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ACTOR OF A CROSSED MODULE OF LEIBNIZ ALGEBRAS

JOSÉ MANUEL CASAS, RAFAEL FERNÁNDEZ-CASADO,
XABIER GARCÍA-MARTÍNEZ, EMZAR KHMALADZE

Abstract. We extend to the category of crossed modules of Leibniz algebras the
notion of biderivation via the action of a Leibniz algebra. This results into a pair of
Leibniz algebras which allow us to construct an object which is the actor under certain
circumstances. Additionally, we give a description of an action in the category of crossed
modules of Leibniz algebras in terms of equations. Finally, we check that, under the
aforementioned conditions, the kernel of the canonical map from a crossed module to its
actor coincides with the center and we introduce the notions of crossed module of inner
and outer biderivations.

1. Introduction

Let H be a group and Aut(H) be the group of automorphisms. For every action of a group
G on H there is a unique group homomorphism β : G → Aut(H) with gh = β(g)(h) for
all g ∈ G and h ∈ H. Conversely, every group homomorphism from G to Aut(H) induces
an action of G on H. Therefore it is equivalent to consider group actions of G on H or
group homomorphisms from G to Aut(H). By this fact, the group of automorphisms is
called the actor in the category of groups. Its analogue in the category of Lie algebras is
the Lie algebra of derivations.

More generally, for any semi-abelian category C, the existence of the actor is deter-
mined by the representability of the contravariant functor from C to the category of sets,
sending an object Y to the set of actions of Y on X [2]. That is, the existence of an object
Act(X) such that the set of actions of Y on X is isomorphic to HomC(Y,Act(X)). If this
object exists for every X in C, the category is said to be action representable [3], and the
object Act(X) is called the actor [15] (also known as split extension classifier [3]).

Groups and Lie algebras are examples of categories of interest, introduced by Orzech
in [16]. For these categories (see [14] for more examples), Casas, Datuashvili and Ladra
[6] gave a procedure to construct an object that, under certain circumstances, plays the
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role of actor. For the particular case of Leibniz algebras (resp. associative algebras) that
object is the Leibniz algebra of biderivations (resp. the algebra of bimultipliers).

In [15], Norrie extended the definition of actor to the 2-dimensional case by giving
a description of the corresponding object in the category of crossed modules of groups.
The analogue construction for the category of crossed modules of Lie algebras is given in
[10]. Regarding the category of crossed modules of Leibniz algebras, it is not a category
of interest, but it is equivalent to the category of cat1-Leibniz algebras (see for example
[9]), which is itself a modified category of interest in the sense of [4]. Therefore it makes
sense to study representability of actions in such category under the context of modified
categories of interest, as it is done in [4] for crossed modules of associative algebras.

Bearing in mind the ease of the generalization of the actor in the category of groups
and Lie algebras to crossed modules, together with the role of the Leibniz algebra of
biderivations, it makes sense to assume that the analogous object in the category of
crossed modules of Leibniz algebras will be the actor only under certain hypotheses. In
[8] the authors gave an equivalent description of an action of a crossed module of groups
in terms of equations. A similar description is done for an action of a crossed module of
Lie algebras (see [5]). In order to extend the notion of actor to crossed modules of Leibniz
algebras, we generalize the concept of biderivation to the 2-dimensional case, describe
an action in that category in terms of equations and give sufficient conditions for the
described object to be the actor.

The article is organized as follows: In Section 2 we recall some basic definitions on
actions and crossed modules of Leibniz algebras. In Section 3 we construct an object that
extends the Leibniz algebra of biderivations to the category of crossed modules of Leibniz
algebras (Theorem 3.9) and give a description of an action in such category in terms of
equations. In Section 4 we find sufficient conditions for the previous object to be the
actor of a given crossed module of Leibniz algebras (Theorem 4.3). Finally, in Section 5
we prove that the kernel of the canonical homomorphism from a crossed module of Leibniz
algebras to its actor coincides with the center of the given crossed module. Additionally,
we introduce the notions of crossed module of inner and outer biderivations and show
that, given a short exact sequence in the category of crossed modules of Leibniz algebras,
it can be extended to a commutative diagram including the actor and the inner and outer
biderivations.

2. Preliminaries

In this section we recall some needed basic definitions. Throughout the paper we fix a
commutative ring with unit k. All algebras are considerer over k.

2.1. Definition. [12] A Leibniz algebra p is a k-module together with a bilinear operation
[ , ] : p× p→ p, called the Leibniz bracket, which satisfies the Leibniz identity:

[[p1, p2], p3] = [p1, [p2, p3]] + [[p1, p3], p2],

for all p1, p2, p3 ∈ p.
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A homomorphism of Leibniz algebras is a k-linear map that preserves the bracket.

We denote by Ann(p) (resp. [p, p]) the annihilator (resp. commutator) of p, that is
the subspace of p generated by

{p1 ∈ p | [p1, p2] = [p2, p1] = 0, for all p2 ∈ p}

(resp. {[p1, p2] | for all p1, p2 ∈ p})
It is obvious that both Ann(p) and [p, p] are ideals of p.

2.2. Definition. [13] Let p and m be two Leibniz algebras. An action of p on m consists
of a pair of bilinear maps, p×m→ m, (p,m) 7→ pm and m× p→ m, (m, p) 7→ mp, such
that

p[m,m′] = [pm,m′]− [pm′,m],

[m, pm′] = [mp,m′]− [m,m′]p,

[m,m′p] = [m,m′]p − [mp,m′],

m[p,p′] = (mp)p
′ − (mp′)p,

p(mp′) = (pm)p
′ − [p,p′]m,

p(p
′
m) = [p,p′]m− (pm)p

′
,

for all m,m′ ∈ m and p, p′ ∈ p.

Given an action of a Leibniz algebra p on m, we can consider the semidirect product
Leibniz algebra m o p, which consists of the k-module m ⊕ p together with the Leibniz
bracket given by

[(m, p), (m′, p′)] = ([m,m′] + pm′ +mp′ , [p, p′]),

for all (m, p), (m′, p′) ∈ m⊕ p.

2.3. Definition. [13] A crossed module of Leibniz algebras (or Leibniz crossed module,
for short) (m, p, η) is a homomorphism of Leibniz algebras η : m → p together with an
action of p on m such that

η(pm) = [p, η(m)] and η(mp) = [η(m), p], (XLb1)
η(m)m′ = [m,m′] = mη(m′), (XLb2)

for all m,m′ ∈ m, p ∈ p.
A homomorphism of Leibniz crossed modules (ϕ, ψ) from (m, p, η) to (n, q, µ) is a pair

of Leibniz homomorphisms, ϕ : m→ n and ψ : p→ q, such that they commute with η and
µ and they respect the actions, that is ϕ(pm) = ψ(p)ϕ(m) and ϕ(mp) = ϕ(m)ψ(p) for all
m ∈ m, p ∈ p.

Identity (XLb1) will be called equivariance and (XLb2) Peiffer identity. We will
denote by XLb the category of Leibniz crossed modules and homomorphisms of Leibniz
crossed modules.

Since our aim is to construct a 2-dimensional generalization of the actor in the category
of Leibniz algebras, let us first recall the following definitions.
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2.4. Definition. [12] Let m be a Leibniz algebra. A biderivation of m is a pair (d,D) of
k-linear maps d,D : m→ m such that

d([m,m′]) = [d(m),m′] + [m, d(m′)], (1)

D([m,m′]) = [D(m),m′]− [D(m′),m], (2)

[m, d(m′)] = [m,D(m′)], (3)

for all m,m′ ∈ m.

We will denote by Bider(m) the set of all biderivations of m. It is a Leibniz algebra
with the obvious k-module structure and the Leibniz bracket given by

[(d1, D1), (d2, D2)] = (d1d2 − d2d1, D1d2 − d2D1).

It is not difficult to check that, given an element m ∈ m, the pair (ad(m),Ad(m)),
with ad(m)(m′) = −[m′,m] and Ad(m)(m′) = [m,m′] for all m′ ∈ m, is a biderivation.
The pair (ad(m),Ad(m)) is called inner biderivation of m.

3. The main construction

In this section we extend to crossed modules the Leibniz algebra of biderivations. First
we need to translate the notion of a biderivation of a Leibniz algebra into a biderivation
between two Leibniz algebras via the action.

3.1. Definition. Given an action of Leibniz algebras of q on n, the set of biderivations
from q to n, denoted by Bider(q, n), consists of all the pairs (d,D) of k-linear maps,
d,D : q→ n, such that

d([q, q′]) = d(q)q
′
+ qd(q′), (4)

D([q, q′]) = D(q)q
′ −D(q′)q, (5)

qd(q′) = qD(q′), (6)

for all q, q′ ∈ q.

Given n ∈ n, the pair of k-linear maps (ad(n),Ad(n)), where ad(n)(q) = −qn and
Ad(n)(q) = nq for all q ∈ q, is clearly a biderivation from q to n. Observe that Bider(q, q),
with the action of q on itself defined by its Leibniz bracket, is exactly Bider(q).

Let us assume for the rest of the article that (n, q, µ) is a Leibniz crossed module. One
can easily check the following result.

3.2. Lemma. Let (d,D) ∈ Bider(q, n). Then (dµ,Dµ) ∈ Bider(n) and (µd, µD) ∈
Bider(q).

We also have the following result.
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3.3. Lemma. Let (d1, D1), (d2, D2) ∈ Bider(q, n). Then

(D1µd2(q))q
′
= (D1µD2(q))q

′
,

q(D1µd2(q′)) = q(D1µD2(q′)),

for all q, q′ ∈ q.

Proof. Let q, q′ ∈ q and (d1, D1), (d2, D2) ∈ Bider(q, n). According to the identity (6)
for (d2, D2), q′d2(q) = q′D2(q), so D1µ(q

′
d2(q)) = D1µ(q

′
D2(q)). Due to (5) and the

equivariance of (q, n, µ), one can easily derive that

D1(q′)µd2(q) − (D1µd2(q))q
′
= D1(q′)µD2(q) − (D1µD2(q))q

′
.

By the Peiffer identity and (6) for (d2, D2), D1(q′)µd2(q) = D1(q′)µD2(q). Then (D1µd2(q))q
′
=

(D1µD2(q))q
′
.

The other identity can be proved similarly by using (4) and (6).

Bider(q, n) has an obvious k-module structure. Regarding its Leibniz structure, it is
described in the next proposition.

3.4. Proposition. Bider(q, n) is a Leibniz algebra with the bracket given by

[(d1, D1), (d2, D2)] = (d1µd2 − d2µd1, D1µd2 − d2µD1) (7)

for all (d1, D1), (d2, D2) ∈ Bider(q, n).

Proof. It follows directly from Lemma 3.3.

Now we state the following definition.

3.5. Definition. The set of biderivations of the Leibniz crossed module (n, q, µ), de-
noted by Bider(n, q, µ), consists of all quadruples ((σ1, θ1), (σ2, θ2)) such that

(σ1, θ1) ∈ Bider(n) and (σ2, θ2) ∈ Bider(q), (8)

µσ1 = σ2µ and µθ1 = θ2µ, (9)

σ1(qn) = σ2(q)n+ qσ1(n), (10)

σ1(nq) = σ1(n)q + nσ2(q), (11)

θ1(qn) = θ2(q)n− θ1(n)q, (12)

θ1(nq) = θ1(n)q − θ2(q)n, (13)
qσ1(n) = qθ1(n), (14)

nσ2(q) = nθ2(q), (15)

for all n ∈ n, q ∈ q.

Given q ∈ q, it can be readily checked that ((σq1, θ
q
1), (σq2, θ

q
2)), where

σ1,q(n) = −nq, θ1,q(n) = qn,

σ2,q(q
′) = −[q′, q], θ2,q(q

′) = [q, q′],
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is a biderivation of the crossed module (n, q, µ).
The following lemma is necessary in order to prove that Bider(n, q, µ) is indeed a

Leibniz algebra.

3.6. Lemma. Let ((σ1, θ1), (σ2, θ2)), ((σ′
1, θ

′
1), (σ′

2, θ
′
2)) ∈ Bider(n, q, µ), (d,D) ∈ Bider(q, n).

Then

(Dσ2(q))q
′
= (Dθ2(q))q

′
,

q(Dσ2(q′)) = q(Dθ2(q′)),

(θ1d(q))q
′
= (θ1D(q))q

′
,

q(θ1d(q′)) = q(θ1D(q′)),

[Dσ2(q), n] = [Dθ2(q), n],

[n,Dσ2(q)] = [n,Dθ2(q)],

[θ1d(q), n] = [θ1D(q), n],

[n, θ1d(q)] = [n, θ1D(q)],

(θ1σ
′
1(n))q = (θ1θ

′
1(n))q,

q(θ1σ
′
1(n)) = q(θ1θ

′
1(n)),

θ2σ′
2(q)n = θ2θ′2(q)n,

nθ2σ
′
2(q) = nθ2θ

′
2(q),

for all n ∈ n, q, q′ ∈ q.

Proof. Let us show how to prove the first identity; the rest of them can be checked
similarly. Let q, q′ ∈ q, (d,D) ∈ Bider(q, n) and ((σ1, θ1), (σ2, θ2)) ∈ Bider(n, q, µ).
Since (σ2, θ2) is a biderivation of q, we have that [q′, σ2(q)] = [q′, θ2(q)]. Therefore
D([q′, σ2(q)]) = D([q′, θ2(q)]). Directly from (5), we get that

D(q′)σ2(q) − (Dσ2(q))q
′
= D(q′)θ2(q) − (Dθ2(q))q

′
.

Thus, due to (15), D(q′)σ2(q) = D(q′)θ2(q). Hence, (Dσ2(q))q
′
= (Dθ2(q))q

′
.

The k-module structure of Bider(n, q, µ) is evident, while its Leibniz structure is de-
scribed as follows.

3.7. Proposition. Bider(n, q, µ) is a Leibniz algebra with the bracket given by

[((σ1, θ1), (σ2, θ2)), ((σ′
1, θ

′
1), (σ′

2, θ
′
2))] = ([(σ1, θ1), (σ′

1, θ
′
1)], [(σ2, θ2), (σ′

2, θ
′
2)])

= ((σ1σ
′
1 − σ′

1σ1, θ1σ
′
1 − σ′

1θ1), (σ2σ
′
2 − σ′

2σ2, θ2σ
′
2 − σ′

2θ2)), (16)

for all ((σ1, θ1), (σ2, θ2)), ((σ′
1, θ

′
1), (σ′

2, θ
′
2)) ∈ Bider(n, q, µ).

Proof. It follows directly from Lemma 3.6.

3.8. Proposition. The k-linear map ∆: Bider(q, n)→ Bider(n, q, µ), given by (d,D) 7→
((dµ,Dµ), (µd, µD)) is a homomorphism of Leibniz algebras.

Proof. ∆ is well defined due to Lemma 3.2, while checking that it is a homomorphism
of Leibniz algebras is a matter of straightforward calculations.
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Since we aspire to make ∆ into a Leibniz crossed module, we need to define an action
of Bider(n, q, µ) on Bider(q, n).

3.9. Theorem. There is an action of Bider(n, q, µ) on Bider(q, n) given by:

((σ1,θ1),(σ2,θ2))(d,D) = (σ1d− dσ2, θ1d− dθ2), (17)

(d,D)((σ1,θ1),(σ2,θ2)) = (dσ2 − σ1d,Dσ2 − σ1D), (18)

for all ((σ1, θ1), (σ2, θ2)) ∈ Bider(n, q, µ), (d,D) ∈ Bider(q, n). Moreover, the Leibniz
homomorphism ∆ (see Proposition 3.8) together with the above action is a Leibniz crossed
module.

Proof. Let (d,D) ∈ Bider(q, n) and ((σ1, θ1), (σ2, θ2)) ∈ Bider(n, q, µ). Checking that
both (σ1d − dσ2, θ1d − dθ2) and (dσ2 − σ1d,Dσ2 − σ1D) satisfy conditions (4) and (5)
requires the combined use of the properties satisfied by the elements in Bider(n, q, µ) and
(d,D), but calculations are fairly straightforward. As an example, we show how to prove
that (σ1d− dσ2, θ1d− dθ2) verifies (4). Let q, q′ ∈ q. Then

(σ1d− dσ2)([q, q′]) =σ1(d(q)q
′
+ qd(q′))− d([σ2(q), q′] + [q, σ2(q′)])

=(σ1d(q))q
′
+ d(q)σ2(q′) + σ2(q)d(q′) + q(σ1d(q′))

− (dσ2(q))q
′ − σ2(q)d(q′)− d(q)σ2(q′) − q(dσ2(q′))

=((σ1d− dσ2)(q))q
′
+ q((σ1d− dσ2)(q′)).

As for condition (6), in the case of (σ1d−dσ2, θ1d−dθ2), it follows from (14), the identity
(6) for (d,D) and the second identity in the first column from Lemma 3.6. Namely,

q((σ1d− dσ2)(q′)) = q(σ1d(q′))− q(dσ2(q′)) = q(θ1d(q′))− q(Dσ2(q′))

= q(θ1d(q′))− q(Dθ2(q′)) = q(θ1d(q′))− q(dθ2(q′)),

for all q, q′ ∈ q. A similar procedure allows to prove that (dσ2− σ1d,Dσ2− σ1D) satisfies
condition (6) as well.

Routine calculations show that (17) and (18) together with the definition of the brack-
ets in Bider(n, q, µ) and Bider(q, n) provide an action of Leibniz algebras.

It only remains to prove that ∆ satisfies the equivariance and the Peiffer identity. It
is immediate to check that

∆(((σ1,θ1),(σ2,θ2))(d,D)) = ((σ1dµ− dσ2µ, θ1dµ− dθ2µ), (µσ1d− µdσ2, µθ1d− µdθ2)), (19)

while

[((σ1, θ1), (σ2, θ2)),∆(d,D)] = ((σ1dµ− dµσ1, θ1dµ− dµθ1),

(σ2µd− µdσ2, θ2µd− µdθ2)). (20)

Condition (9) guarantees that (19) = (20). The other identity can be checked similarly.
The Peiffer identity follows immediately from (17) and (18) along the definition of ∆ and
the bracket in Bider(q, n).
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4. The actor

In [16], Orzech introduced the notion of category of interest, which is nothing but a
category of groups with operations verifying two extra conditions. Lb is a category of
interest, although XLb is not. Nevertheless, it is equivalent to the category of cat1-Leibniz
algebras (see for example [9]), which is itself a modified category of interest in the sense
of [4]. So it makes sense to study representability of actions in XLb under the context
of modified categories of interest, as it is done in [4] for crossed modules of associative
algebras. However, since XLb is an example of semi-abelian category, and an action is
the same as a split extension in any semi-abelian category [2, Lemma 1.3], we choose a
different, more combinatorial approach to the problem, by constructing the semidirect
product (split extension) of Leibniz crossed modules.

As we mention in the introduction, we use the term actor (as in [4, 6]) for an object
which represents actions in a semi-abelian category, the general definition of which is
known from [3] under the name split extension classifier.

We need to remark that, given a Leibniz algebra m, Bider(m) is the actor of m under
certain conditions. In particular, the following result is proved in [6].

4.1. Proposition. [6] Let m be a Leibniz algebra such that Ann(m) = 0 or [m,m] = m.
Then Bider(m) is the actor of m.

Bearing in mind the ease of the generalization of the actor in the category of groups
and Lie algebras to crossed modules, together with the role of Bider(m) in regard to any
Leibniz algebra m, it makes sense to consider (Bider(q, n),Bider(n, q, µ),∆) as a candidate
for actor in XLb, at least under certain conditions (see Proposition 4.1). However, it would
be reckless to define an action of a Leibniz crossed module (m, p, η) on (n, q, µ) as a ho-
momorphism from (m, p, η) to the Leibniz crossed module (Bider(q, n),Bider(n, q, µ),∆),
since we cannot ensure that the mentioned homomorphism induces a set of actions of
(m, p, η) on (n, q, µ) from which we can construct the semidirect product.

In [8, Proposition 2.1] the authors give an equivalent description of an action of a
crossed module of groups in terms of equations. A similar description can be done for
an action of a crossed module of Lie algebras (see [5]). This determines our approach
to the problem. We consider a homomorphism from a Leibniz crossed module (m, p, η)
to (Bider(q, n),Bider(n, q, µ),∆), which will be denoted by Act(n, q, µ) from now on, and
unravel all the properties satisfied by the mentioned homomorphism, transforming them
into a set of equations. Then we check that the existence of that set of equations is
equivalent to the existence of a homomorphism of Leibniz crossed modules from (m, p, η)
to Act(n, q, µ) only under certain conditions. Finally we prove that those equations indeed
describe a comprehensive set of actions by constructing the associated semidirect product,
which is an object in XLb.

4.2. Lemma.

(i) Let q be a Leibniz algebra and (σ, θ), (σ′, θ′) ∈ Bider(q). If Ann(q) = 0 or [q, q] = q,
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then
θσ′(q) = θθ′(q), (21)

for all q ∈ q.

(ii) Let (n, q, µ) be a Leibniz crossed module, ((σ1, θ1), (σ2, θ2)) ∈ Bider(n, q, µ) and
(d,D) ∈ Bider(q, n). If Ann(n) = 0 or [q, q] = q, then

Dσ2(q) = Dθ2(q), (22)

θ1d(q) = θ1D(q), (23)

for all q ∈ q.

Proof. Calculations in order to prove (i) are straightforward. Regarding (ii), Dσ2(q)−
Dθ2(q) and θ1d(q) − θ1D(q) are elements in Ann(n), immediately from the identities in
the second column from Lemma 3.6. Therefore, if Ann(n) = 0, it is clear that (22) and
(23) hold.

Let us now assume that [q, q] = q. Given q, q′ ∈ q, directly from the fact that
(σ2, θ2) ∈ Bider(q) and (d,D) ∈ Bider(q, n), we get that

Dθ2([q, q′]) = (Dθ2(q))q
′ −D(q′)θ2(q) − (Dθ2(q′))q +D(q)θ2(q′),

Dσ2([q, q′]) = (Dσ2(q))q
′ −D(q′)σ2(q) +D(q)σ2(q′) − (Dσ2(q′))q.

Due to (15) and the first identity in the first column from Lemma 3.6, Dθ2([q, q′]) =
Dσ2([q, q′]). By hypothesis, every element in q can be expressed as a linear combination
of elements of the form [q, q′]. This fact together with the linearity of D, σ2 and θ2,
guarantees that Dθ2(q) = Dσ2(q) for all q ∈ q. The identity (23) can be checked similarly
by making use of (6), (12), (13) and the third identity in the first column from Lemma 3.6.

4.3. Theorem. Let (m, p, η) and (n, q, µ) in XLb. There exists a homomorphism of
crossed modules from (m, p, η) to (Bider(q, n),Bider(n, q, µ),∆), if the following conditions
hold:

(i) There are actions of the Leibniz algebra p (and so m) on the Leibniz algebras n and
q. The homomorphism µ is p-equivariant, that is

µ(pn) = pµ(n), (LbEQ1)

µ(np) = µ(n)p, (LbEQ2)
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and the actions of p and q on n are compatible, that is

n(pq) = (np)q − (nq)p, (LbCOM1)
p(nq) = (pn)q − (pq)n, (LbCOM2)
p(qn) = (pq)n− (pn)q, (LbCOM3)

n(qp) = (nq)p − (np)q, (LbCOM4)
q(np) = (qn)p − (qp)n, (LbCOM5)
q(pn) = (qp)n− (qn)p, (LbCOM6)

for all n ∈ n, p ∈ p and q ∈ q.

(ii) There are two k-bilinear maps ξ1 : m× q→ n and ξ2 : q×m→ n such that

µξ2(q,m) = qm, (LbM1a)

µξ1(m, q) = mq, (LbM1b)

ξ2(µ(n),m) = nm, (LbM2a)

ξ1(m,µ(n)) = mn, (LbM2b)

ξ2(q, pm) = ξ2(qp,m)− ξ2(q,m)p, (LbM3a)

ξ1(pm, q) = ξ2(pq,m)− pξ2(q,m), (LbM3b)

ξ2(q,mp) = ξ2(q,m)p − ξ2(qp,m), (LbM3c)

ξ1(mp, q) = ξ1(m, q)p − ξ1(m, qp), (LbM3d)

ξ2(q, [m,m′]) = ξ2(q,m)m
′ − ξ2(q,m′)m, (LbM4a)

ξ1([m,m′], q) = ξ1(m, q)m
′ − mξ2(q,m′), (LbM4b)

ξ2([q, q′],m) = ξ2(q,m)q
′
+ qξ2(q′,m), (LbM5a)

ξ1(m, [q, q′]) = ξ1(m, q)q
′ − ξ1(m, q′)q, (LbM5b)

qξ1(m, q′) = −qξ2(q′,m), (LbM5c)

ξ1(m, pq) = −ξ1(m, qp), (LbM6a)
pξ1(m, q) = −pξ2(q,m), (LbM6b)

for all m,m′ ∈ m, n ∈ n, p ∈ p, q, q′ ∈ q.

Additionally, the converse statement is also true if one of the following conditions
holds:

Ann(n) = 0 = Ann(q), (CON1)

Ann(n) = 0 and [q, q] = q, (CON2)

[n, n] = n and [q, q] = q. (CON3)
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Proof. Let us suppose that (i) and (ii) hold. It is possible to define a homomorphism
of crossed modules (ϕ, ψ) from (m, p, η) to Act(n, q, µ) as follows. Given m ∈ m, ϕ(m) =
(dm, Dm), with

dm(q) = −ξ2(q,m), Dm(q) = ξ1(m, q),

for all q ∈ q. On the other hand, for any p ∈ p, ψ(p) = ((σ1,p, θ1,p), (σ2,p, θ2,p)), with

σ1,p(n) = −np, θ1,p(n) = pn,

σ2,p(q) = −qp, θ2,p(q) = pq,

for all n ∈ n, q ∈ q. It follows directly from (LbM5a)–(LbM5c) that (dm, Dm) ∈ Bider(q, n)
for all m ∈ m. Besides, ϕ is clearly k-linear and given m,m′ ∈ m,

[ϕ(m), ϕ(m′)] = [(dm, Dm), (dm′ , Dm′)] = [dmµdm′ − dm′µdm, Dmµdm′ − dm′µDm].

For any q ∈ q,

dmµdm′(q)− dm′µdm(q) = −ξ2(µdm′(q),m) + ξ2(µdm(q),m′)

= −dm′(q)m + dm(q)m
′

= ξ2(q,m′)m − ξ2(q,m)m
′

= −ξ2(q, [m,m′]) = d[m,m′](q),

due to (LbM2a) and (LbM4a). Analogously, it can be easily checked the identity (Dmµdm′−
dm′µDm)(q) = D[m,m′](q) by making use of (LbM2a), (LbM2b) and (LbM4b). Hence, ϕ
is a homomorphism of Leibniz algebras.

As for ψ, it is necessary to prove that ((σ1,p, θ1,p), (σ2,p, θ2,p)) satisfies all the axioms
from Definition 3.5 for any p ∈ p. The fact that (σ1,p, θ1,p) (respectively (σ2,p, θ2,p)) is a
biderivation of n (respectively q) follows directly from the actions of p on n and q. The
identities µθ1,p = θ2,pµ and µσ1,p = σ2,pµ are immediate consequences of (LbEQ1) and
(LbEQ2) respectively.

Observe that the combinations of the identities (LbCOM1) and (LbCOM4) and the
identities (LbCOM5) and (LbCOM6) yield the equalities

−n(qp) = n(pq) and − q(np) = q(pn).

These together with (LbCOM2)–(LbCOM5) allow us to prove that ((σ1,p, θ1,p), (σ2,p, θ2,p))
does satisfy conditions (10)–(15) from Definition 3.5. Therefore, ψ is well defined, while
it is obviously k-linear. Moreover, due to (16) we know that

[ψ(p), ψ(p′)] = ((σ1,pσ1,p′−σ1,p′σ1,p, θ1,pσ1,p′−σ1,p′θ1,p), (σ2,pσ2,p′−σ2,p′σ2,p, θ2,pσ2,p′−σ2,p′θ2,p)),

and by definition
ψ([p, p′]) = ((σ1,[p,p′], θ1,[p,p′]), (σ2,[p,p′], θ2,[p,p′])).

One can easily check that the corresponding components are equal by making use of the
actions of p on n and q. Hence, ψ is a homomorphism of Leibniz algebras.
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Recall that

∆ϕ(m) = ((dmµ,Dmµ), (µdm, µDm)),

ψη(m) = ((σ1,η(m), θ1,η(m)), (σ2,η(m), θ2,η(m))),

for any m ∈ m, but

dmµ(n) = −ξ2(µ(n),m) = −nm = −nη(m) = σ1,η(m)(n),

Dmµ(n) = ξ1(m,µ(n)) = mn = η(m)n = θ1,η(m)(n),

µdm(q) = −µξ2(q,m) = −qm = −qη(m) = σ2,η(m)(q),

µDm(q) = µξ1(m, q) = mq = η(m)q = θ2,η(m)(q),

for all n ∈ n, q ∈ q, due to (LbM1a), (LbM1b), (LbM2a), (LbM2b). Therefore, ∆ϕ = ψη.
It only remains to check the behaviour of (ϕ, ψ) regarding the action of p on m. Let

m ∈ m and p ∈ p. Due to (17) and (18),

ψ(p)ϕ(m) = (σ1,pdm − dmσ2,p, θ1,pdm − dmθ2,p),

ϕ(m)ψ(p) = (dmσ2,p − σ1,pdm, Dmσ2,p − σ1,pDm).

On the other hand, by definition, we know that

ϕ(pm) = (d(pm), D(pm)),

ϕ(mp) = (d(mp), D(mp)).

Directly from (LbM3a), (LbM3b), (LbM3c) and (LbM3d) one can easily confirm that the
required identities between components hold. Hence, we can finally ensure that (ϕ, ψ) is
a homomorphism of Leibniz crossed modules.

Now let us show that it is necessary that at least one of the conditions (CON1)–
(CON3) holds in order to prove the converse statement. Let us suppose that there is a
homomorphism of crossed modules

m

ϕ

��

η // p

ψ
��

Bider(q, n)
∆
// Bider(n, q, µ)

(24)

Givenm ∈ m and p ∈ p, let us denote ϕ(m) by (dm, Dm) and ψ(p) by ((σ1,p, θ1,p), (σ2,p, θ2,p)),
which satisfy conditions (4)–(6) from Definition 3.1 and conditions (8)–(15) from Defini-
tion 3.5 respectively. Also, due to the definition of ∆ (see Proposition 3.8), the commu-
tativity of (24) can be expressed by the identity

((dmµ,Dmµ), (µdm, µDm)) = ((σ1,η(m), θ1,η(m)), (σ2,η(m), θ2,η(m))), (25)
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for all m ∈ m. It is possible to define four bilinear maps, for which we use the same
notation used for actions, from p× n to n, n× p to n, p× q to q and q× p to q, given by

pn = θ1,p(n), np = −σ1,p(n),
pq = θ2,p(q), qp = −σ2,p(q),

for all n ∈ n, p ∈ p, q ∈ q. These maps define actions of p on n and q. The first three
identities for the action on n (respectively q) follow easily from the fact that (σ1,p, θ1,p)
(respectively (σ2,p, θ2,p)) is a biderivation of n (respectively q).

Since ψ is a Leibniz homomorphism, we get that

((σ1,[p,p′], θ1,[p,p′]), (σ2,[p,p′], θ2,[p,p′])) = ((σ1,pσ1,p′ − σ1,p′σ1,p, θ1,pσ1,p′ − σ1,p′θ1,p),

(σ2,pσ2,p′ − σ2,p′σ2,p, θ2,pσ2,p′ − σ2,p′θ2,p)).

The identities between the first and the second (respectively the third and the fourth)
components in those quadruples allow us to confirm the fourth and fifth identities for the
action of p on n (respectively q).

As for the last condition for both actions, it is fairly straightforward to check that

[p,p′]n− (pn)p
′
= θ1,pσ1,p′(n),

[p,p′]q − (pq)p
′
= θ2,pσ2,p′(q),

while

p(p
′
n) = θ1,pθ1,p′(n),

p(p
′
q) = θ2,pθ2,p′(q),

for all n ∈ n, p, p′ ∈ p, q ∈ q. However, if at least one of the conditions (CON1)–(CON3)
holds, due to Lemma 4.2 (i), θ1,pσ1,p′(n) = θ1,pθ1,p′(n) and θ2,pσ2,p′(q) = θ2,pθ2,p′(q). There-
fore, we can ensure that there are Leibniz actions of p on both n and q, which induce
actions of m on n and q via η.

The reader might have noticed that a fourth possible condition on (n, q, µ) could have
been considered in order to guarantee the existence of the actions of p on n and q from the
existence of the homomorphism of Leibniz crossed modules (ϕ, ψ). In fact, if [n, n] = n
and Ann(q) = 0, the problem with the last condition for the actions could have been
solved in the same way. Nevertheless, this fourth condition does not guarantee that (ii)
holds, as we will prove immediately below.

Regarding (LbEQ1) and (LbEQ2), they follow directly from (9) (observe that, by
hypothesis, ((σ1,p, θ1,p), (σ2,p, θ2,p)) is a biderivation of (n, q, µ) for any p ∈ p). Similarly,
(LbCOM1)–(LbCOM6) follow almost immediately from (10)–(15). Hence, (i) holds.

Concerning (ii), we can define ξ1(m, q) = Dm(q) and ξ2(q,m) = −dm(q) for any
m ∈ m, q ∈ q. In this way, ξ1 and ξ2 are clearly bilinear. (LbM1a), (LbM1b), (LbM2a)
and (LbM2b) follow immediately from the identity (25) and the fact that the actions of
m on n and q are induced by the actions of p via η.
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Identities (LbM5a), (LbM5b) and (LbM5c) are a direct consequence of (4)–(6) (recall
that, by hypothesis, (dm, Dm) is a biderivation from q to n for any m ∈ m).

Since ϕ is a Leibniz homomorphism, we have that

(d[m,m′], D[m,m′]) = (dmµdm′ − dm′µdm, Dmµdm′ − dm′µDm).

This identity, together with (LbM2a) and (LbM2b), allows to easily prove that (LbM4a)
and (LbM4b) hold.

Note that, since (ϕ, ψ) is a homomorphism of Leibniz crossed modules, ϕ(pm) =
ψ(p)ϕ(m) and ϕ(mp) = ϕ(m)ψ(p) for all m ∈ m, p ∈ p. Due to the definition of the action
of Bider(n, q, µ) on Bider(q, n) (see Theorem 3.9), we can write

(d(pm), D(pm)) = (σ1,pdm − dmσ2,p, θ1,pdm − dmθ2,p),

(d(mp), D(mp)) = (dmσ2,p − σ1,pdm, Dmσ2,p − σ1,pDm).

Identities (LbM3a), (LbM3b), (LbM3c) and (LbM3d) follow immediately from the previ-
ous identities.

Regarding (LbM6a) and (LbM6b), directly from the definition of ξ1, ξ2 and the actions
of p on n and q, we have that

ξ1(m, pq) = Dmθ2,p(q),
pξ1(m, q) = θ1,pDm(q),

−ξ1(m, qp) = Dmσ2,p(q), −pξ2(q,m) = θ1,pdm(q),

for all m ∈ m, p ∈ p, q ∈ q. Nevertheless, if at least one of the conditions (CON1)–
(CON3) holds, due to Lemma 4.2 (ii), Dmθ2,p(q) = Dmσ2,p(q) and θ1,pDm(q) = θ1,pdm(q).
Hence, (ii) holds.

4.4. Remark. A closer look at the proof of the previous theorem shows that neither
conditions (LbM6a) and (LbM6b), nor the identities p(p

′
n) = [p,p′]n− (pn)p

′
and p(p

′
q) =

[p,p′]q− (pq)p
′

(which correspond to the sixth axiom satisfied by the actions of p on n and q
respectively) are necessary in order to prove the existence of a homomorphism of crossed
modules (ϕ, ψ) from (m, p, η) to Act(n, q, µ), under the hypothesis that (i) and (ii) hold.
Actually, if we remove those conditions from (i) and (ii), the converse statement would
be true for any Leibniz crossed module (n, q, µ), even if it does not satisfy any of the
conditions (CON1)–(CON3). The problem is that (LbM6a) and (LbM6b), together with
the sixth identity satisfied by the actions of p on n and q are essential in order to prove
that (i) and (ii) as in Theorem 4.3 describe a set of actions of (m, p, η) on (n, q, µ), as we
will show immediately below. This agrees with the idea of Act(n, q, µ) not being “good
enough” to be the actor of (n, q, µ) in general, just as Bider(m) is not always the actor of
a Leibniz algebra m.

4.5. Example. Let (m, p, η) ∈ XLb, there is a homomorphism

(ϕ, ψ) : (m, p, η)→ Act(m, p, η)
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, with ϕ(m) = (dm, Dm) and ψ(p) = ((σ1,p, θ1,p), (σ2,p, θ2,p)), where

dm(p) = −pm, Dm(p) = mp,

and

σ1,p(m) = −mp, θ1,p(m) = pm,

σ2,p(p
′) = −[p′, p], θ2,p(p

′) = [p, p′],

for all m ∈ m, p, p′ ∈ p. Calculations in order to prove that (ϕ, ψ) is indeed a homomor-
phism of Leibniz crossed modules are fairly straightforward. Of course, this homomor-
phism does not necessarily define a set of actions from which it is possible to construct
the semidirect product. Theorem 4.3, along with the result immediately bellow, shows
that if (m, p, η) satisfies at least one of the conditions (CON1)–(CON3), then the previous
homomorphism does define an appropriate set of actions of (m, p, η) on itself.

Let (m, p, η) and (n, q, µ) be Leibniz crossed modules such that (i) and (ii) from The-
orem 4.3 hold. Therefore, there are Leibniz actions of m on n and of p on q, so it makes
sense to consider the semidirect products of Leibniz algebras nom and qop. Furthermore,
we have the following result.

4.6. Theorem. There is an action of the Leibniz algebra q o p on the Leibniz algebra
nom, given by

(q,p)(n,m) = (qn+ pn+ ξ2(q,m), pm), (26)

(n,m)(q,p) = (nq + np + ξ1(m, q),mp), (27)

for all (q, p) ∈ q o p, (n,m) ∈ n o m, with ξ1 and ξ2 as in Theorem 4.3. Moreover, the
Leibniz homomorphism (µ, η) : nom→ qo p, given by

(µ, η)(n,m) = (µ(n), η(m)),

for all (n,m) ∈ nom, together with the previous action, is a Leibniz crossed module.

Proof. Identities (26) and (27) follow easily from the conditions satisfied by (m, p, η) and
(n, q, µ) (see Theorem 4.3). Nevertheless, as an example, we show how to prove the third
one. Calculations for the rest of the identities are similar. Let (n,m), (n′,m′) ∈ n o m
and (q, p) ∈ qo p. By routine calculations we get that

[(n,m), (n′,m′)(q,p)] = ([n, n′q]︸ ︷︷ ︸
(1)

+[n, n′p]︸ ︷︷ ︸
(2)

+[n, ξ1(m′, q)]︸ ︷︷ ︸
(3)

+m(n′q)︸ ︷︷ ︸
(4)

+m(n′p)︸ ︷︷ ︸
(5)

+mξ1(m′, q)︸ ︷︷ ︸
(6)

+n(m′p)︸ ︷︷ ︸
(7)

, [m,m′p]︸ ︷︷ ︸
(8)

),
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[(n,m), (n′,m′)](q,p) = ([n, n′]q︸ ︷︷ ︸
(1′)

+[n, n′]p︸ ︷︷ ︸
(2′)

+(nm
′
)
q︸ ︷︷ ︸

(3′)

+(mn′)
q︸ ︷︷ ︸

(4′)

+(mn′)
p︸ ︷︷ ︸

(5′)

+ξ1([m,m′], q)︸ ︷︷ ︸
(6′)

+(nm
′
)
p︸ ︷︷ ︸

(7′)

, [m,m′]p︸ ︷︷ ︸
(8′)

),

[(n,m)(q,p), (n′,m′)] = ([nq, n′]︸ ︷︷ ︸
(1′′)

+[np, n′]︸ ︷︷ ︸
(2′′)

+(nq)m
′︸ ︷︷ ︸

(3′′)

+[ξ1(m, q), n′]︸ ︷︷ ︸
(4′′)

+(mp)n′︸ ︷︷ ︸
(5′′)

+ξ1(m, q)m
′︸ ︷︷ ︸

(6′′)

+(np)m
′︸ ︷︷ ︸

(7′′)

, [mp,m′]︸ ︷︷ ︸
(8′′)

).

Let us show that (i) = (i′)− (i′′) for i = 1,. . . ,8. It is immediate for i = 1, 2, 8 due to the
action of q on n and the actions of p on n and m. For i = 5, the identity follows from
the fact that the action of m on n is defined via η together with the equivariance of η.
Namely,

m(n′p) = η(m)(n′p) = (η(m)n′)
p − [η(m),p]n′ = (mn′)

p − η(mp)n′ = (mn′)
p − (mp)n′.

The procedure is similar for i = 7. For i = 3, it is necessary to make use of the Peiffer
identity of µ, (LbM1b), the definition of the action of m on n and q via η and (LbCOM1):

[n, ξ1(m′, q)] = nµξ1(m′,q) = n(m
′
q) = n(η(m

′)q) = (nη(m′))
q − (nq)η(m′) = (nm

′
)
q − (nm

′
)
q
.

The conditions required in order to prove the identity for i = 4 are the same used for
i = 3 except (LbCOM1), which is replaced by (LbCOM2).

Finally, for i = 6, due to (LbM4b) and the definition of the action of m on n via η, we
know that

ξ1([m,m′], q) = ξ1(m, q)m
′ − mξ2(q,m′) = ξ1(m, q)m

′ − η(m)ξ2(q,m′),

but applying (LbM6b), we get

ξ1([m,m′], q) = ξ1(m, q)m
′
+ η(m)ξ1(m′, q) = ξ1(m, q)m

′
+ mξ1(m′, q),

so (6) = (6′) − (6′′) and the third identity holds. Note that (LbM6a) and (LbM6b) are
necessary in order to check the fourth and fifth identities respectively.

Checking that (µ, η) is indeed a Leibniz homomorphism follows directly from the
definition of the action of m on n via η together with the conditions (LbEQ1) and (LbEQ2).
Regarding the equivariance of (µ, η), given (n,m) ∈ nom and (q, p) ∈ qo p,

(µ, η)((q,p)(n,m)) = (µ, η)(qn+ pn+ ξ2(q,m), pm)

= (µ(qn) + µ(pn) + µξ2(q,m), η(pm))

= ([q, µ(n)] + pµ(n) + qm, [p, η(m)])

= ([q, µ(n)] + pµ(n) + qη(m), [p, η(m)])

= [(q, p), (µ(n), η(m))],
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due to the equivariance of µ and η, (LbEQ1), (LbM1a) and the definition of the action
of m on q via η. Similarly, but using (LbEQ2) and (LbM1b) instead of (LbEQ1) and
(LbM1a), it can be proved that (µ, η)((n,m)(q,p)) = [(µ(n), η(m)), (q, p)].

The Peiffer identity of (µ, η) follows easily from the homonymous property of µ and η,
the definition of the action of m on n via η and the conditions (LbM2a) and (LbM2b).

4.7. Definition. The Leibniz crossed module (nom, qop, (µ, η)) is called the semidirect
product of the Leibniz crossed modules (n, q, µ) and (m, p, η).

Note that the semidirect product determines an obvious split extension of (m, p, η) by
(n, q, µ)

(0, 0, 0) // (n, q, µ) // (nom, qo p, (µ, η))
//
(m, p, η) //oo (0, 0, 0)

Conversely, any split extension of (m, p, η) by (n, q, µ) is isomorphic to their semidirect
product, where the action of (m, p, η) on (n, q, µ) is induced by the splitting homomor-
phism.

4.8. Remark. If (m, p, η) and (n, q, µ) are Leibniz crossed modules and at least one of
the following conditions holds,

1. Ann(n) = 0 = Ann(q),

2. Ann(n) = 0 and [q, q] = q,

3. [n, n] = n and [q, q] = q,

an action of the crossed module (m, p, η) on (n, q, µ) can be also defined as a homomor-
phism of Leibniz crossed modules from (m, p, η) to Act(n, q, µ). In other words, under one
of those conditions, Act(n, q, µ) is the actor of (n, q, µ) and it can be denoted simply by
Act(n, q, µ).

4.9. Example.
(i) Let n be an ideal of a Leibniz algebra q and consider the crossed module (n, q, ι), where
ι is the inclusion. It is easy to check that Act(n, q, ι) = (X, Y, ι), where X is a Leibniz
algebra isomorphic to {(d,D) ∈ Bider(q) | d(q), D(q) ∈ n for all q ∈ q} and Y is a Leibniz
algebra isomorphic to {(d,D) ∈ Bider(q) | (d|n, D|n) ∈ Bider(n)}.
(ii) Given a Leibniz algebra q, it can be regarded as a Leibniz crossed module in two
obvious ways, (0, q, 0) and (q, q, idq). As a particular case of the previous example, one can
easily check that Act(0, q, 0) ∼= (0,Bider(q), 0) and Act(q, q, idq) ∼= (Bider(q),Bider(q), id).
(iii) An action of a Leibniz crossed module on an abelian Leibniz crossed module is
precisely a Leibniz crossed module representation ([7])
(iv) Every Lie crossed module (n, q, µ) can be regarded as a Leibniz crossed module (see
for instance [9, Remark 3.9]). Note that in this situation, both the multiplication and
the action are antisymmetric. The actor of (n, q, µ) is (Der(q,n),Der(n, q, µ),∆), where
Der(q,n) is the Lie algebra of all derivations from q to n and Der(n, q, µ) is the Lie
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algebra of derivations of the crossed module (n, q, µ) (see [10] for the details). Given
(d,D) ∈ Bider(q,n), both d and D are elements in Der(q,n). Additionally, if we assume
that at least one of the conditions from the previous lemma holds, then either Ann(n) = 0
or [q, q] = q. In this situation, one can easily derive from (6) that Bider(q,n) = {(d, d) | d ∈
Der(q,n)}. Besides, the bracket in Bider(q,n) becomes antisymmetric and, as a Lie
algebra, it is isomorphic to Der(q,n). Similarly, Bider(n, q, µ) is a Lie algebra isomorphic
to Der(n, q, µ) and Act(n, q, µ) is a Lie crossed module isomorphic to Act(n, q, µ).

5. Center of a Leibniz crossed module

Let us assume in this section that (n, q, µ) is a Leibniz crossed module that satisfies at
least one of the conditions (CON1)–(CON3). Denote by Z(q) the center of the Leibniz
algebra q, which in this case coincides with its annihilator (note that the center and the
annihilator are not the same object in general). Consider the canonical homomorphism
(ϕ, ψ) from (n, q, µ) to Act(n, q, µ), as in Example 4.5. It is easy to check that

Ker(ϕ) = nq and Ker(ψ) = stq(n) ∩ Z(q),

where nq = {n ∈ n | qn = nq = 0, for all q ∈ q} and stq(n) = {q ∈ q | qn = nq =
0, for all n ∈ n}. Therefore, the kernel of (ϕ, ψ) is the Leibniz crossed module (nq, stq(n)∩
Z(q), µ). Thus, the kernel of (ϕ, ψ) coincides with the center of the crossed module (n, q, µ),
as defined in the preliminary version of [1, Definition 27] for crossed modules in modified
categories of interest. This definition of center agrees with the categorical notion of center
by Huq [11] and confirms that our construction of the actor for a Leibniz crossed module
is consistent.

5.1. Example. Consider the crossed module (n, q, ι), where n is an ideal of q and ι is the
inclusion. Then, its center is given by the Leibniz crossed module (n ∩ Z(q),Z(q), ι). In
particular, the center of (0, q, 0) is (0,Z(q), 0) and the center of (q, q, idq) is (Z(q),Z(q), id).

By analogy to the definitions given for crossed modules of Lie algebras (see [10]), we can
define the crossed module of inner biderivations of (n, q, µ), denoted by InnBider(n, q, µ),
as Im(ϕ, ψ), which is obviously an ideal. The crossed module of outer biderivations,
denoted by OutBider(n, q, µ), is the quotient of Act(n, q, µ) by InnBider(n, q, µ).

Let

(0, 0, 0) // (n, q, µ) // (n′, q′, µ′) // (n′′, q′′, µ′′) // (0, 0, 0)

be a short exact sequence of crossed modules of Leibniz algebras. Then, there exists a
homomorphism of Leibniz crossed modules (α, β) : (n′, q′, µ′) → Act(n, q, µ) so that the
following diagram is commutative:

(0, 0, 0) // (n, q, µ) //

��

(n′, q′, µ′) //

(α,β)

��

(n′′, q′′, µ′′) //

��

(0, 0, 0)

(0, 0, 0) // InnBider(n, q, µ) // Act(n, q, µ) // OutBider(n, q, µ) // (0, 0, 0)
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where (α, β) is defined as α(n′) = (dn′ , Dn′) and β(q′) = ((σ1,q′ , θ1,q′), (σ2,q′ , θ2,q′)), with

dn′(q) = −qn′, Dn′(q) = n′q,

and

σ1,q′(n) = −nq′ , θ1,q′(n) = q′n,

σ2,q′(q) = −[q, q′], θ2,q′(q) = [q′, q],

for all n′ ∈ n′, q′ ∈ q′, n ∈ n, q ∈ q.
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