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1. Introduction

In [1], Brown and Loday introduced the non-abelian tensor product of groups in the 
context of an application in homotopy theory. Analogous theories of non-abelian tensor 
product have been developed in other algebraic structures such as Lie algebras [8] and 
Lie–Rinehart algebras [4]. In [8], Ellis investigated the main properties of the non-abelian 
tensor product of Lie algebras and its relation to the low-dimensional homology of Lie 
algebras. In particular, he described the universal central extension of a perfect Lie 
algebra via the non-abelian tensor product. In [7], the non-abelian exterior product 
of Lie algebras is introduced and a six-term exact sequence relating low-dimensional 
homologies is obtained. In [10], using the non-abelian tensor product, Guin defined the 
non-abelian low-dimensional homology of Lie algebras and compared these groups with 
the cyclic homology and Milnor additive K-theory of associative algebras.

The theory of Lie superalgebras, also called Z2-graded Lie algebras, has aroused much 
interest both in mathematics and physics. Lie superalgebras play a very important role 
in theoretical physics since they are used to describe supersymmetry in a mathematical 
framework. A comprehensive description of the mathematical theory of Lie superalgebras 
is given in [14], containing the complete classification of all finite-dimensional simple Lie 
superalgebras over an algebraically closed field of characteristic zero. In the last few years, 
the theory of Lie superalgebras has experienced a remarkable evolution obtaining many 
results on representation theory and classification, most of them extending well-known 
facts on Lie algebras.

In this paper we develop the non-abelian tensor product and the low-dimensional 
non-abelian homology of Lie superalgebras, generalizing the corresponding notions for 
Lie algebras, with applications in universal central extensions and homology of Lie su-
peralgebras and cyclic homology of associative superalgebras.

The organization of this paper is as follows: after this introduction, in Section 2 we 
give some definitions and necessary well-known results for the development of the paper. 
We also introduce actions and crossed modules of Lie superalgebras. In Section 3 we 
introduce the non-abelian tensor product of Lie superalgebras, we establish its principal 
properties such as right exactness and relation with the tensor product of supermodules. 
We describe the universal central extension of a perfect Lie superalgebra via the non-
abelian tensor product (Theorem 4.1). In particular, applying this theorem, we obtain 
that st(m, n, A) is the universal central extension of sl(m, n, A), for m + n ≥ 5, where 
A is a unital associative superalgebra. We also study nilpotency and solvability of the 
non-abelian tensor product of Lie superalgebras (Theorem 3.9). Using the non-abelian 
tensor product, in Section 5 we introduce the low-dimensional non-abelian homology 
of Lie superalgebras with coefficients in crossed modules. We show that, if the crossed 
module is a supermodule, then the non-abelian homology is the usual homology of Lie 
superalgebras. Then we apply this non-abelian homology to relate cyclic homology and 
Milnor cyclic homology of associative superalgebras, extending the results of [10]. Finally, 
in the last section we construct the non-abelian exterior product of Lie superalgebras 
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and we use it to obtain Miller’s type theorem for free Lie superalgebras, Hopf formula 
and a six-term exact sequence in the homology of Lie superalgebras.

Conventions and notations
Throughout this paper we denote by K a unital commutative ring unless otherwise 

stated. All modules and algebras are defined over K. We write Z2 = {0̄, ̄1} and use its 
standard field structure. We put (−1)0̄ = 1 and (−1)1̄ = −1.

By a supermodule M we mean a module endowed with a Z2-gradation: M = M0̄⊕M1̄. 
We call elements of M0̄ (resp. M1̄) even (resp. odd). Non-zero elements of M0̄ ∪M1̄ will 
be called homogeneous. For a homogeneous m ∈ Mᾱ, ᾱ ∈ Z2, its degree will be denoted 
by |m|. We adopt the convention that whenever the degree function occurs in a formula, 
the corresponding elements are supposed to be homogeneous. By a homomorphism of 
supermodules f : M → N of degree |f | ∈ Z2 we mean a linear map satisfying f(Mᾱ) ⊆
Nᾱ+|f |. In particular, if |f | = 0̄, then the homomorphism f will be called of even grade 
(or even linear map).

By a superalgebra A we mean a supermodule A = A0̄ ⊕ A1̄ equipped with a bilinear 
multiplication satisfying AᾱAβ̄ ⊆ Aᾱ+β̄ , for ᾱ, β̄ ∈ Z2.

2. Preliminaries on Lie superalgebras

In this section we review some terminology on Lie superalgebras and recall notions 
used in the paper. We mainly follow [2,18], although with some modifications. We also 
introduce notions of actions and crossed modules of Lie superalgebras.

2.1. Definition and some examples of Lie superalgebras

Definition 2.1. A Lie superalgebra is a superalgebra M = M0̄ ⊕M1̄ with a multiplication 
denoted by [ , ], called bracket operation, satisfying the following identities:

[x, y] = −(−1)|x||y|[y, x],[
x, [y, z]

]
=

[
[x, y], z

]
+ (−1)|x||y|

[
y, [x, z]

]
,

[m0̄,m0̄] = 0,

for all homogeneous elements x, y, z ∈ M and m0̄ ∈ M0̄.

Note that the last equation is an immediate consequence of the first one in the case 2
has an inverse in K. Moreover, it can be easily seen that the second equation is equivalent 
to the graded Jacobi identity

(−1)|x||z|
[
x, [y, z]

]
+ (−1)|y||x|

[
y, [z, x]

]
+ (−1)|z||y|

[
z, [x, y]

]
= 0.
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For a Lie superalgebra M = M0̄ ⊕M1̄, the even part M0̄ is a Lie algebra. Hence, if 
M1̄ = 0, then M is just a Lie algebra. A Lie superalgebra M without even part, i. e., 
M0̄ = 0, is an abelian Lie superalgebra, that is, [x, y] = 0 for all x, y ∈ M .

A Lie superalgebra homomorphism f : M → M ′ is a supermodule homomorphism of 
even grade such that f [x, y] = [f(x), f(y)] for all x, y ∈ M .

Example 2.2. (i) Any associative superalgebra A can be considered as a Lie superalgebra 
with the bracket

[a, b] = ab− (−1)|a||b|ba.

(ii) Let m, n be positive integers and A a unital associative superalgebra. Consider 
the algebra M(m, n, A) of all (m + n) × (m + n)-matrices with entries in A and with 
the usual product of matrices. A Z2-gradation is defined as follows: homogeneous el-
ements are matrices Eij(a) having the homogeneous element a ∈ A at the position 
(i, j) and zero elsewhere, and |Eij(a)| = |i| + |j| + |a|, where |i| = 0̄ if 1 ≤ i ≤ m

and |i| = 1̄ if m + 1 ≤ i ≤ m + n. With this gradation, M(m, n, A) turns out to 
be an associative superalgebra. The corresponding Lie superalgebra will be denoted by 
gl(m,n,A).

(iii) Let V = V0̄ ⊕ V1̄ be a supermodule. Then the supermodule EndK(V ) of all linear 
endomorphisms V → V (of both degrees 0 and 1) has a structure of an associative su-
peralgebra with respect to composition (see [2]) and hence becomes a Lie superalgebra. 
In particular, if the ground ring K is a field, and m, n are dimensions of V0̄ and V1̄
respectively, then choosing a homogeneous basis of V ordered such that even elements 
stand before odd, the elements of EndK(V ) can be seen as (m + n) × (m + n)-square 
matrices

(
a b

c d

)

where a, b, c and d are respectively m ×m, m ×n, n ×m and n ×n matrices with entries 
in K. The even elements are the matrices with b = c = 0 and the odd elements are 
matrices with a = d = 0.

Let M and N be two submodules of a Lie superalgebra P . We denote by [M, N ] the 
submodule of P spanned by all elements [m, n] with m ∈ M and n ∈ N . A Z2-graded 
submodule M is a graded ideal of P if [M, P ] ⊆ M . In particular, the submodule Z(P ) =
{c ∈ P : [c, p] = 0 for all p ∈ P} is a graded ideal and it is called the centre of P . Clearly 
if M and N are graded ideals of P , then so is [M, N ].

Let M be a Lie superalgebra and D ∈ EndK(M). We say that D is a derivation if for 
all x, y ∈ M

D([x, y]) = [D(x), y] + (−1)|D||x|[x,D(y)].
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We denote by 
(
DerK(M)

)
ᾱ

the set of homogeneous derivations of degree ᾱ ∈ Z2. One 
verifies that the supermodule of derivations

DerK(M) =
(
DerK(M)

)
0̄ ⊕

(
DerK(M)

)
1̄

is a subalgebra of the Lie superalgebra EndK(M).

2.2. Actions and crossed modules of Lie superalgebras

Definition 2.3. Let P and M be two Lie superalgebras. By an action of P on M we mean 
a K-bilinear map of even grade,

P ×M → M, (p,m) 	→ pm,

such that

(i) [p,p′]m = p(p′
m) − (−1)|p||p′|p′(pm),

(ii) p[m,m′] = [pm, m′] + (−1)|p||m|[m, pm′],

for all homogeneous p, p′ ∈ P and m, m′ ∈ M .
The action is called trivial if pm = 0 for all p ∈ P and m ∈ M .

For example, if M is a graded ideal and P is a subalgebra of a Lie superalgebra Q, 
then the bracket in Q induces an action of P on M .

Note that the action of P on M is the same as a Lie superalgebra homomorphism 
P → DerK(M).

Remark. If M is an abelian Lie superalgebra enriched with an action of a Lie superalge-
bra P , then M has a structure of a supermodule over P (P -supermodule, for short) (see 
e.g. [18]), that is, there is a K-bilinear map of even grade P ×M → M , (p, m) 	→ pm, 
such that

[p, p′]m = p(p′m) − (−1)|p||p
′|p′(pm),

for all homogeneous p, p′ ∈ P and m ∈ M .

Note that a P -supermodule M is the same as a K-supermodule M together with a 
Lie superalgebra homomorphism P → EndK(M).

Definition 2.4. Given two Lie superalgebras M and P with an action of P on M , we can 
define the semidirect product M � P with the underlying supermodule M ⊕ P endowed 
with the bracket given by

[(m, p), (m′, p′)] = ([m,m′] + pm′ − (−1)|m||p′|(p
′
m), [p, p′]).
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Now we are ready to introduce the following notion of crossed modules of Lie super-
algebras (see also [23, Definition 5]).

Definition 2.5. A crossed module of Lie superalgebras is a homomorphism of Lie super-
algebras ∂: M → P with an action of P on M satisfying

(i) ∂(pm) = [p, ∂(m)],
(ii) ∂(m)m′ = [m, m′],

for all p ∈ P and m, m′ ∈ M .

Example 2.6. There are some standard examples of crossed modules:

(i) The inclusion M ↪→ P of a graded ideal M of a Lie superalgebra P is a crossed 
module of Lie superalgebras.

(ii) If P is a Lie superalgebra and M is a P -supermodule, the trivial map 0: M → P is 
a crossed module of Lie superalgebras.

(iii) A central extension of Lie superalgebras ∂: M � P (i.e., Ker ∂ ⊆ Z(M)) is a crossed 
module of Lie superalgebras. Here the action of P on M is given by pm = [m̃, m], 
where m̃ ∈ M is any element of ∂−1(p).

(iv) The homomorphism of Lie superalgebras ∂: M → DerK(M) which sends m ∈ M to 
the inner derivation ad(m) ∈ DerK(M), defined by ad(m)(m′) = [m, m′], together 
with the action of DerK(M) on M given by Dm = D(m), is a crossed module of Lie 
superalgebras.

Lemma 2.7. Let ∂: M → P be a crossed module of Lie superalgebras. Then the following 
conditions are satisfied:

(i) The kernel of ∂ is in the centre of M .
(ii) The image of ∂ is a graded ideal of P .
(iii) The Lie superalgebra Im ∂ acts trivially on the centre Z(M), and so trivially on 

Ker ∂. Hence Ker ∂ inherits an action of P/ Im ∂ making Ker ∂ a P/ Im ∂-super-
module.

Proof. This is an immediate consequence of Definition 2.5. �
2.3. Free Lie superalgebra and enveloping superalgebra of a Lie superalgebra

Definition 2.8. The free Lie superalgebra on a Z2-graded set X = X0̄ ∪ X1̄ is a Lie 
superalgebra F(X) together with a degree zero map i: X → F(X) such that if M is 
any Lie superalgebra and j: X → M is a degree zero map, then there is a unique Lie 
superalgebra homomorphism h: F(X) → M with j = h ◦ i.
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The existence of free Lie superalgebras is guaranteed by an analogue of Witt’s theorem 
(see [18, Theorem 6.2.1]). In the sequel we need the following construction of the free 
Lie superalgebra.

Construction 2.9. Let X = X0̄∪X1̄ be a Z2-graded set. Denote by mag(X) the free magma 
over the set X. The free superalgebra on X, denoted by alg(X), has as elements the finite 
sums 

∑
i λivi, where λi ∈ K and xi are elements of mag(X) and the multiplication in 

alg(X) extends the multiplication in mag(X). Note that the grading is naturally defined 
in alg(X). The free Lie superalgebra F(X) is the quotient alg(X)/I, where I is the graded 
ideal generated by the elements

xy + (−1)|x||y|yx,

(−1)|x||z|
(
x(yz)

)
+ (−1)|y||x|

(
y(zx)

)
+ (−1)|z||y|

(
z(xy)

)
,

x0̄x0̄,

for all homogeneous x, y, z ∈ X and x0̄ ∈ X0̄.

Definition 2.10. The universal enveloping superalgebra of a Lie superalgebra M is a pair 
(U(M), σ), where U(M) is a unital associative superalgebra and σ: M → U(M) is an 
even linear map satisfying

σ[x, y] = σ(x)σ(y) − (−1)|x||y|σ(y)σ(x), (1)

for all homogeneous x, y ∈ M , such that the following universal property holds: for any 
other pair (A, σ′), where A is a unital associative superalgebra and σ′: M → A is an even 
linear map satisfying (1), there is a unique superalgebra homomorphism f : U(M) → A

such that f ◦ σ = σ′.

Now we need to recall (see e.g. [21]) that, given two supermodules M and N , the tensor 
product of modules M ⊗KN has a natural supermodule structure with Z2-grading given 
by

(M ⊗K N)ᾱ =
⊕

β̄+γ̄=ᾱ

(Mβ̄ ⊗K Nγ̄).

In particular, the tensor power M⊗n, n ≥ 2, has the induced Z2-grading. Hence the 
tensor algebra T (M) has the Z2-grading extending that of M . We call T (M) the tensor 
superalgebra.

Construction 2.11. Let M be a Lie superalgebra and T (M) the tensor superalgebra over 
the underlying supermodule of M . Consider the two-sided ideal J(M) of T (M) generated 
by all elements of the form



X. García-Martínez et al. / Journal of Algebra 440 (2015) 464–488 471
m⊗m′ − (−1)|m||m′|m′ ⊗m− [m,m′],

for all homogeneous m, m′ ∈ M . Then the quotient U(M) = T (M)/J(M) is a unital 
associative superalgebra. By composing the canonical inclusion M → T (M) with the 
canonical projection T (M) → U(M) we get the canonical even linear map σ: M → U(M). 
Then the pair (U(M), σ) is the universal enveloping superalgebra of M (see [2]).

Note that, as in the Lie algebra case, the universal enveloping superalgebra turns out 
to be a very useful tool for the representation theory of Lie superalgebras. In particular, 
by the universal property, it follows that a Lie supermodule over a Lie superalgebra M
is the same as a Z2-graded (left) U(M)-module (see [21, Chapter 1]).

Let us consider K with Z2-grading concentrated in degree zero, that is, with K1̄ = 0. 
Then the trivial map from a Lie superalgebra M into K gives rise to a unique homomor-
phism of superalgebras ε: U(M) → K. The kernel of ε, denoted by Ω(M), is called the 
augmentation ideal of M . Obviously, Ω(M) is just the graded ideal of U(M) generated 
by σ(M).

2.4. Homology of Lie superalgebras

Now we briefly recall from [18,22] the definition of homology of Lie superalgebras.
The Grassmann algebra of a Lie superalgebra P , denoted by 

∧
K
(P ), is defined to be 

the quotient of the tensor superalgebra T (P ) of P by the ideal generated by the elements

x⊗ y + (−1)|x||y|y ⊗ x,

for all homogeneous x, y ∈ P . Note that 
∧

K
(P ) =

⊕
n>0

∧n
K
(P ), where 

∧n
K
(P ) is the 

image of P⊗n in 
∧

K
(P ), has an induced P -supermodule structure given by

x(x1 ∧ · · · ∧ xn) =
n∑

i=1
(−1)|x|

∑
k<i |xk|(x1 ∧ · · · ∧ [x, xi] ∧ · · · ∧ xn).

Let M be a P -supermodule and consider the chain complex (C∗(P, M), d∗) defined by 
Cn(P, M) =

∧n
K
(P ) ⊗KM , for n ≥ 0, with boundary maps dn: Cn(P, M) → Cn−1(P, M)

defined on generators by

dn(x1 ∧ · · · ∧ xn ⊗ y) =
n∑

i=1
(−1)i+|xi|

∑
k>i |xk|(x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn ⊗ xiy)

+
∑
i<j

(−1)i+j+|xi|
∑

k<i |xk|+|xj |
∑

l<j |xl|+|xi||xj |

× ([xi, xj ] ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn ⊗ y).
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The n-th homology of the Lie superalgebra P with coefficients in the P -supermodule M , 
Hn(P, M), is the n-th homology of the chain complex (C∗(P, M), d∗), i.e.

Hn(P,M) = Ker dn
Im dn+1

.

If K is regarded as a trivial P -supermodule, we write Hn(P ) for Hn(P, K).
In the case when the ground ring K is a field, there is a relation between Tor functor 

and the homology (see [18]) given by

Hn(P,M) ∼= TorU(P )
n (K,M).

By analogy to Lie algebras (see e.g. [11]), we have the following isomorphisms

H0(P,M) ∼= Coker
(
Ω(P ) ⊗U(P ) M −→ M

)
, (2)

H1(P,M) ∼= Ker
(
Ω(P ) ⊗U(P ) M −→ M

)
. (3)

3. Non-abelian tensor product of Lie superalgebras

In this section we introduce a non-abelian tensor product of Lie superalgebras, which 
generalizes the non-abelian tensor product of Lie algebras [8], and study its properties.

3.1. Construction of the non-abelian tensor product

Definition 3.1. Let M and N be two Lie superalgebras with actions on each other. Let 
XM,N be the Z2-graded set of all symbols m ⊗ n, where m ∈ M0̄ ∪ M1̄, n ∈ N0̄ ∪ N1̄
and the Z2-gradation is given by |m ⊗ n| = |m| + |n|. We define the non-abelian tensor 
product of M and N , denoted by M ⊗ N , as the Lie superalgebra generated by XM,N

and subject to the relations:

(i) λ(m ⊗ n) = λm ⊗ n = m ⊗ λn,
(ii) (m + m′) ⊗ n = m⊗ n + m′ ⊗ n, where m,m′ have the same grade,

m⊗ (n + n′) = m⊗ n + m⊗ n′, where n, n′ have the same grade,

(iii) [m,m′] ⊗ n = m⊗ m′
n− (−1)|m||m′|(m′ ⊗ mn),

m⊗ [n, n′] = (−1)|n′|(|m|+|n|)(n′
m⊗ n) − (−1)|m||n|(nm⊗ n′),

(iv) [m ⊗ n, m′ ⊗ n′] = −(−1)|m||n|(nm ⊗ m′
n′),

for every λ ∈ K, m, m′ ∈ M0̄ ∪M1̄ and n, n′ ∈ N0̄ ∪N1̄.

Let us remark that if m = m0̄ + m1̄ is any element of M and n = n0̄ + n1̄ is any 
element of N , then under the notation m ⊗ n we mean the sum

m0̄ ⊗ n0̄ + m0̄ ⊗ n1̄ + m1̄ ⊗ n0̄ + m1̄ ⊗ n1̄.
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If M = M0̄ and N = N0̄ then M⊗N is the non-abelian tensor product of Lie algebras 
introduced and studied in [8] (see also [12]).

Definition 3.2. Actions of Lie superalgebras M and N on each other are said to be 
compatible if

(i) (nm)n′ = −(−1)|m||n|[mn, n′],
(ii) (mn)m′ = −(−1)|m||n|[nm, m′],

for all m, m′ ∈ M0̄ ∪M1̄ and n, n′ ∈ N0̄ ∪N1̄.

For example, if M and N are two graded ideals of some Lie superalgebra, the actions 
induced by the bracket are compatible.

Proposition 3.3. Let M and N be Lie superalgebras acting compatibly on each other. 
Then there is a natural isomorphism of Lie superalgebras

M ⊗N ∼= M ⊗K N

D(M,N) ,

where D(M, N) is the submodule of the supermodule M ⊗K N generated by the elements

(i) [m, m′] ⊗ n −m ⊗ m′
n + (−1)|m||m′|(m′ ⊗ mn),

(ii) m ⊗ [n, n′] − (−1)|n′|(|m|+|n|)(n′
m⊗ n) + (−1)|m||n|(nm ⊗ n′),

(iii) (nm) ⊗ (mn), with |m| = |n|,
(iv) (−1)|m||n|(nm) ⊗ (m′

n′) + (−1)(|m|+|n|)(|m′|+|n′|)+|m′||n′|(n′
m′) ⊗ (mn),

(v) �
(m,n),(m′,n′),(m′′,n′′)

(−1)(|m|+|n|)(|m′′|+|n′′|)+|m||n|+|m′||n′|[nm, n
′
m′] ⊗ (m′′

n′′),

for all m, m′, m′′ ∈ M0̄ ∪ M1̄ and n, n′, n′′ ∈ N0̄ ∪ N1̄, where �
x,y,z

denotes the cyclic 

summation with respect to x, y, z.

Proof. There is a Lie superalgebra structure on the supermodule (M ⊗K N)/D(M, N)
given on generators by the following bracket

[m⊗ n,m′ ⊗ n′] = −(−1)|m||n|(nm⊗ m′
n′),

for all m, m′ ∈ M0̄ ∪ M1̄, n, n′ ∈ N0̄ ∪ N1̄ and extended by linearity. It is routine to 
check that this bracket is compatible with the defining relations of (M ⊗K N)/D(M, N)
and it indeed defines a Lie superalgebra structure. Then the canonical homomorphism 
M ⊗N → (M ⊗K N)/D(M, N), m ⊗ n 	→ m ⊗ n, is an isomorphism. �

The proof of the following proposition is a routine calculation.
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Proposition 3.4. Let M and N be two Lie superalgebras acting compatibly on each other.

(i) The following morphisms

μ :M ⊗N → M, m⊗ n 	→ −(−1)|m||n|(nm),

ν :M ⊗N → N, m⊗ n 	→ mn,

are Lie superalgebra homomorphisms.
(ii) There are actions of M and N on M ⊗N given by

m′
(m⊗ n) = [m′,m] ⊗ n + (−1)|m||m′|m⊗ (m

′
n),

n′
(m⊗ n) = (n

′
m) ⊗ n + (−1)|n||n

′|m⊗ [n′, n],

for m, m′ ∈ M0̄ ∪ M1̄, n, n′ ∈ N0̄ ∪ N1̄ and extended by linearity. Moreover, with 
these actions μ and ν are crossed modules of Lie superalgebras.

We will denote by [M, N ]M (resp. [M, N ]N ) the image of μ (resp. ν), which by 
Lemma 2.7(ii) is a graded ideal of M (resp. N) generated by the elements of the form 
nm (resp. mn) for m ∈ M and n ∈ N . Note that by Lemma 2.7(iii) Ker(μ) (resp. Ker(ν)) 
is an M/[M, N ]M -supermodule (resp. N/[M, N ]N -supermodule).

3.2. Some properties of the non-abelian tensor product

The obvious analogues of Brown and Loday results [1] hold for Lie superalgebras. 
In the following two propositions immediately below we show that sometimes the non-
abelian tensor product of Lie superalgebras can be expressed in terms of the tensor 
product of supermodules.

Proposition 3.5. Let M and N be Lie superalgebras acting on each other. Then the 
canonical map M⊗KN → M⊗N , m ⊗n 	→ m ⊗n, is an even, surjective homomorphism 
of supermodules. In addition, if M and N act trivially on each other, then M ⊗N is an 
abelian Lie superalgebra and there is an isomorphism of supermodules

M ⊗N ∼= Mab ⊗K Nab,

where Mab = M/[M, M ] and Nab = N/[N, N ].

Proof. It is straightforward by the identities (iv), (iii) of Definition 3.1. �
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Proposition 3.6. Let P be a Lie superalgebra and M a P -supermodule considered as an 
abelian Lie superalgebra acting trivially on P . Then there is an isomorphism of super-
modules

P ⊗M ∼= Ω(P ) ⊗U(P ) M.

Proof. By Proposition 3.3 there is an isomorphism of supermodules

P ⊗M ∼= P ⊗K M

W
,

where W is the submodule of P ⊗K M generated by all elements of the form

[p, p′] ⊗m− p⊗ p′m + (−1)|p||p
′|p′ ⊗ pm

for all p, p′ ∈ P0̄∪P1̄ and m ∈ M0̄∪M1̄. Now by using Construction 2.11 and by repeating 
the respective part of the proof of [3, Proposition 13], it is easy to see that there is an 
isomorphism of supermodules

P ⊗K M

W
∼= Ω(P ) ⊗U(P ) M,

which completes the proof. �
The non-abelian tensor product of Lie superalgebras is symmetric, in the sense of the 

following proposition.

Proposition 3.7. The Lie superalgebra homomorphism

M ⊗N → N ⊗M, m⊗ n 	→ −(−1)|m||n|(n⊗m),

is an isomorphism.

Proof. This can be checked readily. �
Let us consider the category SLie2

K
whose objects are ordered pairs of Lie superal-

gebras (M, N) acting compatibly on each other, and the morphisms are pairs of Lie 
superalgebra homomorphisms (φ: M → M ′, ψ: N → N ′) which preserve the actions, i.e., 
φ(nm) = ψ(n)φ(m) and ψ(mn) = φ(m)ψ(n). For such a pair (φ, ψ) we have a homomor-
phism of Lie superalgebras φ ⊗ψ: M ⊗N → M ′⊗N ′, m ⊗n 	→ φ(m) ⊗ψ(n). Therefore, 
⊗ is a functor from SLie2

K
to the category of Lie superalgebras.

Given an exact sequence in SLie2
K

(0, 0) −−→ (K,L) (i,j)−−−→ (M,N) (φ,ψ)−−−−→ (P,Q) −−→ (0, 0), (4)
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by Proposition 3.4(ii) there is a Lie superalgebra homomorphism M ⊗ L → L and an 
action of N on K ⊗N . Thus, there is an action of M ⊗L on K ⊗N , so we can form the 
semidirect product (K ⊗N) � (M ⊗ L), and we have the following obvious analogue of 
[8, Proposition 9].

Proposition 3.8. Given the short exact sequence (4), there is an exact sequence of Lie 
superalgebras

(K ⊗N) � (M ⊗ L) α−−−→ M ⊗N
φ⊗ψ−−−−→ P ⊗Q −−→ 0.

In particular, given a Lie superalgebra M and a graded ideal K of M , there is an 
exact sequences of Lie superalgebras

(K ⊗M) � (M ⊗K) → M ⊗M → (M/K) ⊗ (M/K) → 0. (5)

3.3. Nilpotency, solvability and Engel of the non-abelian tensor product

The results from [20] on nilpotency, solvability and Engel of the non-abelian tensor 
product on Lie algebras can be easily extended to the case of Lie superalgebras. The 
notions of nilpotency and solvability of Lie superalgebras are given in [18]. As they are 
very similar to the respective notions for Lie algebras, we omit them. We say that a Lie 
superalgebra M is n-Engel if it satisfies ad(x)n = 0 for all x ∈ M . The proof of the 
following result is similar to the proof of [20, Theorem 2.2].

Theorem 3.9. Let M and N be two Lie superalgebras acting compatibly on each other. 
Then,

(i) If [M, N ]M is nilpotent, then M ⊗ N and [M, N ]N are nilpotent too. Moreover, if 
the nilpotency class of [M, N ]M is cl([M, N ]M ), then

([M,N ]M ) ≤ cl(M ⊗N) ≤ cl([M,N ]M ) + 1,

cl([M,N ]N ) ≤ cl([M,N ]M ) + 1.

(ii) If [M, N ]M is solvable, then M ⊗N and [M, N ]N are solvable too. Moreover, if the 
derived length of [M, N ]M is �([M, N ]M ), then

�([M,N ]M ) ≤ �(M ⊗N) ≤ �([M,N ]M ) + 1,

�([M,N ]N ) ≤ �([M,N ]M ) + 1.

(iii) If [M, N ]M is Engel, then M⊗N and [M, N ]N are Engel too. Moreover, if [M, N ]M
is n-Engel, then M ⊗N and [M, N ]N are (n + 1)-Engel.
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4. Universal central extensions of Lie superalgebras

Now we use the non-abelian tensor product of Lie superalgebras to describe universal 
central extensions of Lie superalgebras. Recall that a central extension u: U � P is 
universal if for any other central extension f : M � P there is a unique homomorphism 
θ: U → M such that f ◦ θ = u. It is shown in [19] that a Lie superalgebra P admits a 
universal central extension if and only if P is perfect, i.e. P = [P, P ].

It follows from Proposition 3.4 and Lemma 2.7(i) that the homomorphism u: P ⊗P �
[P, P ], u(p ⊗ p′) = [p, p′], is a central extension of the Lie superalgebra [P, P ].

Theorem 4.1. If P is a perfect Lie superalgebra, then the central extension u: P ⊗P � P

is the universal central extension.

Proof. Let f : M � P be a central extension of P . Since Ker f is in the centre of M , 
we get a well-defined homomorphism of Lie superalgebras θ: P ⊗ P → M given by 
θ(p ⊗ p′) = [mp, mp′ ], where mp and mp′ are any preimages of p and p′, respectively. 
Obviously θ◦f = u. Since P is perfect, then by relation (iv) of Definition 3.1, so is P⊗P . 
Then by [19, Lemma 1.4] the homomorphism θ is unique. �
Remark. If P is a perfect Lie superalgebra, then H2(P ) ≈ Ker(P ⊗ P

u−→ P ), since the 
kernel of the universal central extension is isomorphic to the second homology H2(P )
(see [19]).

It is a classical result that the universal central extension of the Lie algebra sl(n, A), 
where A is a unital associative algebra, is the Steinberg algebra st(n, A), when n ≥ 5 (see 
e.g. [16]). Recently, in [5,9], this result has been extended to Lie superalgebras. Below, 
using the non-abelian tensor product of Lie superalgebras, we propose an alternative 
proof of the same result.

First we recall from [5] that, given a unital associative superalgebra A, the Lie super-
algebra sl(m, n, A), m + n ≥ 3, is defined to be the subalgebra of the Lie superalgebra 
gl(m, n, A) (see Example 2.2 (ii)) generated by the elements Eij(a), 1 ≤ i �= j ≤ m + n, 
a ∈ A0̄ ∪A1̄. It is shown in [5, Lemma 3.3] that sl(m, n, A) is a perfect Lie superalgebra. 
This guarantees the existence of the universal central extension of sl(m, n, A).

The Steinberg Lie superalgebra st(m, n, A) is defined for m + n ≥ 3 to be the Lie 
superalgebra generated by the homogeneous elements Fij(a), where 1 ≤ i �= j ≤ m + n, 
a ∈ A is a homogeneous element and the Z2-grading is given by |Fij(a)| = |i| + |j| + |a|, 
subject to the following relations:

a 	→ Fij(a) is a K-linear map,

[Fij(a), Fjk(b)] = Fik(ab), for distinct i, j, k,

[Fij(a), Fkl(b)] = 0, for j �= k, i �= l.
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Theorem 4.2. (See [5].) If m + n ≥ 5, then the canonical epimorphism

st(m,n,A) � sl(m,n,A), Fij(a) 	→ Eij(a),

is the universal central extension of the perfect Lie superalgebra sl(m, n, A).

Proof. We claim that there is an isomorphism of Lie superalgebras

st(m,n,A) ∼= st(m,n,A) ⊗ st(m,n,A).

Indeed, one can readily check that the maps

st(m,n,A) −→ st(m,n,A) ⊗ st(m,n,A), Fij(a) 	→ Fik(a) ⊗ Fkj(1) for k �= i, j,

st(m,n,A) ⊗ st(m,n,A) −→ st(m,n,A), Fij(a) ⊗ Fkl(b) 	→ [Fij(a), Fkl(b)],

are well-defined homomorphisms of Lie superalgebras if m +n ≥ 5, and they are inverses 
to each other. Since st(m, n, A) is a perfect Lie superalgebra, then Theorem 4.1 and [19, 
Corollary 1.9] complete the proof. �
5. Non-abelian homology of Lie superalgebras

The low-dimensional non-abelian homology of Lie algebras with coefficients in crossed 
modules was defined in [10] and it was extended to all dimensions in [12]. In this section 
we extend to Lie superalgebras the construction of zero and first non-abelian homologies. 
We also relate the non-abelian homology of Lie superalgebras with the cyclic homology 
of associative superalgebras studied in [13,15].

5.1. Construction of the non-abelian homology and some properties

Let P be a Lie superalgebra. We denote by Cross(P ) the category of crossed modules 
of Lie superalgebras over P (crossed P -modules, for short), whose objects are crossed 
modules (M, ∂) ≡ (∂: M → P ) and a morphism from (M, ∂) to (N, ∂′) is a Lie superal-
gebra homomorphism f : M → N such that f(pm) = pf(m) for all p ∈ P , m ∈ M and 
∂′ ◦ f = ∂. By an exact sequence (L, ∂′′) f−−→ (M, ∂) g−−→ (N, ∂′) in Cross(P ) we mean 
that the sequence of Lie superalgebras L f−−→ M

g−−→ N is exact.

Lemma 5.1. Given a short exact sequence in Cross(P )

0 → (L, ∂′′) f−−→ (M,∂) g−−→ (N, ∂′) → 0,

the morphism ∂′′: L → P is trivial and L is an abelian Lie superalgebra.
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Proof. Clearly ∂′′ = ∂′ ◦ g ◦ f = 0 and [l, l′] = ∂′′(l)l′ = 0, for all l, l′ ∈ L. �
If (M, ∂) and (N, ∂′) are two crossed P -modules, then the Lie superalgebras M and N

act compatibly on each other via the action of P . Thus, we can construct the non-abelian 
tensor product of Lie superalgebras M⊗N . Moreover, we have an action of P on M⊗N

defined by p(m⊗ n) = pm ⊗ n + (−1)|p||m|m ⊗ pn, and straightforward computations 
show that η: M ⊗N → P , m ⊗ n 	→ [∂(m), ∂′(n)], is a crossed P -module.

Proposition 5.2. Let (M, ∂) be a crossed P -module. There is a right exact functor (M ⊗
−): Cross(P ) → Cross(P ) given, for any crossed P -module (N, ∂′), by

(M ⊗−)(N, ∂′) = (M ⊗N, η).

Proof. It is an immediate consequence of Proposition 3.8 �
Definition 5.3. Let (M, ∂) be a crossed P -module. We define the zero and first non-abelian 
homologies of P with coefficients in M by setting

H0(P,M) = Coker ν and H1(P,M) = Ker ν,

where ν: P ⊗ M → M , p ⊗ m 	→ pm, is the Lie superalgebra homomorphism as in 
Proposition 3.4.

If we consider the crossed P -module (P, idP ) we have that

H0(P, P ) = P

[P, P ]
∼= H1(P ).

In addition, if P is perfect, by Theorem 4.1 we have that H1(P, P ) ∼= H2(P ).
The zero and first non-abelian homologies generalize respectively the zero and first 

homologies of Lie superalgebras in the sense of the following proposition.

Proposition 5.4. Let the ground ring K be a field. Let P be a Lie superalgebra and M a 
P -supermodule thought as a crossed P -module (M, 0). Then there are isomorphisms of 
super vector spaces

H0(P,M) ∼= H0(P,M) and H1(P,M) ∼= H1(P,M).

Proof. This is a direct consequence of Proposition 3.6 and the isomorphisms (2)
and (3). �
Proposition 5.5. Given a short exact sequence in Cross(P )

0 → (L, 0) → (M,∂) → (N, ∂′) → 0
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we have an exact sequence of supermodules

H1(P,L) → H1(P,M) → H1(P,N) → H0(P,L) → H0(P,M) → H0(P,N) → 0.

Proof. The proof is an immediate consequence of the snake lemma applied to the diagram 
obtained from Proposition 5.2

P ⊗ L P ⊗M P ⊗N 0

0 L M N 0.

�

5.2. Application to the cyclic homology of associative superalgebras

Now we recall from [15] and [13] the definition of cyclic homology of associative su-
peralgebras. Let A be an associative superalgebra and (C ′

∗(A), d′∗) denote its Hochschild 
complex, that is C ′

n(A) = A⊗K(n+1) and the boundary map dn: C ′
n(A) → C ′

n−1(A) is 
given by

d′n(a0 ⊗ · · · ⊗ an) =
n−1∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)n+|an|(|a0|+···+|an−1|)ana0 ⊗ · · · ⊗ an−1.

Now the cyclic group Z/(n + 1)Z acts on A⊗K(n+1) via

tn(a0 ⊗ · · · ⊗ an) = (−1)n+|an|
∑

k<n |ak|an ⊗ a0 ⊗ · · · ⊗ an−1,

where tn = 1 + (n + 1)Z ∈ Z/(n + 1)Z. For each n ≥ 0, consider the quotient 
Cn(A) = A⊗K(n+1)/ Im(1 − tn) which is the module of coinvariants of C ′

n(A) under 
the Z/(n + 1)Z-action. Then d′n induces a well-defined map dn: Cn(A) → Cn−1(A) and 
there is an induced chain complex (C∗(A), d∗), which is called the Connes complex of A. 
Its homologies are, by definition, the cyclic homologies of the associative superalgebra A, 
denoted by HCn(A), n ≥ 0.

Easy calculations show that, given an associative superalgebra A, HC1(A) is the kernel 
of the homomorphism of supermodules

(A⊗K A)/ I(A) → [A,A], a⊗ b 	→ ab− (−1)|a||b|ba,

where [A, A] is the graded submodule of A generated by the elements ab − (−1)|a||b|ba
and I(A) is the graded submodule of the supermodule A ⊗K A generated by the 
elements
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a⊗ b + (−1)|a||b|b⊗ a,

ab⊗ c− a⊗ bc + (−1)|c|(|a|+|b|)ca⊗ b,

for all homogeneous a, b, c ∈ A.
Now let us consider A as a Lie superalgebra (see Example 2.2(i)). Then there is a Lie 

superalgebra structure on (A ⊗K A)/ I(A) given by

[a⊗ b, a′ ⊗ b′] = [a, b] ⊗ [a′, b′]

for all a, a′, b, b′ ∈ A. We denote this Lie superalgebra by V(A). In fact, V(A) is the 
quotient of the non-abelian tensor product A ⊗A by the graded ideal generated by the 
elements x ⊗ y + (−1)|x||y|y ⊗ x and xy ⊗ z − x ⊗ yz + (−1)|z|(|x|+|y|)zx ⊗ y, for all 
homogeneous x, y, z ∈ A.

Proposition 5.6. Let A be a Lie superalgebra. Then the following assertions hold:

(i) There are compatible actions of the Lie superalgebras A and V(A) on each other.
(ii) The map μ: V(A) → A given by x ⊗ y 	→ [x, y], together with the action of A

on V(A), is a crossed module of Lie superalgebras.
(iii) The action of A on V(A) induces the trivial action of A on HC1(A).
(iv) There is a short exact sequence in the category Cross(A)

0 → (HC1(A), 0) → (V(A), μ) → ([A,A], i) → 0,

where i: [A, A] → A is the inclusion.

Proof. (i) The action of A on V(A) is induced by the action of A on A ⊗ A given in 
Proposition 3.4(ii), that is

a(x⊗ y) = [a, x] ⊗ y + (−1)|a||x|x⊗ [a, y]

= ax⊗ y + (−1)|a|(|x|+|y|)x⊗ ya− (−1)|x||a|x⊗ ay − (−1)|x||a|xa⊗ y

= a⊗ xy − (−1)|x||y|a⊗ yx

= a⊗ [x, y],

whilst the action of V(A) on A is defined by

x⊗ya =
[
[x, y], a

]

for all homogeneous a, x, y ∈ A. Straightforward calculations show that these are indeed 
(compatible) actions of Lie superalgebras.

(ii) Since the crossed module of Lie superalgebras A ⊗ A → A, x ⊗ y 	→ [x, y], given 
in Proposition 3.4, vanishes on the elements of the form x ⊗ y + (−1)|x||y|y ⊗ x and 
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xy⊗z−x ⊗yz+(−1)|z|(|x|+|y|)zx ⊗y, then μ is well defined and obviously it is a crossed 
module of Lie superalgebras.

(iii) If 
∑

i λi(xi ⊗ yi) ∈ HC1(A), i.e. 
∑

i λi[xi, yi] = 0, then for all a ∈ A we have

a
(∑

i

λi(xi ⊗ yi)
)

=
∑
i

λi(a⊗ [xi, yi]) = a⊗
∑
i

λi[xi, yi] = 0.

(iv) This is an immediate consequence of the assertions above. �
By Proposition 5.5 we have the following exact sequence of supermodules

H1
(
A,HC1(A)

)
H1

(
A,V(A)

)
H1(A, [A,A])

H0
(
A,HC1(A)

)
H0

(
A,V(A)

)
H0(A, [A,A]) 0.

(6)

Below, we will calculate some of the terms of this exact sequence. At first, by analogy 
to the Dennis–Stein generators [6], we give a definition of the first Milnor cyclic homology 
for associative superalgebras.

Definition 5.7. Let A be an associative superalgebra. We define the first Milnor cyclic 
homology HCM

1 (A) of A to be the quotient of the supermodule A ⊗K A by the graded 
ideal generated by the elements

a⊗ b + (−1)|a||b|b⊗ a,

ab⊗ c− a⊗ bc + (−1)|c|(|a|+|b|)ca⊗ b,

a⊗ bc− (−1)|b||c|a⊗ cb,

for all homogeneous a, b, c ∈ A.

It is clear that if A is supercommutative, that is, ab = (−1)|a||b|ba, for all homogeneous 
a, b ∈ A, then HC1(A) ∼= HCM

1 (A).

Lemma 5.8. We have the following equalities and isomorphisms

(i) H0
(
A, HC1(A)

)
= HC1(A),

(ii) H1
(
A, HC1(A)

) ∼= A/[A, A] ⊗K HC1(A),
(iii) H0(A, [A, A]) = [A, A]/

[
A, [A, A]

]
,

(iv) H0
(
A, V(A)

) ∼= HCM
1 (A).
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Proof.

(i) Since A acts trivially on HC1(A), we have that Coker
(
A ⊗ HC1(A) → HC1(A)

)
=

HC1(A).
(ii) Since HC1(A) is abelian, by Proposition 3.5 we have that Ker

(
A ⊗ HC1(A) →

HC1(A)
) ∼= A/[A, A] ⊗K HC1(A).

(iii) and (iv) are straightforward. �
It follows that the exact sequence (6) can be written as in the following theorem.

Theorem 5.9. If A is a unital associative superalgebra. Then there is an exact sequence 
of supermodules

A

[A,A] ⊗K HC1(A) H1
(
A,V(A)

)
H1(A, [A,A])

HC1(A) HCM
1 (A) [A,A][

A, [A,A]
] 0.

Corollary 5.10. If A is perfect as a Lie superalgebra, we have an exact sequence

0 → H1
(
A,V(A)

)
→ H2(A) → HC1(A) → 0,

where H2(A) is the usual second homology of the Lie superalgebra A. If in addition 
H2(A) = 0, then all terms of the exact sequence in the previous theorem are trivial.

Proof. Since A is perfect we know that H1(A, A) ∼= H2(A), A/[A, A] ⊗K HC1(A) = 0
and the map A ⊗ V(A) → V(A) is surjective. �
6. Non-abelian exterior product of Lie superalgebras

In this section we extend to Lie superalgebras the definition of the non-abelian exterior 
product of Lie algebras introduced in [8]. Then we use it to derive the Hopf formula for 
the second homology of a Lie superalgebra and to construct a six-term exact homology 
sequence of Lie superalgebras.

6.1. Construction of the non-abelian exterior product

Let P be a Lie superalgebra and (M, ∂) and (N, ∂′) two crossed P -modules. We 
consider the actions of M and N on each other via P .

Lemma 6.1. Let M�N be the graded submodule of M ⊗N generated by the elements

(a) m ⊗ n + (−1)|m′||n′|m′ ⊗ n′, where ∂(m) = ∂′(n′) and ∂(m′) = ∂′(n),
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(b) m0̄ ⊗ n0̄, where ∂(m0̄) = ∂′(n0̄),

with m, m′ ∈ M0̄∪M1̄, n, n′ ∈ N0̄∪N1̄, m0̄ ∈ M0̄ and n0̄ ∈ N0̄. Then, M�N is a graded 
ideal in the centre of M ⊗N .

Proof. Given an element m ⊗ n + (−1)|m′||n′|m′ ⊗ n′ of the form (a), suppose that 
|m′| = |n|, then we have

[x⊗ y,m⊗ n + (−1)|m
′||n′|m′ ⊗ n′] = −(−1)|x||y|(yx) ⊗

(
mn + (−1)|m

′||n′|(m
′
n′)

)
= −(−1)|x||y|(yx) ⊗

(
∂(m)n + (−1)|m

′||n′|(∂(m′)n′)
)

= −(−1)|x||y|(yx) ⊗
(
∂′(n′)n + (−1)|m

′||n′|(∂
′(n)n′)

)
= −(−1)|x||y|(yx) ⊗

(
[n′, n] + (−1)|n||n

′|[n, n′]
)

= 0.

This is also true when |m′| �= |n|. Indeed, if |m′| �= |n|, since ∂, ∂′ are even maps, the 
equality ∂(m) = ∂′(n′) holds if and only if ∂(m) = 0 = ∂′(n′). Now take an element 
m0̄ ⊗ n0̄ of the form (b). Then we have

[x⊗ y,m0̄ ⊗ n0̄] = −(−1)|x||y|(yx) ⊗ (m0̄n0̄)

= −(−1)|x||y|(yx) ⊗ (∂(m0̄)n0̄)

= −(−1)|x||y|(yx) ⊗ (∂(n0̄)n0̄)

= −(−1)|x||y|(yx) ⊗ [n0̄, n0̄]

= 0,

for any x ⊗ y ∈ M ⊗N . This completes the proof. �
Definition 6.2. Let P be a Lie superalgebra and (M, ∂) and (N, ∂′) two crossed 
P -modules. The non-abelian exterior product M ∧N of the Lie superalgebras M and N
is defined by

M ∧N = M ⊗N

M�N
.

The equivalence class of m ⊗ n will be denoted by m ∧ n.

Note that if M = M0̄ and N = N0̄ then M∧N coincides with the non-abelian exterior 
product of Lie algebras [8].

Reviewing Section 3, one can easily check that most of results on the non-abelian 
tensor product are fulfilled for the non-abelian exterior product. In particular, there are 
homomorphisms of Lie superalgebras M ∧ N → M , M ∧ N → N and actions of M
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and N on M ∧ N , induced respectively by the homomorphisms and actions given in 
Proposition 3.4. It is also satisfied the isomorphism M ∧N ∼= N ∧M . Further, given a 
short exact sequence of Lie superalgebras 0 → K → M → P → 0, as an exterior analogue 
of the exact sequence (5), we get the following exact sequence of Lie superalgebras

K ∧M → M ∧M → P ∧ P → 0. (7)

Given a Lie superalgebra M , since id: M → M is a crossed module, we can consider 
M ∧M . It is the quotient of M ⊗M by the following relations

m ∧m′ = −(−1)|m||m′|m′ ∧m,

m0̄ ∧m0̄ = 0,

for all m, m′ ∈ M0̄ ∪M1̄ and m0̄ ∈ M0̄. In the particular case when M is perfect, it is 
easy to see that M�M = 0, so M ∧M ∼= M ⊗M and in Theorem 4.1 we can replace 
M ⊗M by M ∧M .

6.2. A six term exact homology sequence

In [7], the non-abelian exterior product of Lie algebras is used to construct a six-term 
exact sequence of homology of Lie algebras. In this section we will extend these results 
to Lie superalgebras.

First of all, we prove an analogue of Miller’s theorem [17] on free Lie superalgebras 
extending the similar result obtained in [7] for Lie algebras.

Proposition 6.3. Let F = F(X) be the free Lie superalgebra on a graded set X. Then the 
homomorphism F ∧ F → F , x ∧ y 	→ xy is injective.

Proof. Let us prove that [F, F ] ∼= F∧F . Using the same notations as in Construction 2.9, 
we define a map φ: alg(X) ∗alg(X) → F∧F by 

∑
i λixiyi 	→

∑
i λi(xi∧yi), where alg(X) ∗

alg(X) is the free product of superalgebras. It is easy to see that φ is a K-superalgebra 
homomorphism since [x ∧y, x′∧y′] = xy∧x′y′. The ideal I is contained in alg(X) ∗alg(X)
and by using the defining relations of F∧F it is not difficult to check that φ vanishes on I. 
So we have an induced map from [F, F ] to F ∧F , which is inverse to the homomorphism 
F ∧ F → [F, F ], x ∧ y 	→ xy. �

Let P be a Lie superalgebra and take the quotient supermodule (P∧KP )/ Im d3, where 
d3: 

∧3
K
(P ) →

∧2
K
(P ) is the boundary map in the homology complex (C∗(P, K), d∗). Here 

K is considered as a trivial P -module. We define a bracket in (P ∧K P )/ Im d3 by setting

[x ∧ y, x′ ∧ y′] = [x, y] ∧ [x′, y′]

for all x, y ∈ P . As a particular case of the exterior analogue of Proposition 3.3 we have
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Lemma 6.4. There is an isomorphism of Lie superalgebras

P ∧K P

Im d3
≈ P ∧ P.

Corollary 6.5.

(i) For any Lie superalgebra P there is an isomorphism of supermodules

H2(P ) ∼= Ker(P ∧ P → P ).

(ii) H2(F ) = 0 if F is a free Lie superalgebra.
(iii) (Hopf formula) Given a free presentation 0 → R → F → P → 0 of a Lie superal-

gebra P , there is an isomorphism of supermodules

H2(P ) ∼= R ∩ [F, F ]
[F,R] .

Proof.

(i) This follows immediately from Lemma 6.4.
(ii) This is a consequence of (i) and Proposition 6.3.
(iii) Since F ∧ F ∼= [F, F ], using the exact sequence (7), we have

P ∧ P ∼= [F, F ]
[F,R] .

Then Lemma 6.4 completes the proof. �
Theorem 6.6. Let M be a graded ideal of a Lie superalgebra P . Then there is an exact 
sequence

Ker(P ∧M → P ) → H2(P ) → H2(P/M) → M

[P,M ] → H1(P ) → H1(P/M) → 0.

Proof. By using the exact sequence (7) we have the following commutative diagram of 
Lie superalgebras with exact rows

M ∧ P P ∧ P
P

M
∧ P

M
0

0 M P
P

M
0.
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Since Coker(M ∧ P ∼= P ∧M → M) ∼= M/[P, M ] and Coker(P ∧ P → P ) ∼= P/[P, P ] ∼=
H1(P ), then the assertion follows by using snake lemma and Corollary 6.5(i). �

In particular, if P is a Lie algebra and M is an ideal of P , then this sequence coincides 
with the six-term exact sequence in the homology of Lie algebras obtained in [7].

Acknowledgments

The authors wish to thank the anonymous referee for his help in improving the 
presentation of this paper. The authors were supported by Ministerio de Economía 
y Competitividad (Spain), grant MTM2013-43687-P (European FEDER support in-
cluded). The first and third authors were also supported by Xunta de Galicia, grant 
GRC2013-045 (European FEDER support included). The first author was also supported 
by Ministerio de Educación, Cultura y Deporte (Spain), grant FPU13/01248. The second 
author was also supported by Xunta de Galicia, grant EM2013/016 (European FEDER 
support included) and Shota Rustaveli National Science Foundation (Georgia), grant 
DI/12/5-103/11.

References

[1] R. Brown, J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (3) (1987) 
311–335, with an appendix by M. Zisman.

[2] C. Carmeli, L. Caston, R. Fioresi, Mathematical Foundations of Supersymmetry, EMS Ser. Lect. 
Math., European Mathematical Society (EMS), Zürich, 2011.

[3] J.M. Casas, M. Ladra, Perfect crossed modules in Lie algebras, Comm. Algebra 23 (5) (1995) 
1625–1644.

[4] J.L. Castiglioni, X. García-Martínez, M. Ladra, Universal central extensions of Lie–Rinehart alge-
bras, arXiv:1403.7159, 2014.

[5] H. Chen, J. Sun, Universal central extensions of slm|n over Z/2Z-graded algebras, J. Pure Appl. 
Algebra 219 (2015) 4278–4294.

[6] R.K. Dennis, M.R. Stein, K2 of discrete valuation rings, Adv. Math. 18 (2) (1975) 182–238.
[7] G.J. Ellis, Nonabelian exterior products of Lie algebras and an exact sequence in the homology of 

Lie algebras, J. Pure Appl. Algebra 46 (2–3) (1987) 111–115.
[8] G.J. Ellis, A nonabelian tensor product of Lie algebras, Glasg. Math. J. 33 (1) (1991) 101–120.
[9] X. García-Martínez, M. Ladra, Universal central extensions of sl(m, n, a) of small rank over asso-

ciative superalgebras, arXiv:1405.4035, 2014.
[10] D. Guin, Cohomologie des algèbres de Lie croisées et K-théorie de Milnor additive, Ann. Inst. 

Fourier (Grenoble) 45 (1) (1995) 93–118.
[11] P.J. Hilton, U. Stammbach, A Course in Homological Algebra, 2nd ed., Grad. Texts in Math., vol. 4, 

Springer-Verlag, New York, 1997.
[12] N. Inassaridze, E. Khmaladze, M. Ladra, Non-abelian homology of Lie algebras, Glasg. Math. J. 

46 (2) (2004) 417–429.
[13] K. Iohara, Y. Koga, Second homology of Lie superalgebras, Math. Nachr. 278 (9) (2005) 1041–1053.
[14] V.G. Kac, Lie superalgebras, Adv. Math. 26 (1) (1977) 8–96.
[15] C. Kassel, A Künneth formula for the cyclic cohomology of Z/2-graded algebras, Math. Ann. 275 (4) 

(1986) 683–699.
[16] C. Kassel, J.-L. Loday, Extensions centrales d’algèbres de Lie, Ann. Inst. Fourier (Grenoble) 32 (4) 

(1982) 119–142.
[17] C. Miller, The second homology group of a group; relations among commutators, Proc. Amer. Math. 

Soc. 3 (1952) 588–595.

http://refhub.elsevier.com/S0021-8693(15)00309-9/bib42724C6Fs1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib42724C6Fs1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib434346s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib434346s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib43614C61s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib43614C61s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib43474Cs1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib43474Cs1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib43685375s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib43685375s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib44655374s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib456C6C32s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib456C6C32s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib456C6C31s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib47614C61s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib47614C61s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib477569s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib477569s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib48695374s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib48695374s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib496E4B684C61s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib496E4B684C61s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib496F4B6Fs1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib4B6163s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib4B6173s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib4B6173s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib4B614C6Fs1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib4B614C6Fs1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib4D696Cs1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib4D696Cs1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib43685375s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib43685375s1


488 X. García-Martínez et al. / Journal of Algebra 440 (2015) 464–488
[18] I.M. Musson, Lie Superalgebras and Enveloping Algebras, Grad. Stud. Math., vol. 131, American 
Mathematical Society, Providence, RI, 2012.

[19] E. Neher, An introduction to universal central extensions of Lie superalgebras, in: Groups, Rings, Lie 
and Hopf Algebras, St. John’s, NF, 2001, in: Math. Appl., vol. 555, Kluwer Acad. Publ., Dordrecht, 
2003, pp. 141–166.

[20] A.R. Salemkar, H. Tavallaee, H. Mohammadzadeh, B. Edalatzadeh, On the non-abelian tensor 
product of Lie algebras, Linear Multilinear Algebra 58 (3–4) (2010) 333–341.

[21] M. Scheunert, The Theory of Lie Superalgebras. An Introduction, Lecture Notes in Math., vol. 716, 
Springer-Verlag, Berlin, 1979.

[22] J. Tanaka, On homology and cohomology of Lie superalgebras with coefficients in their finite-
dimensional representations, Proc. Japan Acad. Ser. A Math. Sci. 71 (3) (1995) 51–53.

[23] T. Zhang, Z. Liu, Omni-Lie superalgebras and Lie 2-superalgebras, Front. Math. China 9 (5) (2014) 
1195–1210.

http://refhub.elsevier.com/S0021-8693(15)00309-9/bib4D7573s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib4D7573s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib4E6568s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib4E6568s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib4E6568s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib53544D45s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib53544D45s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib536368s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib536368s1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib54616Es1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib54616Es1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib5A4Cs1
http://refhub.elsevier.com/S0021-8693(15)00309-9/bib5A4Cs1

	Non-abelian tensor product and homology of Lie superalgebras
	1 Introduction
	2 Preliminaries on Lie superalgebras
	2.1 Deﬁnition and some examples of Lie superalgebras
	2.2 Actions and crossed modules of Lie superalgebras
	2.3 Free Lie superalgebra and enveloping superalgebra of a Lie superalgebra
	2.4 Homology of Lie superalgebras

	3 Non-abelian tensor product of Lie superalgebras
	3.1 Construction of the non-abelian tensor product
	3.2 Some properties of the non-abelian tensor product
	3.3 Nilpotency, solvability and Engel of the non-abelian tensor product

	4 Universal central extensions of Lie superalgebras
	5 Non-abelian homology of Lie superalgebras
	5.1 Construction of the non-abelian homology and some properties
	5.2 Application to the cyclic homology of associative superalgebras

	6 Non-abelian exterior product of Lie superalgebras
	6.1 Construction of the non-abelian exterior product
	6.2 A six term exact homology sequence

	Acknowledgments
	References


