesian form

lab = yaπb − ybπa, (4.3.9)

where the internal variables ya and πa combine the canonical pairs with the canonical symplectic form.
The Hamiltonian (4.3.6) has the following discrete symmetries [105]:

• parity P (
xi
pi

)
�→

(
−xi
−pi

)
,

(
yi
πi

)
�→

(
−yi
−πi

)
; (4.3.10)

• permutation symmetry M(
xi
pi

)
�→

(
xM(i)
pM(i)

)
,

(
yi
πi

)
�→

(
yM(i)
πM(i)

)
, (4.3.11)

where M is the element of the permutation group SN .

12If we write the superpotential in the invariant form

W (N) = i
√
detX,

where X is a symmetric (N × N)-matrix whose eigenvalues are x1, x2, . . . , xN , then the external potential is
V (N)(x1, x2, . . . , xN) = detX tr(X

−2).
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The manifold of the phase space defined as

xa + xN−a+1 = 0, pa + pN−a+1 = 0, (4.3.12)

ya + yN−a+1 = 0, πa + πN−a+1 = 0 (4.3.13)

is invariant under the action of the symmetry group z = D(z), where

D = P ×M

and M is specified as M(a) = N − a+ 1.
In order to project onto the manifold described by constraints (4.3.12)–(4.3.13), we use the Dirac

method to deal with the second-class constraints. Let us introduce the Dirac brackets between the
arbitrary functions F and G of all variables (xa, pa, ya, πa) as follows:

{F,G}D = {F,G} − {F,Za}{Za, Zb}
−1{Zb, G},

where Za denote all second-class constraints Za := (χa,Πa, χ̄a, Π̄a), a = 1, · · · ,N/2:

χa =
1
√
2
(xa + xN−a+1) , χ̄a =

1
√
2
(ya + yN−a+1) , (4.3.14)

Πa =
1
√
2
(pa + pN−a+1) , Π̄a =

1
√
2
(πa + πN−a+1) (4.3.15)

with the canonical algebra

{χa, χ̄b} = {Πa, Π̄b} = {χa, Π̄b} = {χ̄a,Πb} = 0, (4.3.16)

{χa,Πb} = δab, {χ̄a, Π̄b} = δab. (4.3.17)

Thus, the fundamental Dirac brackets are

{xa, pb}D =
1

2
δab, {ya, πb}D =

1

2
δab.

After the introduction of these new brackets, one can treat all constraints in the strong sense. Letting
the constraint functions vanish, the system with Hamiltonian (4.3.6) reduces to the following:

Hred =
1

2

N
2∑
a=1

p2a +
1

2

N
2∑
a�=b

l2abk
2
ab +

g2

2

N
2∑
a�=b

x2ax
2
b , (4.3.18)

where

k2ab =
1

(xa + xb)2
+

1

(xa − xb)2
.

Expression (4.3.18) for N = 6 coincides with the Hamiltonian of SU(2) Yang–Mills mechanics after taking
into account that after projection onto the constraint shell (CS) (4.3.14)–(4.3.15), potential (4.3.7) reduces
to the potential of Yang–Mills mechanics

V (6)(x1, · · · , x6)
∣∣
CS
=
1

2

(
x21x

2
2 + x

2
1x
2
3 + x

2
2x
2
3

)
.

4.3.2. Lax pair for Yang–Mills mechanics in zero coupling limit. The conventional perturbative
scheme of non-Abelian gauge theories starts with the zero approximation of the free theory. However,
the limit of the zero coupling constant is not quite trivial. If the coupling constant in the initial Yang–
Mills action vanishes, the non-Abelian gauge symmetry reduces to the U(1) × U(1) × U(1) symmetry.
In this section, we discuss this free theory limit for the case of the unconstrained Yang–Mills mechanics.
The solution of the corresponding zero coupling limit of the Yang–Mills mechanics in the form of a Lax
representation will be given. The relation between (4.3.6) and (4.3.18) allows one to construct the Lax
pair for the free part of the Hamiltonian (4.3.18) (g = 0) by using the known Lax pair for the Euler–
Calogero–Moser system (4.3.6) without an external potential term (g = 0).
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According to [126], the Lax pair for the system with Hamiltonian

HECM =
1

2

N∑
a=1

p2a +
1

2

N∑
a�=b

l2ab
(xa − xb)2

(4.3.19)

is

Lab = paδab − (1− δab)
lab

xa − xb
,

Aab = (1− δab)
lab

(xa − xb)2

and the equations of motion in the Lax form are

L̇ = [A,L], l̇ = [A, l],

where the matrix (l)ab = lab.
The introduction of Dirac brackets allows one to use the Lax pair of the higher-dimensional Euler–

Calogero–Moser model (namely, A6) for the construction of Lax pairs (LYMM, AYMM) of free Yang–Mills
mechanics by performing the projection onto the constraint shell (4.3.14)–(4.3.15):

LECM6×6 |CS = LYMM, AECM6×6 |CS = AYMM.

Thus, the explicit form of the Lax pair matrices for free SU(2) Yang–Mills mechanics is given by the
following (6× 6)-matrices:

LYMM =




p1 −
l12

x1 − x2
−
l13

x1 − x3

l13
x1 + x3

l12
x1 + x2

0

−
l12

x1 − x2
p2 −

l23
x2 − x3

l23
x2 + x3

0 −
l12

x1 + x2

−
l13

x1 − x3
−
l23

x2 − x3
p3 0 −

l23
x2 + x3

−
l13

x1 + x3
l13

x1 + x3

l23
x1 + x2

0 −p3 −
l23

x2 − x3
−
l13

x1 − x3
l12

x1 + x2
0 −

l23
x2 + x3

−
l23

x2 − x3
−p2 −

l12
x1 − x2

0 −
l12

x1 + x2
−
l13

x1 + x3
−
l13

x1 − x3
−
l12

x1 − x2
−p1




(4.3.20)

and

AYMM =




0
l12

(x1 − x2)2
l13

(x1 − x3)2
−

l13
(x1 + x3)2

−
l12

(x1 + x2)2
0

−
l12

(x1 − x2)2
0

l23
(x2 − x3)2

−
l23

(x2 + x3)2
0

l12
(x1 + x2)2

−
l13

(x1 − x3)2
−

l23
(x2 − x3)2

0 0
l23

(x2 + x3)2
l13

(x1 + x3)2

l13
(x1 + x3)2

l23
(x1 + x2)2

0 0 −
l23

(x2 − x3)2
−

l13
(x1 − x3)2

l12
(x1 + x2)2

0 −
l23

(x2 + x3)2
l23

(x2 − x3)2
0 −

l12
(x1 − x2)2

0 −
l12

(x1 + x2)2
−

l13
(x1 + x3)2

l13
(x1 − x3)2

l12
(x1 − x2)2

0




.

(4.3.21)
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The equations of motion for SU(2) Yang–Mills mechanics in the zero constant coupling limit read in
a Lax form as follows:

L̇YMM = [AYMM, LYMM], l̇YMM = [AYMM, lYMM],

where

lYMM =




0 l12 l13 −l13 −l12 0
−l12 0 l23 −l23 0 l12
−l13 −l23 0 0 l23 l13

l13 l23 0 0 −l23 −l13
l12 0 −l23 l23 0 −l12
0 −l12 −l13 l13 l12 0



. (4.3.22)

5. Unconstrained SU(2) Yang–Mills Theory with Theta Angle

The gauge- and Poincaré-invariant action of Yang–Mills theory depends on two parameters, the
coupling constant g and so-called θ-angle, as coefficients of the CP even part S(+)

S(+) =
1

2g2

∫
d4x trFµνF

µν , (5.0.23)

and the CP odd part S(−)

S(−) =
θ

32π2

∫
d4x trFµν F̃

µν , (5.0.24)

respectively. At the classical level, neither the value of the coupling constant nor that of the theta
angle affect the observables, since the complete information for the description of the classical behavior
of the gauge fields is coded entirely in the extremum of the action. If all components of the gauge
potential entering the action are varied as independent variables, then the topological charge density
term Q(x) = trFµν F̃

µν can be discarded as a total divergence

trFµν F̃
µν = ∂µK

µ, (5.0.25)

where

Kµ = εµαβγ tr

(
Aα∂βAγ +

2

3
AαAβAγ

)
(5.0.26)

is the Chern–Simons current and thus the extremal curves are independent of both the coupling constant
and the theta angle.

Passing to the quantum theory, it is generally believed [17, 32, 61, 62] that the physical observables
become dependent on theta. Although in perturbative calculations all diagrams with vertex Q(x) vanish,
nonperturbative phenomena such as tunneling between the above topologically distinct classical vacua,
labeled by the integer value of the winding number functional

W [A] =

∫
d3xK0, (5.0.27)

lead to the appearance of theta-vacua. Configurations with different winding number are related to each
other by large gauge transformations reflecting the fact that the topological current Kµ is not gauge
invariant.

Therefore, we pose here the question whether it is possible to express the Chern–Simons term in the
classical action as a total divergence of a gauge invariant current using the unconstrained formulation of
gauge theories. In the hope of obtaining such a representation of the Chern–Simons term, we would like
to generalize the Hamiltonian reduction of classical SU(2) Yang–Mills field theory to an arbitrary theta
angle by including the CP odd part (5.0.24) of the action. We shall reformulate the original degenerate
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Yang–Mills theory as an unconstrained nonlocal theory of self-interacting second-rank symmetric tensor
fields.

Performing such a reduction in the presence of a total divergence term in the action, one can encounter
the so-called “divergence problem” specific for the field theory with constraints, which has no analogues for
finite-dimensional mechanical systems. This problem was first formulated explicitly in the context of the
canonical reduction of general relativity.13 Forty years later, Arnowitt, Deser, and Misner [2] gave a clear
and vivid formulation of the phenomenon: “a term which in the original Lagrangian (or Hamiltonian) is
a pure divergence may cease to be a divergence upon elimination of the redundant variables and hence may
contribute to the equations of motion obtained from the reduced Lagrangian (Hamiltonian).” A simple ad
hoc example from [2] explains the idea of this statement. Consider a theory where among the variables,
there is a redundant variable satisfying the constraint

∇2Φ = χ2. (5.0.28)

The term ∇2Φ added to the degenerate Lagrangian, being a divergence, has no influence on the classical
equation of motion, while after projection onto the constraint shell, it appears as χ2 and would contribute
to equations of motion.

We demonstrate that the Hamiltonian reduction of SU(2) Yang–Mills gauge theory is free of the
above-mentioned “divergence problem” due to the Bianchi identities. Equivalence of constrained and
unconstrained formulations of gauge theories on the classical level requires the demonstration of the
agreement between reduced and original non-Abelian Lagrangian equations of motion. We explicitly
construct the canonical transformation, well-defined on the reduced phase space, that eliminates the
theta dependence of the classical equations of motion for the unconstrained variables.

5.1. Theta independence on the constrained level. First, let us review the case of the original
constrained theory and demonstrate that under the special boundary conditions for the fields at spatial
infinity (see Eq. (5.1.5) below), there exists a canonical transformation which completely eliminates the
theta dependence from the classical degenerate theory.

5.1.1. Hamiltonian formulation of the constrained theory. Inclusion of the CP odd part of the
action S(−) leads to the modification of the canonical momenta

Πa =
∂L

∂Ȧa0
= 0,

Πai =
∂L

∂Ȧai
=
1

g2

(
Ȧai − (Di(A))acAc0

)
−
θ

8π2
Bai,

where the covariant derivative Di is

(Di(A))mn = δmn ∂i + (J
c)mn Aci, (5.1.1)

where (Js)mn := εmsn are (3× 3)-matrix generators of the group SO(3) and

Bai = εijk

(
∂jAak +

1

2
εabcAbjAck

)
are non-Abelian magnetic fields. Independently of this modification, the phase space spanned by the
variables (Aa0,Πa) and (Aai,Πai) is restricted to three primary constraints Πa(x) = 0.

The canonical Hamiltonian is

HC =

∫
d3x

[
g2

2

(
Πai +

θ

8π2
Bai

)2
+
1

2g2
B2ai +Πai (DiA0)a

]
, (5.1.2)

13Presumably, the idea of the importance of the careful consideration of terms which are total spatial divergences goes
back to Dirac in 1959, when he constructed the reduced Hamiltonian in general relativity as a certain surface integral at
spatial infinity [34,36,37].
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where we have used the fact that the topological charge density Q(x) = trFµν F̃
µν can be rewritten in

terms of the non-Abelian electric and magnetic fields as

Q = −
1

2π
EaiBai. (5.1.3)

The standard way in the Hamiltonian approach to proceed further is to perform a partial integration
in the last term in expression (5.1.2) for the canonical Hamiltonian∫

VR

d3xΠai (DiA0)a = −

∫
VR

d3xAa0 (DiΠi)a +

∮
ΣR

d2σiAa0Πai, (5.1.4)

where, according to the Gauss theorem, the surface integral is taken over the two-dimensional closed
surface covering the three-dimensional volume VR (for simplicity, we assume that it is a ball with radius
R). Assuming that

lim
R→∞

∮
ΣR

d2σiAa0Πai = 0, (5.1.5)

we obtain the non-Abelian Gauss-law constraint

(Di)acΠic = 0 (5.1.6)

as the condition to maintain the primary constraints Πa = 0 during the evolution. According to the Dirac
prescription, the generator of time translation is the total Hamiltonian

HT =

∫
d3x

[
g2

2

(
Πai +

θ

8π2
Bai

)2
+
1

2g2
B2ai −Aa0DiΠai + λaΠa

]
(5.1.7)

depending on three arbitrary functions λa(x), and the Poisson bracket has the canonical structure

{Aai(�x, t),Πbj(�y, t)} = δ
abδijδ

3(�x− �y),

{Aa0(�x, t),Πb(�y, t)} = δ
abδ3(�x− �y).

(5.1.8)

5.1.2. Canonical transformation to constrained theory with θ = 0. Based on representation
(5.1.7) for the total Hamiltonian, one can immediately verify the equivalence of classical theories with
different values of the parameter θ. To this end, let us perform the transformation to new coordinates
Aai and Ebj:

Aai(x)→ Aai(x) = Aai(x),

Πbj(x)→ Ebj = Πbj(x) +
θ

8π2
Bbj(x).

(5.1.9)

One can easily verify that this transformation is canonical, the new coordinates Aai and Eai satisfy the
same canonical Poisson-bracket relations (5.1.8) as the original one. By virtue of the Bianchi identity

εµνλρDνFλρ = 0,

one can conclude that the θ-dependence completely disappears from Hamiltonian (5.1.7).
Note that canonical transformation (5.1.9) can be represented in the form

Eai = Πai −
θ

8π2
δ

δAai
W [A], (5.1.10)

where W [A] denotes the winding number functional (5.0.27).

5.2. Theta independence on the unconstrained level. Now we derive the unconstrained version of
Yang–Mills theory with theta angle and then give the analogue of transformation (5.1.9) after projection
to the reduced phase space, thus checking the consistency of the unconstrained canonical formulation of
Yang–Mills theory.
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5.2.1. Hamiltonian formulation of the unconstrained theory. Now we follow the method devel-
oped in Sec. 3 for the CP even part of the gluodynamcs action and reduce the CP odd part similarly.

Let us perform the following point transformation to the new set of Lagrangian coordinates qj
(j = 1, 2, 3) and six elements Sik = Ski (i, k = 1, 2, 3) of the positive-definite symmetric (3× 3)-matrix S:

Aai (q, S) = Oak (q)Ski −
1

2
εabc

(
O (q)∂iO

T (q)
)
bc
, (5.2.1)

where O(q) is an orthogonal (3× 3)-matrix parametrized by three fields qi.
Again, as in Sec. 3, using the corresponding generating functional

F3 [Π; q, S] =

∫
d3z Πai(z)Aai (q(z), S(z)) ,

one can obtain the transformation to the new canonical momenta pi and Pik:

pj(x) =
δF3
δqj(x)

= −Ωjr
(
Di(Q)S

TΠ
)
ri
, (5.2.2)

Pik(x) =
δF3
δSik(x)

=
1

2

(
ΠTO +OTΠ

)
ik
, (5.2.3)

where

Ωji(q) := −
1

2
Tr

(
OT (q)

∂O (q)

∂qj
Ji

)
. (5.2.4)

The symplectic structure of new variables is encoded in the fundamental Poisson brackets14

{Sij(x), Pkl(y)} =
1

2
(δikδjl + δilδjk) δ

(3)(x− y). (5.2.5)

From Eqs. (5.2.2) and (5.2.3), follows the expression for the old momenta Πai in terms of the new
canonical variables:

Πai = Oak (q)

[
P ki + εkisPs

]
. (5.2.6)

The vector Ps is a solution to the system of first-order partial differential equations
∗Dks(S)Ps = −sk(x) + Ω

−1
kl pl. (5.2.7)

In (5.2.7), ∗D denotes the matrix operator
∗Dik(S) = −i (J

mDm(S))ik (5.2.8)

and
sk(x) = (Di(S))lkPil.

Again, as in Sec. 3, we find that the new variables S and P make no contribution to the Gauss-law
constraints (5.1.6)

Oas(q)Ω
−1
sj(q)pj = 0,

and the equivalent set of Abelian constraints is

pa = 0.

The reduced Hamiltonian is defined as the projection of the total Hamiltonian to the constraint shell
pa = 0. In terms of the unconstrained canonical variables S and P , it reads

H∗ =

∫
d3x

[
g2

2

(
Pai +

θ

8π2
B(ai)

)2
+
g2

2

(
Pa +

θ

8π2
Ba

)2
+
1

2g2
B2ai

]
, (5.2.9)

14These new brackets take into account the symmetry constraints Sij = Sji and Pkl = Plk and rigorously speaking are
the Dirac brackets.
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where B(ai) and Ba denote the symmetric tensor B(ai) = 1/2(Bai + Bia) and vector Ba = 1/2εabcBbc
constructed from chromomagnetic field

Bsk = εklm

(
∂lSsm +

1

2
εsbcSblScm

)
.

The vector Pa representing the nonlocal term in Hamiltonian (5.2.9) is given as the solution to the system
of differential equations

∗Dks(S)Ps = −sk(x), (5.2.10)

which is the projection of Eqs. (5.2.7) to the constraint surface pa = 0.

5.2.2. Canonical transformation to the unconstrained theory with θ = 0. For the original
degenerate action in terms of the fields Aµ, the equivalence of classical theories with arbitrary value of
theta angle was reviewed in Sec. 5.1. Now let us examine the same problem for the derived unconstrained
theory considering the analogue of canonical transformation (5.1.9) after projection onto the constraint
surface:

Sai(x)→ Sai(x) = Sai(x),

Pbj(x)→ Ebj(x) = Pbj(x) +
θ

8π2
B(bj)(x).

(5.2.11)

First, one can easily verify that this transformation to new variables Sai and Ebj is canonical with respect
to the Dirac brackets (5.2.5). Hamiltonian (5.2.9) in terms of the new variables Sai and Ebj is therefore
θ-independent. It has the form

H∗ =

∫
d3x

[
g2

2
E2ai +

g2

2
E2a +

1

2g2
B2ai

]
, (5.2.12)

where Ea is a solution to Eq. (5.2.10) with the replacement Pai → Eai. This follows from the observation
that if Pa is a solution to Eq. (5.2.10), then the expression

Ea = Pa +
θ

8π2
Ba

is a solution to the same equation with the replacement Pai → Eai. This is indeed valid since the field
Bai satisfies the identity

∗Dks(S)Bs = (Di(S))klB(li). (5.2.13)

Equation (5.2.13) is the Bianchi identity (Di)abBbi = 0 rewritten in terms of the symmetric B(ai) and
antisymmetric Ba parts of the chromomagnetic field strength.

The reduced form of generating functional (5.0.27) corresponding to transformation (5.2.11) is the
same functional W evaluated for the symmetric tensor Sik. One can verify that the symmetric part of
the magnetic field B(ij)(S) can be written as the functional derivative of this functional W [S]

δ

δSij(x)
W [S] = B(ij)(x), (5.2.14)

and thus the canonical transformation that eliminates the theta-dependence from the Hamiltonian can
be represented in the same form as (5.1.10) with nine gauge fields A replaced by the six unconstrained
fields Sik(x).

We have explored the question of theta-independence of classical unconstrained SU(2) gluodynamics
in order to construct the basis for passing to the quantum level. We showed that the exact projection
of SU(2) gluodynamics to the reduced phase space leads to an unconstrained system whose classical
equations of motion are consistent with the original degenerate theory in the sense that they are theta-
independent. The crucial point is that the fulfillment of this condition is due to properly taking into
account the Bianchi identity for the magnetic field. As a consequence of the independence of the classical
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equations of motion of the gauge-invariant local fields, the parity odd term in the Yang–Mills action is a
total divergence of some gauge-invariant current, in contrast to the original unconstrained theory, where
it was the total divergence of the gauge-invariant Chern–Simons current Kµ. To deal practically with
such a complicated nonlocal Hamiltonian as (5.2.9), one would have to use some approximation, since
the exact solution to Eq. (5.2.10) is unknown. Implementing one approximating solution or another, it is
desirable to be consistent with the theta-independence of classical theory.

6. The Infrared Limit of Unconstrained SU(2) Gluodynamics

We obtain an effective low-energy theory involving only two of three rotational fields and one of tree
scalar fields, and discuss its possible relation to the effective soliton Lagrangian proposed recently in [41].

6.1. The strong coupling limit of the theory. From expression (3.2.37) for the unconstrained Hamil-
tonian, one can analyze the classical system in the strong coupling limit up to order O(1/g). Using the

leading order (3.2.30) of �E , we obtain the Hamiltonian

HS =
1

2

∫
d3x


 3∑
i=1

π2i +
∑
cycl.

ξ2i
φ2j + φ

2
k

(φ2j − φ
2
k)
2
+ V [φ, χ]


 . (6.1.1)

For spatially constant fields, the integrand of this expression reduces to the Hamiltonian of SU(2) Yang–
Mills mechanics. For further investigation of the low-energy properties of SU(2) field theory, a thorough
understanding of the properties of the leading-order g2 term in (3.2.38), containing no derivatives,

Vhom[φi] = g
2[φ21φ

2
2 + φ

2
2φ
2
3 + φ

2
3φ
2
1], (6.1.2)

is crucial. The stationary points of potential term (6.1.2) are

φ1 = φ2 = 0, φ3 is arbitrary, (6.1.3)

and its cyclic permutations. Analyzing the second-order derivatives of the potential at the stationary
points, one can conclude that they form a continuous line of degenerate absolute minima at zero energy.
In other words, the potential has a “valley” of zero-energy minima along the line φ1 = φ2 = 0. They are
the unconstrained analogues of the toron solutions [83] representing constant Abelian field configurations
with vanishing magnetic field in the strong coupling limit. The special point φ1 = φ2 = φ3 = 0 corresponds
to the ordinary perturbative minimum.

In terms of the variables ρ, Φ, and α, homogeneous potential (6.1.2) becomes

Vhom :=
g2

3

(
Φ4 +

3

4
ρ4 −

√
2Φρ3 cos 3α

)
; (6.1.4)

this shows that α parametrizes the strength of the coupling between the spin-0 and spin-2 fields. The valley
of minima is given by ρ =

√
2Φ, α = 0, Φ arbitrary, and the perturbative vacuum by ρ = Φ = α = 0.

For the investigation of configurations of higher energy, it is necessary to include the part of the
kinetic term in (6.1.1) containing the angular momentum variables ξi. Since the singular points of this
term just correspond to the absolute minima of the potential, there will be a competition between an
attractive and a repulsive force. At the balance point, we have a local minimum corresponding to a
classical configuration with higher energy.

6.2. Nonlinear sigma-type effective model of SU(2) gluodynamics. In this section, we describe
the effective classical field theory to which the unconstrained theory reduces in the limit of infinite coupling
constant g if we assume that the classical system spontaneously chooses one of the classical zero-energy
minima of the leading order g2 part (6.1.2) of the potential. As was discussed in the preceding section,
these classical minima include, apart from the perturbative vacuum, where all fields vanish, also field
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configurations with one scalar field attaining arbitrary values. Without loss of generality, we set (explicitly
breaking the cyclic symmetry)

φ1 = φ2 = 0, φ3 is arbitrary,

such that potential (6.1.2) vanishes. In this case, the part of potential (3.2.38) containing derivatives
takes the form

Vinhom = φ3(x)
2
[
(Γ213(x))

2 + (Γ223(x))
2 + (Γ233(x))

2 + (Γ311(x))
2 + (Γ321(x))

2 + (Γ331(x))
2
]

+
[
(X1φ3)

2 + (X2φ3)
2
]
+ 2φ3(x)

[
Γ331(x)X1φ3 + Γ

3
32(x)X2φ3

]
.

Introducing the unit vector
ni(φ, θ) := R3i(φ, θ)

directed along the 3-axis of the “intrinsic frame,” one can write

Vinhom = φ3(x)
2 (∂i�n)

2 + (∂iφ3)
2 − (ni∂iφ3)

2 − (ni∂inj)∂j(φ
2
3).

Concerning the contribution from the nonlocal term in this phase, we obtain for the leading part of the
electric fields

E
(0)
1 = −ξ1/φ3, E

(0)
2 = −ξ2/φ3. (6.2.1)

Since the third component E
(0)
3 and P3 are singular in the limit φ1, φ2 → 0, we necessarily have ξ3 → 0.

Hence we obtain the following effective Hamiltonian:

H
(2)
Eff =

1

2

∫
d3x

[
π2 +

1

φ2
(ξ2i ) + (∂iφ)

2 + φ2[(∂i�n)
2 + (�n · rot �n)2]− (ni∂iφ)

2 − (ni∂inj)∂j(φ
2)

]
.

After the inverse Legendre transformation, we obtain the corresponding nonlinear sigma-model-type ef-
fective Lagrangian for the unit vector �n(x) coupled to the scalar field φ(x):

L
(2)
Eff[φ,�n] =

1

2

∫
d3x

[
(∂µφ)

2 + φ2
(
(∂µ�n)

2 − (�n · rot �n)2
)
+ (ni∂iφ)

2 + ni(∂inj)∂j(φ
2)
]
. (6.2.2)

Thus, we reduce the SU(2) Yang–Mills theory to an effective classical field theory involving only one
scalar field and two of the three rotational fields χi summarized in the unit vector �n.

Note that this nonlinear sigma-model-type Lagrangian admits singular hedgehog configurations of
the unit vector field �n. Due to the absence of a scale at the classical level, however, these are unstable.
Consider, for example, the case of one static monopole placed at the origin:

ni := xi/r, φ3 = φ3(r), r :=
√
x21 + x

2
2 + x

2
3.

Minimizing its total energy

E[φ3] = 4π

∫
drφ23(r)

with respect to φ3(r), we find the classical solution φ3(r) ≡ 0. There is no scale in the classical theory.
Only in a quantum investigation may a mass scale such as a nonvanishing value for the condensate
〈0|φ̂23|0〉 appear, which might be related to the string tension of flux tubes directed along the unit-vector
field �n(t, �x). The singular hedgehog configurations of such string-like directed flux tubes might then be
associated with the glueballs. Note that for the case of a spatially constant condensate,

〈0|φ̂23|0〉 =: 2m
2 = const, (6.2.3)

the quantum effective action corresponding to (6.2.2) should reduce to the lowest-order term of the effective
soliton Lagrangian discussed by Faddeev and Niemi

Leff [�n] = m
2

∫
d3x(∂µ�n)

2 (6.2.4)

(see [41]). As was discussed in [41], for the stability of these knots furthermore a higher-order skyrmion-like
term in the derivative expansion of the unit-vector field �n(t, �x) is necessary.
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7. Remarks on Quantization of the Unconstrained Theory

In this section, we discuss some relations between the quantization of the unconstrained Hamiltonian
system and the corresponding extended system. We analyze the well-known exact, but nonnormalizable,
solution [82] of the functional Schrödinger equation with zero energy in the framework of the unconstrained
formulation of SU(2) Yang–Mills theory.

7.1. Zero-energy state of a constrained SU(2) gluodynamic. For the original constrained system
of SU(2) gluodynamics in terms of the gauge fields Aai (x) with the Hamiltonian

H(A) :=
1

2

∫
d3x

(
−

(
δ

δAai (x)

)2
+B2(x)

)

and the Gauss-law operators

Ga(x) :=
(
∂iδ
a
b − gε

abcAci (x)
) δ

δAbi (x)

in the Schrödinger functional formalism, a physical state has to satisfy both the functional Schrödinger
equation and the Gauss-law constraints:

HΨ[A] = EΨ[A], Ga(x)Ψ[A] = 0. (7.1.1)

Remarkably, an exact solution for the wave functional Ψ[A]

Ψ[A] = exp
(
−8π2W [A]

)
(7.1.2)

(see [82]) can be represented in terms of the “winding number functional” W [A] defined as the integral

W [A] :=

∫
d3x K0(x)

of the zero component of the Chern–Simons secondary characteristic class vector (5.0.26) over the 3-space.
Since W [A] obeys the functional differential equation

δ

δAai (x)
W [A] = Bai (x),

wave functional (7.1.2) satisfies the above Schrödinger equation. However, note that this exact solution
for the functional Schrödinger equation with zero energy is known to be nonnormalizable and hence does
not seem to have a physical meaning [61].

7.2. Zero-energy wave functional of an unconstrained system. Quantizing the variables S and
P of the unconstrained Hamiltonian (5.2.9) similarly to Aai above,

15 we have

H =
1

2

∫
d3x

(
−

(
δ

δSij(x)

)2
+B2(x) +

1

2
�E2(S,

δ

δS
)

)
,

and hence the functional Schrödinger equation

HΨ[S] = EΨ[S]. (7.2.1)

The Gauss law has already been implemented by the reduction to the physical variables.
A corresponding exact zero-energy solution can indeed be found for our reduced Schrödinger equation

(7.2.1). For this, we note the following two important properties of the potential terms in the Schrödinger
equation (7.2.1). First, the reduced magnetic field Bij(S) can be written as the functional derivative

δ

δSij(x)
W[S] = B(ij)(x)

15Note that due to the positive-definiteness of the elements of the matrix field S, we have to solve the Schrödinger equation
in a restricted domain of the functional space. Special boundary conditions have to be imposed on the wave functional such
that all operators are well defined (e.g., the hermicity of the Hamiltonian).
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of the functional W[S]:

W[S] :=
1

32π2

∫
d3x

[
Tr(BS)−

1

12
g
(
(Tr(S3) + Tr3(S)− 2Tr(S)Tr(S2)

)]
. (7.2.2)

Furthermore, the nonlocal term in the Schrödinger equation (7.2.1) annihilates W[S]:

�E2[S,
δ

δSij(x)
]W[S] = 0. (7.2.3)

The last equation can easily be found to hold if one takes into account that the magnetic field Bi =
∗F0i

satisfies the Bianchi identity Di
∗F0i = 0.

Thus, the corresponding ground-state wave-functional solution for the unconstrained Hamiltonian is

Ψ[S] = exp
(
−8π2W[S]

)
. (7.2.4)

In order to investigate the relation of W[S] to the above winding number functional W [A], we write
the zero component of the Chern–Simons secondary characteristic class vector Kµ given in (5.0.26) in
terms of the new variables S and qi:

K0(S, q) = K0(S)−
1

24π2
εijk

[
2

3
gTr (ΩiΩjΩk)− ∂iTr (SjΩk)

]
. (7.2.5)

The first term

K0(S) := −
1

16π2
εijk Tr

(
FijSk −

2

3
gSiSjSk

)
is a functional only of the physical fiekd S of a form similiar to that of the original Chern–Simons secondary
characteristic class vector. Here we have introduced the SU(2) matrices Sl := Sliτi, where τi are the Pauli
matrices, and

Ωi(q) :=
1

g
U−1(q)∂iU(q) =

1

g
Ωls(q)τ

s

(
∂ql
∂xi

)
,

where the SU(2) matrices U(q) are related with the orthogonal (3× 3)-matrix O(q) by the formula

Oab(q) =
1

2
Tr(O(q)τaO

T (q)τb)

and the (3× 3)-matrix Ωij defined in (5.2.4).
We observe that the space integral of the first term coincides with the above functionalW[S] of (7.2.2):∫

d3xK0(S) =W[S]. (7.2.6)

Using the usual boundary condition16

U(q) −→ ±I, (7.2.7)

we see that the space integral of the second term is proportional to the natural number n representing
the winding of the mapping of the compactified 3-space into SU(2):

g3

24π2

∫
d3x εijk Tr(ΩiΩjΩk) = n.

Assume that the physical field S vanishes at spatial infinity; then there is no contribution from the third
term. Hence we obtain the relation

Ψ[A] = exp[−
8π2

g2
n]Ψ[S]

between the ground-state wave functional (7.1.2) of the extended quantization scheme and the reduced
(7.2.4). We find that the winding number of the original gauge field A appears only as an unphysical

16Note that we have no information about the behavior of the unphysical variables qi. For example, the requirement of
the finiteness of the action usually used to fix the behavior of the physical fields does not apply for the unphysical field qi.
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normalization prefactor originating from the second term in (7.2.5), which depends only on the unphysical
variables qi. Furthermore, we note that the power 8π

2/g2n is the classical Euclidean action of SU(2)
Yang–Mills theory of self-dual fields [11] with winding number n.

On the other hand, the physical part Ψ[S] of the wave function has the same unpleasant property as
(7.1.2) in that it is nonnormalizable.

8. Concluding Remarks

Following the Dirac formalism for constrained Hamiltonian systems, several representations for the
classical SU(2) Yang–Mills gauge theory were considered entirely in terms of unconstrained gauge-
invariant local fields. All used transformations, canonical transformations, and the Abelianization of
the constraints maintain the canonical structures of the generalized Hamiltonian dynamics. The uncon-
strained field was identified with a symmetric, positive-definite, second-rank tensor field under spatial
rotations. Its decomposition into irreducible representations under spatial rotations leads to two fields,
a five-dimensional vector field Y(x) and a scalar field Φ(x). Their dynamics is governed by an explicitly
rotational invariant nonlocal Hamiltonian. It is distinct from the local Hamiltonian obtained by Gold-
stone and Jackiw [51] and by Izergin et al. [60]. They used the so-called electric-field representation with
vanishing antisymmetric part of the electric field. A representation for the Hamiltonian with a nonlocal
interaction of the unconstrained variables similar to ours was derived in [113] based on another separation
of scalar and rotational degrees of freedom. However, the present separation of the unconstrained fields
into scalars under spatial rotations and rotational degrees of freedom leads to a simpler form of the Hamil-
tonian, which, in particular, is free of operator-ordering ambiguities in the strong coupling limit. Our
unconstrained representation of the Hamiltonian allows us to derive an effective low-energy Lagrangian
for the rotational degrees of freedom coupled to one of the scalar fields suggested by the form of the
classical potential in the strong coupling limit. The dynamics of the rotational variables in this limit is
summarized by the unit vector describing the orientation of the intrinsic frame. Due to the absence of
a scale in the classical theory, the singular hedgehog configuration of the unit vector field is found to be
unstable classically. In order to obtain a nonvanishing value for the vacuum expectation value for one
of the three scalar-field operators, which would set a scale, a quantum treatment at least to one loop
order is necessary and is under present investigation. For the case of a spatially constant scalar quantum
condensate, we expect to obtain the first term of a derivative expansion proposed recently by Faddeev
and Niemi [41]. As was shown in their work, such a soliton Lagragian allows for stable massive knotlike
configurations, which might be related to glueballs. For the stability of the knots, higher-order terms in
the derivative expansion, such as the Skyrme-type fourth-order term in [41], are necessary.

In conclusion, it is also necessary to emphasize that the presented approach for studying the low-
energy aspects of non-Abelian gauge theories directly in terms of the physical unconstrained fields offers
an alternative to the variational calculations based on the gauge-projection method [71].

The reason for trying to construct the physical variables entirely in internal terms without the use of
any gauge fixing is the aspiration to maintain all local and global properties of the initial gauge theory.17

Several questions in connection with the global aspects of the reduction procedure are arising at this point.
In the paper, we describe how to project SU(2) Yang–Mills theory onto the constraint shell defined by
the Gauss law. It is well known that the exponentiation of infinitesimal transformations generated by the
Gauss-law operator can lead only to homotopically trivial gauge transformations continuously deformable
to unity. However, the initial classical action is invariant under all gauge transformations, including the
homotopically nontrivial transformations. What trace does the existence of large gauge transformations
leave on the unconstrained system?

17A discussion of rich local and global geometric structures in gauge theories is beyond the scope of this review; for an
introduction, the reader can see [4,7,46,78,91,92,95,114,115] and the references therein.
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Appendix A. Notation and Some Formulas

A.1. SU(2) gluodynamics conventions and notations. We define SU(2) gluodynamics in the
Minkowski space-time as the gauge theory using the field strength 2-form

F = dA+A ∧A,

in terms of the antihermitian su(2)-valued one-form A = Aaτa/2i, where τa are standard Pauli matrices
satisfying the commutation relations [τa, τb] = iεabcτc, εabc are SU(2) structure constants, and Tr (τaτb) =
2δab.

In the coordinate basis, the components of non-Abelian field strength are

F a. µν = ∂µA
a
ν − ∂νA

a
µ + ε

abcAbµA
c
ν , (A.1.1)

The notation for the electric and magnetic field strength is

Ea. i = F
a
. 0i, Ba. i =

1

2
εijkF

a
. jk.

The dual field strength tensor is normalized as

F̃µν =
1

2
εµνρσFρσ.

In the text, we often use the following matrix notation:

Aai := A
a
. i, Eai := E

a
. i, Bai := B

a
. i.

The expression for the covariant derivative in adjoint representation and the dual derivative are as follows:

(Di(S))ac = δac∂i + εabcSbi, (∗D(S))ma := εain (Di(S))mn .

A.2. Pontryagin’s invariant. The topological charge density Q(x) = trFµν F̃
µν expressed through the

Chern–Simons current Q(x) = ∂µK
µ can also be represented as the exterior derivative

Q = dC

of a certain so-called Chern 3-form C defined by the gauge 1-form A:

C = Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
.

In the coordinate basis, its components C = 1
3!Cαβγdx

α ∧ dxβ ∧ dxγ are

Cαβγ =
1

16π2

(
Aα

↔
∂β Aγ −Aβ

↔
∂α Aγ +Aγ

↔
∂β Aα + 2εabcA

a
αA
b
βA
c
γ

)
.

The Chern–Simons current Kµ is Hodge-dual to C:

Kµ =
1

3!
εµνρσCνρσ

Thus, the CP odd part of the action is given as the integral of the 3-form C over the boundary of the
manifold:

S(−) =

∫
∂M

C
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A.3. Spin-1 matrices and eigenvectors. For generators of spin-1 matrices obeying the algebra
[Ji, Jj ] = iεijk Jk, we use the following matrix realizations:

J1 = i


 0 0 0
0 0 −1
0 1 0


 , J2 = i


 0 0 1
0 0 0
−1 0 0


 , J3 = i


 0 −1 01 0 0
0 0 0


 .

Furthermore, the representation of rotations R(χ) in terms of the Euler angles χ = (θ, ψ, φ) is

R(ψ, θ, φ) = e−iψJ3e−iθJ1e−iφJ3.

The eigenfunctions of J2 and J3 are

�e+1 =
1
√
2


 −1−i
0


 , �e0 =


 00
1


 , �e−1 =

1
√
2


 1
−i
0


 ;

these vectors are orthogonal with respect to the metric ηαβ := (−1)
αδα,−β,

(�eα · �eβ) = ηαβ ,

and satisfy the completeness condition

eiαe
j
βη
αβ = δij .

A.4. Spin-0, spin-1, and spin-2 tensor basis. To obtain a matrix representation for spin-0, spin-1,
and spin-2 basis matrices, we use the Clebsch–Gordan decomposition for the direct product of spin-1
eigenvectors eαi into irreducible components: 3 ⊗ 3 = 0 ⊕ 1 ⊕ 2. To distinguish between the matrices
corresponding to the different spins, we use boldface notation for spin 2.

We have for spin-0

I0 :=
1
√
3
(�e0 ⊗ �e0 − �e1 ⊗ �e−1 − �e−1 ⊗ �e1) =

1
√
3


 1 0 00 1 0
0 0 1


 ,

for spin-1

J+ : = (�e0 ⊗ �e+1 − �e+1 ⊗ �e0) =
1
√
2


 0 0 1
0 0 i
−1 −i 0


 ,

J− : = (�e−1 ⊗ �e0 − �e0 ⊗ �e−1) =
1
√
2


 0 0 1
0 0 −i
−1 i 0


 ,

J0 : = (�e−1 ⊗ �e1 − �e1 ⊗ �e−1) =


 0 −i 0i 0 0
0 0 0


 ,
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and for spin-2

T+2 =
√
2 (�e+1 ⊗ �e+1) =

1
√
2


 1 i 0
i −1 0
0 0 0


 , T−2 =

√
2 (�e−1 ⊗ �e−1) =

1
√
2


 1 −i 0
−i −1 0
0 0 0


 ,

T+1 : = (�e+1 ⊗ �e0 + �e0 ⊗ �e+1) =
1
√
2


 0 0 −1
0 0 −i
−1 −i 0


 ,

T−1 : = (�e−1 ⊗ �e0 + �e0 ⊗ �e−1) =
1
√
2


 0 0 1
0 0 −i
1 −i 0


 ,

T0 : =
1
√
3
(�e+1 ⊗ �e−1 + 2�e0 ⊗ �e0 + �e−1 ⊗ �e+1) =

1
√
3


 −1 0 0
0 −1 0
0 0 2


 .

These matrices satisfy the orthonormality relations

Tr(TATB) = 2ηAB, Tr(TAJα) = 0, Tr(JαJβ) = 2ηαβ ,

the completeness condition

1

10

∑
A

(TA)il(TA)km + (I0)il(I0)km =
1

4
(δimδlk + δilδmk) ,

and the commutation and anticommutation relations

[TA,TB]+ =
4
√
3
ηABI0 +

2
√
3
d
(2)
ABCT

C, [TA,TB]− = c
(2)
ABγJ

γ ;

[Jα, Jβ ]+ =
4
√
3
ηαβI0 + d

(1)
αβCT

C , [Jα, Jβ ]− = c
(1)
αβγJ

γ;

[Jα,TB]+ = d
(1)
αγBJ

γ, [Jα,TB]− = c
(2)
BDαT

D.

The coefficients c
(1)
αβγ are totally antisymmetric and c

(1)
−+0 = 1. The coefficients d

(1)
αβC , d

(2)
ABC , and c

(2)
ABγ

are given in the following tables:

A −2 −2 −2 −1 −1 −1 −1 0 0 0 0 0
B 2 1 0 2 1 0 −1 2 1 0 −1 −2
C 0 1 2 −1 0 1 2 −2 −1 0 1 2

d
(2)
ABC −1

√
3
2 −1

√
3
2 −1/2 −1/2

√
3
2 −1 −12 1 −

1
2 −1

A 1 1 1 1 2 2 2
B 1 0 −1 −2 0 −1 −2
C −2 −1 0 1 −2 −1 0

d
(2)
ABC

√
3
2 −

1
2 −

1
2

√
3
2 −1

√
3
2 −1

A −2 −2 −1 −1 −1 0 0 0 1 1 1 2 2
B 2 1 2 1 0 1 0 −1 0 −1 −2 −1 −2
γ 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0

c
(2)
ABγ −2 −

√
2 −

√
2 1 −

√
3 −

√
3 0

√
3
√
3 −1

√
2
√
2 2
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α −1 −1 −1 0 0 0 1 1 1
β 1 0 −1 1 0 −1 1 0 −1
C 0 1 2 −1 0 1 −2 −1 0

d
(1)
αβC −1/

√
3 1 −

√
2 1 −2/

√
3 1 −

√
2 1 −1/

√
3

Note that

d
(1)
abA = (TA)

αβ eαae
α
b .

A.5. Generators for D-functions. In the text, the following five-dimensional spin matrices were used:

(
J+

)B
A
=



0
√
2 0 0 0

0 0 −
√
3 0 0

0 0 0 −
√
3 0

0 0 0 0
√
2

0 0 0 0 0


 ,

(
J−

)B
A
=




0 0 0 0 0

−
√
2 0 0 0 0

0
√
3 0 0 0

0 0
√
3 0 0

0 0 0 −
√
2 0


 ,

(
J0

)B
A
=



2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2


 .

The corresponding Cartesian components
(
Ji
)B
A
:= ηαβeiα (Jβ)

B
A are

(
J1

)B
A
=



0 −1 0 0 0

−1 0
√
3/2 0 0

0
√
3/2 0

√
3/2 0

0 0
√
3/2 0 −1

0 0 0 −1 0


 ,

(
J2

)B
A
= i



0 −1 0 0 0

1 0
√
3/2 0 0

0 −
√
3/2 0

√
3/2 0

0 0 −
√
3/2 0 −1

0 0 0 1 0


 ,

(
J3

)B
A
=

(
J0

)B
A
;

they compose the algebra SO(3)

[Ja,Jb] = iεabcJc.

Note that

c
(2)
ABc = i(J

c)AB.

We use D-functions as representation of rotations in 3-space defined in terms of the Euler angles χ =
(θ, ψ, φ):

D(ψ, θ, φ) = e−iψJ3e−iθJ1e−iφJ3 .

They can be obtained from the corresponding 3-dimensional representation (see [16]) by the formula

D(χ)AB =
1

2
Tr

(
R(χ)TAR

T (χ)TB
)
.
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A.6. Basis for symmetric matrices. We use the orthogonal basis αA = (αi, α
i) for symmetric matri-

ces. They have the form

α1 =


 1 0 00 0 0
0 0 0


 , α2 =


 0 0 00 1 0
0 0 0


 , α3 =


 0 0 00 0 0
0 0 1


 ,

α1 =


 0 0 00 0 1
0 1 0


 , α2 =


 0 0 10 0 0
1 0 0


 , α3 =


 0 1 01 0 0
0 0 0




and satisfy the orthonormality relations

tr (αiαj) = δij , tr (αiαj) = 2δij , tr (αiαj) = 0.

REFERENCES

1. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, “Mathematical aspects of classical and celestial
mechanics,” In: Dynamical Systems, 3, Springer-Verlag, New York–Berlin (1988).

2. R. Arnowitt, S. Deser, and C. W. Misner, J. Math. Phys., 1, 434 (1960).
3. H. M. Asatryan and G. K. Savvidy, Phys. Lett. A, 99, 290 (1983).
4. M. F. Atyah, Geometry of Yang–Mills Fields, Sc. Norm. Super., Pisa (1979).
5. O. Azuma and S. Iso, Phys. Lett. B, 331, 107–113 (1994).
6. O. Babelon and M. Talon, Phys. Lett. A, 236, 462–468 (1997).
7. O. Babelon and C. M. Viallet, Commun. Math. Phys., 81, 515 (1981).
8. V. Baluni and B. Grossman, Phys. Lett. B, 78, 226 (1978).
9. I. A. Batalin and G. A. Vilkovisky, Nucl. Phys. B, 234, 106 (1984).
10. M. Bauer, D. Z. Freedman, and P. E. Haagensen, Nucl. Phys. B, 428, 147 (1994).
11. A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin, Phys. Lett. B, 59, 85 (1975).
12. P. G. Bergman and I. Goldberg, Phys. Rev., 98, 531 (1955).
13. J. Blom and E. Langmann, Phys. Lett. B, 429, 336–342 (1998).
14. A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 2, Benjamin (1975).
15. L. Brink, T. H. Hansson, S. Konstein, and M. A. Vasiliev, Nucl. Phys. B, 401, 591–612 (1993).
16. D. M. Brink and G. R. Satcheler, Angular Momentum, Oxford Univ. Press, Oxford (1993).
17. C. G. Callan, R. F. Dashen, and D. J. Gross, Phys. Lett. B, 63, 334 (1976).
18. F. Calogero, J. Math. Phys., 10, 2191–2196 (1969).
19. F. Calogero, J. Math. Phys., 10, 2197–2200 (1969).
20. F. Calogero, J. Math. Phys., 12, 419–436 (1972).
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