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Zaremba's Problem in One Class of Harmoni Funtions

(Reported on 18.04.2002)

Di�erent lasses of boundary value problems for harmoni funtions whih at the same

time are the real parts of analyti funtions from Smirnov lasses are studied [1{4℄. It

is of interest to onsider in these lasses the problem when an a value of an unknown

funtion is given on one part of the boundary and a value of its derivative in the diretion

of inner normal (Zaremba's problem) (see [5℄). To formulate and study the problem we

introdue the most suitable for that ase a weight lass of harmoni funtions of Smirnov

type.
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(see [6℄, Ch. IX).
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A solution, if any, of that problem is, be Lemma 1, representable by the Poisson
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If these onditions are ful�lled, equation (8) is, undoubtedly, solvable in the spae
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be ful�lled. If these onditions are ful�lled, then equation (8) is uniquely solvable. In
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where in whih
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If � is the rank of the matrix of that system, then the solution (x
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Similarly to (5) one an formulate and solve Zaremba's problem (using onformal

mapping) for simply onneted domains bounded by the Ljapunov urve.
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