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In [1-3], by analogy with the classes of analytic functions introduced by V.I. Smirnov
(see [4] and also [5], Ch.X), we defined weighted classes of harmonic functions, investi-
gated their properties, and in these classes we studied the mixed boundary value problem,
when values of an unknown function are given on one part of the boundary and those
of its derivative in the direction of the normal are given on the supplementary portion
of the boundary (Zaremba’s problem [6]). Regarding the domain in which we considered
the problem, it was assumed that the domain was bounded by a simple Ljapunov curve.

Here we continue investigation of Zaremba’s problem for domains which are bounded
by piecewise Lyapunov curves.

10. Let D be a simply connected finite domain bounded by a simple curve L, and
let Lk = (Ak, Bk), k = 1, m be the arcs lying on that curve separately. Denote by
C1, C2, . . . , C2m the ends of these arcs taken arbitrarily. Consider in a plane, cut along
L1 =

⋃m
k=1 Lk, the analytic functions

Π1(z) =

√√√√
m1∏

k=1

(z − Ck), Π2(z) =

√√√√
2m∏

k=m1+1

(z − Ck), (1)

where m1 is an integer, 0 ≤ m1 ≤ 2m, and let

R(z) = Π1(z)[Π2(z)]−1. (2)

Let p ≥ 1, and ρ(t) be a measurable on L1 function, different almost everywhere from
zero. By Lp(Γ; ρ) we denote a set of functions f for which |fρ|p is Lebesgue summable.

Next, let [A′
k, B′

k ] be the arcs lying on Lk. Denote L1 =
⋃m

k=1 Lk, L̃ =
⋃m

k=1[Ak, A′
k]∪

[B′
k, Bk], L2 = L\L1.
By z = z(w) we denote conformal mapping of the unit circle onto D, and let w = w(z)

be its inverse function. Suppose
{

Γ1 = w(L1), (γ̃) = w(L̃), Γ2 = w(L2), ak = w(Ak), bk = w(Bk),

Γj(r) = {w : w = reiθ, θ ∈ Θ(Γj)}, Lj(r) = z(Γj(r)),
(3)

where Θ(Γ) = {θ : 0 ≤ θ ≤ 2π, eiθ ∈ Γ}, Γ ⊂ γ = {τ : |τ | = 1}.
A(E) will denote a class of absolutely continuous on E functions.
Let the points D1, . . . , Dn lie on L and be different from Ck . The points D1, Ds, . . . , Dn1

lie on L1 and the points Dn1+1, . . . , Dn on L2.
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Consider the functions

ρ1(z) =

n1∏

k=1

|z−Dk|
αk , ρ2(z) =

m1∏

k=1

|z−Ck|
νk

2m∏

k=m1+1

|z−Ck|
λk

n∏

k=n1+1

|z−Dk|
βk . (4)

We say that the harmonic in the domain D function u(z), z = x + iy = r exp iθ belongs
to the class e(L1p(ρ1), L′

2q(ρ2)), p > 1, q > 1 if

sup
r<1

[ ∫

L1(r)

|u(z)ρ1(z)|p|dz| +

∫

L2(r)

(∣∣∣
∂u

∂x

∣∣∣
q

+
∣∣∣
∂u

∂y

∣∣∣
q
)

ρ
q
2(z)|dz|

]
< ∞. (5)

20. Let D be the domain bounded by a simple piecewise-Ljapunov curve L with
angular points t1, t2, . . . , ts. We assume that the angle sizes at these points are equal to
πµk, 0 < µk ≤ 2. A set of such curves we denote by C1(t1, t2, . . . , ts;µ1, µ2, . . . , µs).

Let L be a curve from that class and L1, L2, L̃, ρ1, ρ2 be the sets and functions defined
above.

We divide the set {t1, t2, . . . , ts} into four parts. Denote by t1, t2, . . . , ts1
those which

are contained in the product Π1 (in the capacity of Ck), and by ts1+1, . . . , tσ1
those which

are contained in Π2. The rest points we insert into the set of points {D1, D2, . . . , Dn}.
Moreover, let tσ1

, . . . , tσ2
lie on L1, and tσ2+1, . . . ts on L2. We assume that tk = Ck ,

k = 1, s1, ts1+k = Cm1+k, k = 1, σ1 − s1, tσ1+k = Dk, k = 1, σ2 − σ1, tσ2+k = Dn1+k,

k = 1, s − σ2 and write the weights ρ1 and ρ2 in the form

ρ1(z) =

σ2∏

k=σ1+1

|z − tk |
αk

n1∏

k=σ2+1

|z − Dk|
αk , (6)

ρ2(z) =

s1∏

k=1

|z − tk |
νk

m1∏

k=s1+1

|z − Ck|
νk

σ1∏

k=s+1

|z − tk |
λk×

×
2m∏

k=m1+σ1+1

|z − Ck|
λk

s∏

k=σ2+1

|z − tk |
βk

n∏

k=n1+s−σ2+1

|z − Dk|
βk . (7)

Consider the boundary value problem: Find a function u, satisfying the conditions





∆u = 0, u ∈ e(L1p(ρ1), L′
2q(ρ2)), p > 1, q > 1,

u+|
L1\L̃

= F, F ∈ Lp(L1\L̃; ρ1), u+ ∈ A(L2 ∪ L̃),

u+|
L̃

= Ψ, Ψ′ ∈ Lq(L̃, ρ2),
(

∂u
∂n

)+
|L2

= G, G ∈ Lq(L2; ρ2).

(8)

30.

Theorem. Let L ∈ C1(t1, . . . , ts;µ1, µ2, . . . , µs), ρ1(z) and ρ2(z) be given by equal-
ities (6) and (7), where

−
1

q
< νk < min

(
0;

1

q′
−

1

2

)
, max

(
0;

1

2
−

1

q

)
≤ λk <

1

q′
(9)

k = s1 + 1, m1, k = m1 + σ1 − s1 + 1, 2m

−
1

p
< αk <

1

p′
, k = σ2 + 1, m, −

1

q
< βk <

1

q′
, k = n1 + s − σ2 + 1, n (10)

−
1

p
< αk < min

( 1

p′
;

1

µk

−
1

p

)
, −

1

q
< βk < min

( 1

q′
;

1

µk

−
1

q

)
(11)

k = σ1 + 1, σ2 k = σ2 + 1, s
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−
1

q
< νk <

1

µk

min
(
0;

1 − µk

q
;

q
2
− µk

q

)
, k = 1, s1

1

µk

max
(
0;

1 − µk

q
;

q
2
− µk

q

)
≤ λk ≤ min

1

µk

( 1

q′
, (1 −

µk

q
)
)
, k = s1 + 1, σ1

(12)

Then for the problem (8) to be solvable it is necessary and sufficient that:
(a) for m1 ≤ m, the conditions

θk+1∫

ϕk

Re

[
R(eiα)

πi

∫

Θ(Γ2)

iµ(τ) + a

R(τ)

dτ

τ − z(eiα)

]
dα =

= Ψ(Ak+1) − Ψ(Bk), k = 1, m, (13)

where R is the function given by equality (2) and it is assumed that ρiθk = w(Ak)

eiϕk = w(Bk), θk, ϕk ∈ [0, 2π], θm+1 = θ1, Am+1 = A1,

µ(τ) = −G(z(τ)) +
1

2π

m∑

k=1

[
Ψ(Ak+1) ctg

θk+1 − ϕ

2
− Ψ(Bk) ctg

ϕk − ϕ

2

]
−

−
1

2π

∫

Θ(γ̃)

Ψ(z(eiθ))
dθ

2 sin2 θ−ϕ
2

−
1

2π

∫

Θ(Γ1\γ̃)

F (z(eiθ))
dθ

2 sin2 θ−ϕ
2

,

where τ = eiϕ, a = 1
2π

∑m
k=1[Ψ(Ak+1) − Ψ(Bk)];

(b) for m1 > m, the conditions (13) and also the conditions

∫

L2

iµ(W (t)) + a

R(W (t))
wk(t)W ′(t)dt = 0, k = 0, l − 1, l = m1 − m. (14)

be fulfilled.
(c) If the above-mentioned conditions are fulfilled, then a solution of the problem (8)

is given by the equality

u(z) = u∗(z) + u0(z),

where

u∗(z) =
1

2π

∫

Θ(γ̃)

Ψ(z(eiθ))P (r, θ − ϕ)dθ +
1

2π

∫

Θ(Γ1\γ̃)

F (z(eiθ))P (r, θ − ϕ)dθ+

+
1

2π

∫

θ(Γ2)

WΓ2
(θ)P (r, θ − ϕ)dθ, (15)

in which P (r, x) = 1−r2

1+r2−2r cos x
,

WΓ2
(θ) =

θ∫

ϕ1

χΘ2(Γ)(α) Re

[
R(eiα)

πi

∫

Θ(Γ2)

iµ(τ) + a

R(τ)
−

dτ

τ − eiγ

]
dα + Mk. (16)

χE denotes the characteristic function of the set E,

Mk = Ψ(Ak+1) −

θk+1∫

ϕ1

χΘ(Γ2)(α) Re

[
R(eiα)

πi

∫

Θ(Γ2)

iµ(τ) + a

R(τ)(τ − eiα)
dτ

]
dα (17)
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and

u0(z) =





0, for m1 > m,

1

2π

2π∫
0

W ∗
Γ2

(θ)P (r, θ − ϕ)dθ,

W ∗
Γ2

(θ) =
θ∫

β1

χΘ(Γ2)(α) Re[R(eiα)Pr−1(eiα)]dα + Nk,

Nk = −

θk+1∫

ϕk

Re[R(eiα)Pr−1(e
iα)]dα, r = m − m1.

(18)

Here Pr−1(eiα) = 0, if r − 1 = m − m1 − 1 < 0; however, if m1 < m, then Pr−1(eiθ) =∑r−1
j=0(xj + iyj)e

ijθ is the polynomial in which (x0, y0, . . . , xr−1, yr−1) is the solution of

the system

ϕk∫

θk

r−1∑

j=0

[xjR1(e
iθ) cos jθ − yjR2(eiθ) sin jθ]dθ = 0,

k − 1, m, r = m − m1, (19)

ϕk∫

θk

r−1∑

j=0

[xjR2(e
iθ) cos jθ − yjR1(eiθ) sin jθ]dθ = 0,

where R1(t) = Re R(t), R2(t) = Im R(t).
If ν is a rang of the matrix of the system (19), (ν ≤ 2r), then the solution of the

homogeneous problem u0(z) contains 2(m − m1) − ν arbitrary real parameters.
40. The conditions (9)–(12) show what parameters (depending on the boundary’s

geometry) can be taken from Smirnov classes under which the above theorem is valid
for the problem (8). It is not difficult to show that a set of parameters under which the
situation under consideration is realizable is not empty, i.e., for the given µ1, . . . , µk ≤ 2,
there exist the collections (p; q; αk, βk, νk, λk) satisfying the system (9)–(12), where p

and q can be taken arbitrarily from the intervals (1,∞) and (2;∞), respectively, and αk ,
βk, νk, λk belong to certain admissible intervals. A set of such collections depend on a
number of angular points (and angle sizes) which turn out to be the ends of Lk.

It should be first of all noted that the fulfilment of inequalities (9) and (10) and of
the first inequalities of (11) and (12) is necessary in the case of Ljapunov boundaries, as
well (see [2]). Thus in considering non-smooth boundaries the second inequalities in (11)
and (12) turn out to be additional ones. These inequalities show that if µk > 1, then it

is necessary to take − 1
p

< αk < 1
µk

− 1
p
, − 1

q
< βk < 1

µk

− 1
q

while if µk < 1, then we

take − 1
p

< αk < 1
p′

, − 1
q

< βk < 1
q′

.

The system (11)–(12) is unsolvable when either q ≤ 2, 0 < µk < 1 and µkq < 1, or
q < 2, 1 < µk ≤ 2 and µk > q (in both cases it is impossible to define λk). This means
that if we take q < 2, then at the points which are the ends of the arcs Lk for which
either µkqk < 1, or µk > q, the weighted multiplier |t− tk | should be taken with negative
degree.

The conditions (9)–(12) can also be understood as follows: if we have a class of
unknown functions, then what must be the set of piecewise-Ljapunov curves for which
the above theorem holds.
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