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THE DIRICHLET PROBLEM FOR HARMONIC

FUNCTIONS OF SMIRNOV CLASSES IN

DOUBLY-CONNECTED DOMAINS WITH ARBITRARY

PIECEWISE SMOOTH BOUNDARIES

G. KHUSKIVADZE AND V. PAATASHVILI

Abstract. In doubly connected domains with arbitrary piecewise
smooth boundaries we investigate the Dirichlet problem for harmonic
functions from Smirnov classes. The conditions of solvability which
depend essentially on the geometry of the boundary are established.

Depending on the angle sized of the boundary the homogeneous prob-
lem may have nontrivial solutions. A number of linearly independent
solutions are calculated.

îâäæñéâ. êâ�æïéæâîæ ñ��ê-ñ��ê àèñãæ ûæîâ�æå öâéëï�ä�ãîñè

ëî�á�éñè �îâöæ öâïû�ãèæèæ� áæîæýèâï �éëù�ê� ïéæîêëãæï çè�-

ïæï ÿ�îéëêæñèæ òñêóùæâ�æïåãæï. á�áàâêæèæ� �éëýïê�áë�æï ìæ-

îë�â�æ, îëéèâ�æù �îïâ�æå�á à�êæï�ä�ãîâ�� ï�ä�ãîæï àâëéâðîæ-

æå. æéæïá� éæýâáãæå åñ îëàëîæ� ï�ä�ãîæï çñåýâå� ïæáæáââ�æ

âîåàã�îëã�ê �éëù�ê�ï öâæúèâ�� à��øêáâï �î�êñèëã�êæ �éëýïêâ�æ.

á�åãèæèæ� ûîòæã�á á�éëñçæáâ�âè �éëê�ýïêå� î�ëáâêë��.

Analytic functions from Smirnov classes Ep for p ≥ 1 are representable
by the Cauchy integrals (see, for e.g., [1], Ch. X). According to that fact,
the real parts of that functions are harmonic ones, representable by a com-
bination of simple and double layer potentials ([2], §12). Consequently, they
can be useful for applications. On the other hand, such functions provide
us with solutions of boundary value problems in some cases in which they
are unsolvable in the traditional classes of smooth functions. The Smirnov
classes turn also out useful when we study the problems in domains with
non-smooth boundaries. In [3], [4] and [5] we have considered various bound-
ary value problems in simply-connected domains with arbitrary piecewise
smooth boundaries by means of the methods of the Cauchy type integrals
and the theory of functions. In [6], analogous results for piecewise-Ljapunov
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curves have been obtained by using singular integral equations and func-
tional analysis.

In [7] and [8], we investigated the Dirichlet problem for harmonic func-
tions from Smirnov classes in doubly-connected domains bounded by simple
piecewise smooth curves. In particular, the cases of the unique solvability
have been elucidated. However, our method of investigation did not al-
low us to cover any kind of boundaries of the class under consideration: the
cases for which the boundary had angular points of large angle sizes (≥ πp),
i.e, those for which the Dirichlet problem in simply-connected domains was
solvable non-uniquely, remained out of investigation. Using the results ob-
tained in [5] and [8], we have now managed to consider the Dirichlet problem
in a manner allowing one to cover doubly-connected domains with arbitrary
piecewise smooth boundaries. In this paper we present the obtained results.

10. Notation, Definitions and Auxiliary Statements

Let Γ1 and Γ2 be the Jordan curves bounding the doubly-connected do-
main D, where Γ2 lies in a inside domain bounded by the curve Γ1, and let
ω(z) be the function, analytic in D.

Definition 1. We say that the analytic in D function Φ belongs to the
class Ep(D; ω), p > 0, if there is an increasing sequence of doubly-connected
domains {Di} with rectifiable boundaries Li, exhausting the domain D and
such that

sup
i

∫

Li

∣∣Φ(z)ω(z)
∣∣p |dz| < ∞

(see, for e.g., [9]).

For simply-connected domains G bounded by a rectifiable curve, we as-
sume that

Ep(G; w) =

{
Φ : Φ is analytic in G and sup

0<r<1

∫

Γr

|Φ(ζ)ω(ζ)|p |dζ| < ∞
}

,

where Γr are the images of the circumferences {w : |w| = r} under the
conformal mapping ζ = ζ(w) of the unit circle U = {w : |w| < 1} onto
the domain G, and also, if G is an infinite domain, then we assume that
ζ(0) = ∞.

Let z = z(w) be the conformal mapping onto the domain D of the circular
ring K = {w : ρ < |w| < 1} with the boundary γ = γ1∪γ2, γ1 = {τ : |τ | =
1}, γ2 = {τ : |τ | = ρ < 1}. Suppose z(γi) = Γi, i = 1, 2.

Statement 2. ([9]–[10]). (i) For every function Φ from Ep(D; ω), we
can take as Li the images of circumferences with center w = 0 of radius
r, ρ < r < 1 under the conformal mapping of K onto D; (ii) if ω(z) has
angular boundary values almost everywhere on Γ = Γ1 ∪ Γ2, then Φ(z)
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has likewise angular boundary values Φ+(t) almost for all t ∈ Γ, where
Φ+ ∈ Lp(Γ; ω); (iii) Φ(z) belongs to Ep(D; ω), if and only if the function

Φ(z(w))ω(z(w)) p
√

z′(w) belongs to Ep(K); [8] (iv) the class Ep(D; ω) coin-
cides with the class of functions Φ representable in the form Φ = Φ1 + Φ2,
Φi ∈ Ep(Di; ωi), where Di is that domain bounded by Γi which contains
D, and ωi is the narrowing on Γi of the function ω.

Moreover, z′ ∈ E1(K), ([8]).

Definition 3. We say that the given on the unit circumference function
ω(τ) belongs to the class W p, if the operator

T : ϕ → Tϕ, (Tϕ)(τ) =
ω(τ)

λi

∫

γ1

ϕ(ζ)

ω(ζ)

dζ

ζ − τ
, τ ∈ γ1,

is continuous in Lp(γ1).

Let D be the doubly-connected domain bounded by the simple piecewise
smooth curves Γ1 and Γ2. By t1, t2, . . . , tn we denote angular points of the
boundary Γ = Γ1 ∪ Γ2. Assume that at the given points the angle sizes,
interior with respect to the domain D, are equal to πνk, 0 ≤ νk ≤ 2, k = 1, n.
A set of such boundaries we denote by C1(t1, t2, . . . , tn; ν1, ν2, . . . , νn).

Statement 4. ([8]). If the doubly-connected domain D is bounded by
the boundary from C1(t1, . . . , tn; ν1, . . . , νn), 0 ≤ νk ≤ 2, and if z = z(w) is
the conformal mapping of the ring K onto D, such that z(γi) = Γi, i = 1, 2,
z(ak) = tk, then

z′(w) =

n∏

k=1

(w − ak)νk−1z0(w), (1)

where
z±1
0 ∈

⋂

δ>1

Eδ(K), (2)

but if 0 < νk < min(2; p), then

p
√

z′(eiµ), p
√

z′(ρeiµ) ∈ W p. (3)

20. On the Dirichlet Problem in Smirnov Classes in

Simply-Connected Domains

Let G be the simply-connected domain. Aassume

ep(G; ω) =
{
u : u = Re Φ, Φ ∈ Ep(G; ω)

}
, ep(G) ≡ ep(G; 1).

In [3] and [5] (Ch. IV), we investigated the Dirichlet problem in the
class ep(G), when G was the domain bounded by the piecewise smooth
Jordan curve. The obtained results can be understood as a solution of the
Dirichlet problem in a certain weighted Smirnov class for a circle. Indeed,
the following theorem is valid.
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Theorem 5. Let ζ = ζ(w) be the conformal mapping U onto the simply-

connected domain with the boundary C1(b1, . . . , bn; ν1, . . . , νn), 0 ≤ νk ≤ 2
and z(ak) = bk, k = 1, n. Then for the problem

{
∆u = 0, u ∈ ep(U ; p

√
ζ′),

u
∣∣
γ1

= ϕ, ϕ ∈ Lp(γ1;
p
√

ζ′),
(4)

the following statements are valid.

All the solutions of the homogeneous problem (i.e., of the problem (4) for

ϕ = 0) are given by the equality

u0(w) =
n∑

k=1

Ak(p) Re
ak + w

ak − w
, (5)

where

Ak(p) =






0, if 0 ≤ νk < p, or νk = p and

Xk∈Ep(U), Xk = (w − ak)−1/pz
1/p
0 ,

Ak is an arbitrary real constant for p < νk ≤ 2,

or νk = p and Xk ∈ Ep(U).

(6)

The inhomogeneous problem is, generally speaking, unsolvable if there are

angular points νk from the set {0; p}. If, however, instead of the condition

ϕ ∈ Lp(γ1;
p
√

ζ′) is fulfilled the condition

ϕ(τ) ln
∣∣∣

∏

νk∈{0;p}

(w(τ) − ak)
∣∣∣ ∈ Lp(γ1;

p
√

ζ′), (7)

where w = w(ζ) is the function, inverse to ζ = ζ(w), then the problem (4)
is solvable.

In all cases for which the problem (4) is solvable, its solution is given by

the equality

u(w) = u0(w) + uϕ(w),

where u0 is the function, defined by the equality (5), and

uϕ(w) =Re

[(
1

2πi

∫

γ1

ϕ(τ) ρ(τ)

τ − w
dτ+

+
(−1)ni

2πi
wn1+1

∫

γ1

ϕ(τ) ρ(τ)

τ(τ − w)
dτ

)
1

ρ(w)

]
. (8)

Here n1 is a quantity of numbers νk from the interval (p, 2] (for p = 2 we put

(2; 2] = ∅), ρ(w) =
∏

νk∈(p;2]

(w − ak) and ρ(τ) = 1, if {νk : νk ∈ (p; 2]} = ∅.

Indeed, if u = Re Φ, then we write the problem (4) as follows:

Φ+(τ) + Φ+(τ) = 2ϕ(t), ,
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whence, assuming Φ(z) = Φ
(

1
z

)
for |z| > 1, we obtain

p
√

ζ′(τ) Φ+(τ) +
p
√

ζ′(τ)

p
√

ζ′(τ)

p
√

ζ′(τ) Φ−(τ) = 2 p
√

ζ′(τ) ϕ(τ).

If we put g(t) = 2 p
√

ζ′(τ)ϕ(τ), Ψ(w) = 2 p
√

ζ′(w)Φ(w), |w| < 1 and

Ω(w) =





Ψ(w), |w| < 1,

Ψ
( 1

w

)
, |w| > 1,

Ω∗(w) = Ω
( 1

w

)
, |w| 6= 1,

then we find that




Ω+(τ) = −
p
√

ζ′(τ)

p
√

ζ′(τ)
Ω−(τ) + g(τ), g ∈ Lp(γ1),

Ω(w) = Ω∗(w), |w| 6= 1, Ω ∈ Ep(U),

(9)

i.e. we obtain the problem (1.6) from [5], (p. 156) for which Theorem 1.2
from Chapter IV of [5], (p. 168) is valid. Thus the above Theorem 5 is the
reformulated version of that theorem with respect to the problem (4).

Remark 6. If we consider the problem (4) on the complement CU of
the unit circle U , then because of the fact that the functions from ep(CU)
are representable by the Poisson integrals and equal at infinity to zero,
the statement of the above Theorem 5 somewhat varies. Namely, for the
problem to be solvable, it is necessary (and in the presence of angular points
with νk from {0; p} for ϕ with the condition (7)) and sufficient that the
condition

2π∫

0

ϕ(eiµ) dµ +

n∑

k=1

Ak(p) = 0 (10)

be fulfilled.

30. The Dirichlet Problem in the Domain with the Boundary

from the Class C1(t1, . . . , tn; ν1, . . . , νn)

Let D be the doubly-connected domain with the boundary Γ = Γ1 ∪
Γ2 from the class C1(t1, . . . , tn; ν1, . . . , νn), 0 ≤ νk ≤ 2. We consider the
Dirichlet problem which is formulated as follows: find the function u(z)
satisfying the conditions

{
∆u = 0, u ∈ ep(D), p > 1,

u
∣∣
Γi

= fi, fi ∈ Lp(Γi), i = 1, 2.
(11)

According to Statement 2, the function V (w) = u(z(w)) belongs to

ep(U ; p
√

z′) and therefore the problem (11) can equivalently be reduced to
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the problem
{

∆V = 0, V ∈ ep(U ; p
√

z′),

V
∣∣
γi

= gi, gi(τ) = fi(z(τ)) ∈ Lp(γi,
p
√

z′).
(12)

(for simply-connected domains, for details see [5], pp. 156–157).

Any function V from ep(U ; ω), ω = p
√

z′ is representable in the form
V (w) = V1(w) + V2(w), Vi ∈ ep(Ki), where Ki is that domain, bounded by
γi, which contains K. Hence

V (w) =V (reiµ) =
1

2π

2π∫

0

δ(α)
1 − r2

1 + r2 − 2r cos(α − µ)
dα+

+
1

2π

2π∫

0

λ(α)
ρ2 − r2

ρ2 + r2 − 2rρ cos(α − µ)
dα,

where the functions δ and λ belong to Lp(I, ω), I = [0, 2π] and also

2π∫

0

λ(µ) dµ = 0. (13)

(see [8]).
Let V be a solution of the problem (12), then V = V1+V2, Vi ∈ ep(Ki; w).

The summand V2 satisfies the conditions{
∆V2 = 0, V2 ∈ ep(K2; ω), K2 = {w : |w| > ρ},
V2

∣∣
γ2

= g2(ρeiµ) − V1(ρeiµ).
(14)

If on γ2 there are the points ak for which νk ∈ {0, p}, then there is the
function g2 ∈ Lp(γ2; ω), such that the problem (14) is unsolvable (see [5],
pp. 165–168), and thus the problem (11) is likewise unsolvable. If, however,
for g2 is fulfilled the assumption of the form (7) in Theorem 5, i.e., if

g2(τ) ln
∏

ak∈γ2, νk∈{0,p}

|τ − ak| ∈ Lp(γ2; ω) (15)

then the problem (14) is solvable. Its solution is given by the formula of type
(8). Consequently, the narrowing of the function V2(re

iµ) on γ1 is contained

in the set of functions V2(e
iµ)+

∑
ak∈γ2

Ak(p) Re eiµ+ak

eiµ−ak
= V2(e

iµ)+V2,0(e
iµ),

where V2,0(e
iµ) =

∑
ak∈γ2

Ak(p) Re eiµ+ak

eiµ−ak
, and the real constants Ak(p) are

defined according to equality (6). By Remark 6, we have

2π∫

0

V2(ρeiµ)dµ +
∑

ak∈γ2

Ak(p) = 0. (16)
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V1 is now contained in the set of functions satisfying the conditions




V1 ∈ ep(K1; ω), K1 = {w : |w| < 1},

V1

∣∣
γ1

= g1(e
iµ) − V2(e

iµ) −
∑

ak∈γ2

Ak(p)Re
eiµ + ak

eiµ − ak
=

= g1 − V2 − V2,0.

(17)

By Theorem 5, we have

V1(w) =
∑

ak∈γ1

Ak(p) Re
w + ak

w − ak
+ Vg̃1

(eiµ), w ∈ K1. (18)

where Ak(p) are the real constants defined by equality (6), and Vg̃1
is a

particular solution of the problem (17) which is representable by the Poisson
integral, and therefore

Vg̃1
(reiµ) =

1

2π

2π∫

0

g1(α)
1 − r2

1 + r2 − 2r cos(α − µ)
dα−

− 1

2π

2π∫

0

V2(e
iα)

1 − r2

1 + r2 − 2r cos(α − µ)
dα−

−
∑

ak∈γ2

1

2π

2π∫

0

Ak(p) Re
eiα+ak

eiα−ak

1 − r2

1+r2−2r cos(α − µ)
dα=

=(Pg1)(r, µ) − P (V2)(r, µ) − P (V2,0)(r, µ); reiµ ∈ K1, (19)

whence it follows that in the ring K

V (w) =
∑

ak∈γ1

Ak(p) Re
w + ak

w − ak
− P (V2)(w) + P (g1)(w)−

− P (V2,0)(w) + V2(w).

Since V is the solution of the problem (12), we have V (ρeiµ) = g2(ρeiµ),
and the last equality yields

V2(ρeiµ) =
1

2π

2π∫

0

V2(e
iα)

1 − ρ2

1 + ρ2 − 2ρ cos(α − µ)
dα + P (g1)(ρ, µ)−

− P (V2,0)(ρ, µ) +
∑

ak∈γ1

Ak(p) Re
ρeiµ + ak

ρeiµ − ak
= g2(ρeiµ). (20)

As far as

V2(re
iα) =

1

2π

2π∫

0

V2(ρeiβ))
r2 − ρ2

r2 + ρ2 − 2rρ cos(β − α)
dβ,
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therefore

V2(e
iα) =

1

2π

2π∫

0

V2(ρeiβ)
1 − ρ2

1 + ρ2 − 2ρ cos(α − β)
dβ.

We substitute this value V2(e
iα) into (20) and obtain

V2(ρeiµ) − 1

2π

2π∫

0

[
1

2π

2π∫

0

V2(ρeiβ)
1 − ρ2

1 + ρ2 − 2ρ cos(α − β)
dβ

]
×

× 1 − ρ2

1 + ρ2 − 2ρ cos(α − µ)
dα + P (g1)(ρ, µ) − P (V2,0)(ρ, µ)+

+
∑

ak∈γ1

Ak(p) Re
ρeiµ + ak

ρeiµ − ak
= g2(ρeiµ),

i.e.

V2(ρeiµ) + (KV2)(ρ, µ) = g̃2(ρ, µ), (21)

where

(KV2)(ρ, µ) = − 1

2π

2π∫

0

[
1

2π

2π∫

0

V2(ρeiβ)
1 − ρ2

1 + ρ2 − 2ρ cos(α − β)
dβ

]
×

× 1 − ρ2

1 + ρ2 − 2ρ cos(α − µ)
dα,

g̃2(ρ, µ) = g2(ρeiµ)−(Pg1)(ρ, µ)+P (V2,0)(ρ, µ)−

−
∑

ak∈γ1

Ak(p) Re
ρeiµ + ak

ρeiµ − ak
. (22)

The equation of type (21) in the classes Lp(I, ω) has been investigated
in [8] for ω ∈ W

ρ
E (see [8], equation (15)). The class W

ρ
E is, in fact, the set

of functions ω-analytic in K, belonging to U
δ>0

Eδ(K), and their narrowing

on γi − ω1 = ω(eiµ) and ω2 = ω(ρeiµ) belong to W p.
Equation (21) is the Fredholm one in the class Lp(I, ω). It is solvable, if

and only if

2π∫

0

(Pg1)(ρ, µ) dµ +
∑

ak∈γ1

Ak(p)

2π∫

0

Re
ρeiµ + ak

ρeiµ − ak
dµ−

−
2π∫

0

P (V2,0)(ρ, µ) dµ =

2π∫

0

g2(ρeiµ) dµ. (23)

(see [8]).
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It can be easily verified that

2π∫

0

(Pg1)(ρ, µ)dµ =

2π∫

0

g1(e
iµ) dµ.

Taking into account the equality

1

2πi

2π∫

0

ρeiµ + ak

ρeiµ − ak

dρeiµ

ρeiµ
= −1, |ak| = 1,

we find that

1

2π

2π∫

0

Re
ρeiµ + ak

ρeiµ − ak
dµ = −1.

Analogously

1

2π

2π∫

0

Re
eiµ + ak

eiµ − ak
dµ = 1, |ak| = ρ.

Moreover,

2π∫

0

P (V2,0)dµ=

2π∫

0

1

2π

2π∫

0

∑

ak∈γ2

Ak(p) Re
eiµ+ak

eiµ−ak

1 − ρ2

1+ρ2−2ρ cos(α−β)
dα dµ=

=
∑

ak∈γ2

Ak(p)

2π∫

0

Re
eiµ + ak

eiµ − ak
dα = 2π

∑

ak∈γ2

Ak(p).

Consequently, the condition (23) takes the form

2π∫

0

g1(e
iµ) dµ + 2π

( ∑

ak∈γ1

Ak(p) −
∑

ak∈γ2

Ak(p)
)

=

2π∫

0

g2(ρeiµ)dµ. (24)

Thus if in equation (21): ω ∈ W
p
E and

[
g2 − P (g1) − P (V2,0) −

∑

ak∈γ1

Ak(p) Re
ρeiµ + ak

ρeiµ − ak

]
∈ Lp(I, ω), (25)

and the condition (24) is fulfilled, then it is solvable. These conditions are
fulfilled if νk∈{0, p}. If, however, νk ∈ {0, p}, then the inclusion (25) is valid
if instead of the condition g1 ∈ Lp(γ1; ω) we require

g1(τ) ln
∏

ak∈γ1, νk∈{0,p}

(τ − ak)∈Lp(γ1; ω). (26)

If this condition and equalities (24) are fulfilled, then equation (21) is
uniquely solvable.
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Let
V2(ρeiµ) = M(g̃2)(ρ, µ) (27)

(see (21), (22)).
Using equalities (18) and (19), we are able to define the function V1(re

iµ):

V1(re
iµ) =

∑

ak∈γ1

Ak(p) Re
reiµ + ak

reiµ − ak
+ (Pg1)(r, µ)−

− P (V2,0)(r, µ) + P (V2)(r, µ). (28)

In order for the function V = V1 +V2 to provide us with a solution of the
problem (12), the condition (16) should, according to Remark 6, be fulfilled,
i.e.,

2π∫

0

M(g̃2)(ρ, µ)dµ +
∑

ak∈γ2

Ak(p) = 0. (29)

Thus we have proved the following

Theorem 7. Let the doubly-connected domain D be bounded by the

Jordan curves Γ1 and Γ2; Γ2 lies inside of Γ1, while Γ = Γ1 + Γ2 belongs

to C1(t1, t2, . . . , tn; ν1, ν2, . . . , νn), 0 ≤ νk ≤ 2. Further, let z = z(w) be the

conformal mapping of the ring K = {w : ρ < |w| < 1} onto D, z(ak) = tk
and z(γi) = Γi (γ1 = {τ : |τ | = 1}, γ2 = {τ : |τ | = ρ < 1}).

If among the point tk there are such for which νk ∈ {0, p}, then the

problem (11) is, generally speaking, unsolvable. If, however, instead of the

conditions fi ∈ Lp(Γi) are fulfilled the conditions (15) and (26), and the

real constants are defined by equality (6), then for the problem (11) to be

solvable, it is necessary and sufficient that the conditions (24) and (29)
be fulfilled. If they are fulfilled, then the solution is given by the equality

u(z) = V (w(z)), where w = w(z) is the function, inverse to z = z(w), and

V (w) = V1(w) + V2(w), where

V2(re
iµ) =

2π∫

0

V2(ρeiα)
r2 − ρ2

r2 + ρ2 − 2rρ cos(α − µ)
dα. (30)

Here V2(ρeiα) is the solution of equation (21) defined uniquely for any num-

ber of constants Ak(p) with the condition (6) and satisfying the conditions

(24) and (29); V1 is the function given by equality (28).

Remark 8. If Γ is the piecewise-Lyapunov boundary, then for νk = p we
have Xk∈Ep(u) (see [8]), and if all νk belong to (0, p), then for any k we
have Ak(p) = 0. Therefore the condition (24) takes the form

2π∫

0

g1(e
iµ)dµ =

2π∫

0

g2(ρeiµ)dµ, (31)
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and under that condition
2π∫
0

M(g̃2)dµ = 0, and hence (29) is fulfilled.

Thus for the domains with boundaries of the above-indicated type, the
problem (11) is uniquely solvable.

This fact has been stated in [8].

Remark 9. If Γ is the piecewise-Lyapunov curve from the set
C1(t1, . . . , tn; ν1, . . . , νn), and also νk∈{0, ρ}, k = 1, n, then the solution
contains n1 + (n2 − 1) arbitrary constants, where ni is a number of points
lying on Γi for which νk > p. The difference of contribution of such points
lying on different curves Γi is caused by the condition (16) which in its
turn results from the fact that the summands Vi, in the representation
V = V1 + V2, belong to ep(Ki, ), and hence the function V2 vanishes at
infinity.

Remark 10. The problem (11) can also be considered in the weight class
ep(D; r), where

r(t) =

m∏

k=1

(t − ck)αk , ck ∈ Γ, −1

p
< αk <

1

p′
, p′ =

p

p − 1
,

just as it takes place in [8]. Depending on whether the points from the
set {c1, . . . , cn} coincide with some of the points tk, k = 1, n, under the
conditions of solvability of the Dirichlet problem, besides the condition
− 1

p < αk < 1
p′

there appears the condition − 1
p < νk−1

p + αk < 1
p′

(for

cj = tk). We omit the details and refer the reader to [8].
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