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Zaremba's Problem in One Class of Harmoni
 Fun
tions
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Di�erent 
lasses of boundary value problems for harmoni
 fun
tions whi
h at the same

time are the real parts of analyti
 fun
tions from Smirnov 
lasses are studied [1{4℄. It

is of interest to 
onsider in these 
lasses the problem when an a value of an unknown

fun
tion is given on one part of the boundary and a value of its derivative in the dire
tion

of inner normal (Zaremba's problem) (see [5℄). To formulate and study the problem we

introdu
e the most suitable for that 
ase a weight 
lass of harmoni
 fun
tions of Smirnov

type.
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If E is a �nite union of 
losed ar
s on 
, then we put �(E) = f� : 0 � � � 2�; e

i�

2 Eg.

By A(E) we denote a set of fun
tions, absolutely 
ontinuous on �(E), and by �

E

a


hara
teristi
 fun
tion of the set E.
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If �

1

= 
, !

1

= 1 this 
lass 
oin
ides with the 
lass h

p

(see [6℄, Ch. IX).
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Lemma 1. If u 2 h(�

ip

(!

1

);�

0

2q

(!

2

)), p > 1, q > 1 then:

(a) there exists the number � > 1 su
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A solution, if any, of that problem is, be Lemma 1, representable by the Poisson

integral. By virtue of (5), its density u

+
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with the additional 
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Equation (8) has been solved for a parti
ular 
ase with weight !
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) has been solved in [7℄ (pp. 35{46; see also [8℄, pp. 104{108). Following these

works, it is not diÆ
ult to solve equation (8) for weight !
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If these 
onditions are ful�lled, equation (8) is, undoubtedly, solvable in the spa
e
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be ful�lled. If these 
onditions are ful�lled, then equation (8) is uniquely solvable. In

both 
ases the solution is given expli
itly (in quadratures).
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tion u

+

on �

2

. The

solution, besides P

r�1

, 
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where in whi
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If � is the rank of the matrix of that system, then the solution (x

0

� � �x

r�1

y

0

� � � y

r�1

)


ontains 2(m �m

1

) � � arbitrary parameters.

Similarly to (5) one 
an formulate and solve Zaremba's problem (using 
onformal

mapping) for simply 
onne
ted domains bounded by the Ljapunov 
urve.
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