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1. Introduction

The idea of the generalization of Lie structures by extending the binary bracket to an n-ary bracket comes from the
formalism of Nambumechanics [1], where the Poisson bracket on the algebra of smooth functions on amanifold is replaced
by an n-linear skew-symmetric bracket. Independently from this idea, the theory of Lie n-algebras was introduced within
the framework of geometry [2] and further developed in some papers [3,4].
Recently, the non-commutative version of Lie n-algebras, the so-called Leibniz n-algebras, was introduced in [5] which,

at the same time, generalizes the notion of Leibniz algebras [6,7] from the case n = 2 to the case n ≥ 3. In the last few
years, a number of papers were dedicated to the investigation of properties of these new algebraic objects (see [8–11,3] and
related references given there).
In [9], the homology with trivial coefficients of Leibniz n-algebras is constructed as the homology of an explicit chain

complex and the first homology is interpreted bymeans of a Hopf formula. In [10] we introduced crossedmodules of Leibniz
n-algebras, proved that they are equivalent to internal categories in Leibniz n-algebras and described the second cohomology
of Leibniz n-algebras [5] via crossed extensions.
In this paper, we continue our investigation in [9,10] on (co)homological properties of Leibniz n-algebras. We fit the

homology with trivial coefficients of Leibniz n-algebras developed in [9] into the context of Quillen homology [12]. As the
main result, we obtain Hopf type formulas for higher dimensional homology of Leibniz n-algebras, which are similar to
Brown and Ellis formulas [13] for the higher homology of groups. As the main tool for our investigation, we develop the
theory of higher dimensional crossed modules, crossed m-cubes of Leibniz n-algebras, and we use the method of m-fold
Čech derived functors developed in [14,15].
In a recent paper by Everaert, Gran and Van der Linden [16], a conceptual proof of the higher Hopf formula is given in

a very general framework, for semi-abelian categories [17], and so may be applied to the category of Leibniz n-algebras. In
spite of our different approach, the main result in the present paper can confirm the categorical result of [16]. Nevertheless
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it is not straightforward to establish a relationship between the Čech derived functors and the categorical approaches, and
this problem will be the subject of a further work.

1.1. Organization

After the introductory Section 1, the paper is organized in four sections. Section 2 is devoted to recalling from [10,5]
some necessary definitions about Leibniz n-algebras, their actions, crossed modules and simplicial Leibniz n-algebras. The
simplicial nerve of a crossed module of Leibniz n-algebras is also constructed and some needed standard facts are given.
In Section 3 we prove that the homology of Leibniz n-algebras with trivial coefficients developed in [9] is the same as the
Quillen homology for Leibniz n-algebras (Theorem 4). In Section 4 the notions of crossedm-cubes of Leibniz n-algebras and
catm-Leibniz n-algebras are introduced and their equivalence is shown (Theorem 8). The abelianization and the diagonal of
the multinerve of crossed m-cubes of Leibniz n-algebras are also investigated. Section 5 is the main one. Here the mth m-
fold Čech derived functor of the abelianization functor from Leibniz n-algebras to vector spaces is calculated (Theorem 15),
implying the description of themth homology of a Leibniz n-algebra by a Hopf type formula (Theorem 17).

1.2. Notations and conventions

We fix k as a ground field. All vector spaces, tensor products and direct sums are considered over k. By a linear map we
mean a k-linear map. For a non-negative integer m we denote by 〈m〉 the set of first m natural numbers {1, . . . ,m}. When
it is not necessary, we write arguments of maps without brackets ( ). By [−, . . . ,−] both the Leibniz n-bracket (see the
definition immediately below) and the action of a Leibniz n-algebra (see Section 2.2) will be denoted similarly.

2. Preliminaries

2.1. Leibniz n-algebras

A Leibniz n-algebra [5] is a vector spaceL equipped with an n-ary bracket (n-bracket) [−, . . . ,−] : L⊗n → L satisfying
the following fundamental identity

[[x1, . . . , xn], y1, . . . , yn−1] =
∑
i∈〈n〉

[x1, . . . , xi−1, [xi, y1, . . . , yn−1], xi+1, . . . , xn]. (1)

A homomorphism of Leibniz n-algebras L → L′ is a linear map preserving the n-bracket. The respective category of
Leibniz n-algebras will be denoted by nLb.
A Leibniz 2-algebraL is simply a Leibniz algebra [6] and it is a Lie algebra if the condition [l, l] = 0 is fulfilled for all l ∈ L.

Similarly, for n ≥ 3, a Leibniz n-algebra is a Lie n-algebra [2] if [l1, . . . , li, li+1, . . . , ln] = 0 holds as soon as li = li+1 for some
i ∈ 〈n− 1〉.
Any Leibniz algebra is also Leibniz n-algebra with respect to the n-bracket

[x1, x2, . . . , xn] = [x1, [x2, . . . , [xn−1, xn] · · ·]]

(see [5]) and conversely, the Daletskii’s functor [3] assigns to a Leibniz n-algebra L the Leibniz algebraDn−1(L) = L⊗n−1

with the bracket

[l1 ⊗ · · · ⊗ ln−1, l′1 ⊗ · · · ⊗ l
′

n−1] =
∑
i∈〈n−1〉

l1 ⊗ · · · ⊗ [li, l′1, . . . , l
′

n−1] ⊗ · · · ⊗ ln−1.

A subalgebra L′ of a Leibniz n-algebra L is said to be an n-sided ideal if [l1, . . . , ln] ∈ L′ as soon as li ∈ L′ for some
i ∈ 〈n〉.
For any n-sided idealsL1, . . . ,Ln of a Leibniz n-algebraL, we denote by [L1, . . . ,Ln] the vector subspace ofL spanned

by the brackets [l1, . . . , ln], where li ∈ Li, i ∈ 〈n〉. Clearly [L1, . . . ,Ln] is an n-sided ideal of ∩i∈〈n〉Li.
For any two n-sided ideals L′ and L′′ of a Leibniz n-algebra L, we denote by [L′,L′′,Ln−2] the vector subspace of L

spanned by the brackets [l1, . . . , ln], where necessarily li ∈ L′ and lj ∈ L′′ for some i, j ∈ 〈n〉, i 6= j. IfL′′ = L, then we use
the notation [L′,Ln−1] instead of [L′,L,Ln−2]. Note that [L′,Ln−1] is an n-sided ideal of L. In particular, [L, . . . ,L] is
called the commutator n-sided ideal ofL.
Abelian group objects in nLb are abelian Leibniz n-algebras, that is, Leibniz n-algebras with the trivial n-bracket, or just

vector spaces. Their category will be denoted by Vect. The abelianization functor

Ab : nLb→ Vect,

which is left adjoint to the inclusion functor Vect ↪→ nLb, is given by Ab(L) = L/[L, . . . ,L].
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2.2. Actions and semi-direct product

LetL and P be Leibniz n-algebras. We will say that P acts onL [10] if 2n − 2 linear maps (of n variables)

[−, . . . ,−] : L⊗i1 ⊗ P⊗j1 ⊗ · · · ⊗L⊗im ⊗ P⊗jm → L

are given, where m ∈ 〈n − 1〉,
∑
k∈〈m〉(ik + jk) = n, 0 ≤ ik ≤ n − 1 and at least one ik 6= 0, 0 ≤ jk ≤ n − 1 and

at least one jk 6= 0, such that 22n−1 − 2 equalities hold which are obtained from (1) by taking exactly i of the variables
x1, . . . , xn, y1, . . . , yn−1 inL and all the others in P

((
2n−1
i

)
equalities

)
and by changing i = 1, . . . , 2n− 2.

For example, ifL is an n-sided ideal of a Leibniz n-algebraP , then the Leibniz n-bracket inP yields an action ofP onL.
Let us fix i1, j1, . . . , im, jmwith the properties as above. Then the image of the correspondingmap [−, . . . ,−] is the vector

subspace ofL spanned by elements of the form

[l11, . . . , l
1
i1 , p

1
1, . . . , p

1
j1 , . . . , l

m
1 , . . . , l

m
im , p

m
1 , . . . , p

m
jm ],

where lk1, . . . , l
k
ik
∈ L, pk1, . . . , p

k
jk
∈ P , k ∈ 〈m〉. This vector subspace ofLwill be denoted by [Li1 ,P j1 , . . . ,Lim ,P jm ].

Given a Leibniz n-algebraP acting on a Leibniz n-algebraL, we can form their semi-direct product,LoP , with underlying
vector spaceL⊕ P and n-bracket

[(l1, p1), . . . , (ln, pn)] = ([l1, . . . , ln] +Σ{l1, . . . , ln, p1, . . . , pn}, [p1, . . . , pn]),

here Σ{l1, . . . , ln, p1, . . . , pn} denotes the sum in L of 2n − 2 elements of the type [x1, . . . , xn], where xk = lk or xk = pk,
k ∈ 〈n〉, exactly i of the variables x1, . . . , xn are taken inL and n− i are taken in P , i = 1, . . . , n− 1.

Remark 1. If a Leibniz n-algebra P acts on a Leibniz n-algebra L, then there is also an action of L o P on L, given by the
n-bracket inL o P , whereL is considered as an n-sided ideal ofL o P via the natural inclusionL ↪→ L o P .

2.3. Crossed module and its nerve

A crossed module [10] is a homomorphism of Leibniz n-algebrasµ : L→ P together with an action ofP onL satisfying
the following three conditions:

(cm1) µ is compatible with the action of P onL, that is,

µ[l11, . . . , l
1
i1 , p

1
1, . . . , p

1
j1 , . . . , l

m
1 , . . . , l

m
im , p

m
1 , . . . , p

m
jm ]

= [µl11, . . . , µl
1
i1 , p

1
1, . . . , p

1
j1 , . . . , µl

m
1 , . . . , µl

m
im , p

m
1 , . . . , p

m
jm ];

(cm2) The n-bracket inL

(∗) [l1, l2, . . . , ln]

is equal to any expression obtained from (∗) by replacing exactly i of the variables l’s by µl’s, for every i ∈ 〈n− 1〉;
(cm3) If

∑
k∈〈m〉 ik ≥ 2, then the expression

(∗∗) [l11, . . . , l
1
i1 , p

1
1, . . . , p

1
j1 , . . . , l

m
1 , . . . , l

m
im , p

m
1 , . . . , p

m
jm ]

is equal to any expression obtained from (∗∗) by replacing exactly one of l’s (and so i of l’s, for every 1 ≤ i ≤∑
k∈〈m〉 ik − 1) by µl.

Lemma 2. Let µ : L→ P be a crossed module of Leibniz n-algebras. Then∑
i1,j1,...,im,jm

[Li1 ,P j1 , . . . ,Lim ,P jm ] = [L,P n−1] ⊇ [L, . . . ,L],

where the sum is taken over all i1, j1, . . . , im, jm such that
∑
k∈〈m〉(ik + jk) = n, 0 ≤ ik ≤ n − 1 and at least one ik 6= 0,

0 ≤ jk ≤ n− 1 and at least one jk 6= 0, m ∈ 〈n− 1〉.

Proof. The required equality followsdirectly from the condition (cm3),whilst the inclusion is a consequence of the condition
(cm2). �

Recall that the nerve of a small category Cwith source and target maps s, t : C→ Ob(C) is the simplicial setNer(C, s, t)∗,
with Ner(C, s, t)k = C×Ob(C) · · · ×Ob(C) C (k factors), that is, k-simplices are the sequences of composable morphisms
c0 → c1 → · · · → ck. The ith face (resp. ith degeneracy) of such a k-simplex is obtained by deleting ci (resp. inserting
the identity morphism ci → ci).
Given a crossed module of Leibniz n-algebras µ : L → P , consider the semi-direct product L o P , and the

homomorphisms of Leibniz n-algebras s, t : L o P → P given by s(l, p) = p and t(l, p) = µl + p. According to [10],
(LoP , s, t) has an 1-fold internal category structure within the category nLb. The objects are the elements ofP = Im(s) =
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Im(t), the morphisms are the elements ofL o P , the source and target maps are s and t , respectively. The morphisms (l, p)
and (l′, p′) are composable if µl + p = p′ and their composite is (l′, p′) ◦ (l, p) = (l + l′, p). The nerve of this category
structure forms the simplicial Leibniz n-algebraNer(L o P , s, t)∗, whereNer(L o P , s, t)k = (L o P )×P · · · ×P (L o P )
(k factors ofL o P ). Thus the k-simplices are k-tuples of the form(

(l1, p), (l2, µl1 + p), . . . , (lk, µlk−1 + · · · + µl1 + p)
)
.

Now it is routine and we left to the reader to check that, for any k ≥ 1, there is a natural isomorphism of Leibniz n-algebras

(L o P )×P · · · ×P (L o P )
∼=
−→L o (· · · o (L o P ) · · ·)

given by
(
(l1, p), (l2, µl1 + p), . . . , (lk, µlk−1 + · · · + µl1 + p)

)
7→ (l1, l2, . . . , lk, p).

By using this isomorphism, fromNer(L o P , s, t)∗ we obtain the simplicial Leibniz n-algebra which is called the nerve of
the crossed module µ : L→ P and it will be denoted by E(1)(L

µ
−→P )∗. Thus E(1)(L

µ
−→P )k = L o (· · · o (L o P ) · · ·)

with k semi-direct factors ofL, and face and degeneracy homomorphisms are given by

d0(l1, . . . , lk, p) = (l2, . . . , lk, p),
di(l1, . . . , lk, p) = (l1, . . . , li + li+1, . . . , lk, p), i ∈ 〈k− 1〉,
dk(l1, . . . , lk, p) = (l1, . . . , lk−1, µlk + p),
si(l1, . . . , lk, p) = (l1, . . . , li, 0, li+1, . . . , lk, p), 0 ≤ i ≤ k.

2.4. Homotopy of simplicial Leibniz n-algebras

Given a simplicial Leibniz n-algebra L∗ = (L∗, d∗i , s
∗

i ), its Moore complex is the chain complex of Leibniz n-algebras
(NL∗, ∂∗) given by

NLk =
⋂
i∈〈k〉

Ker dki−1 and ∂k = dkk|NLk .

Note that the Moore complex of the nerve of a crossed module of Leibniz n-algebras µ : L→ P is trivial in dimension
≥2 and it is just the original crossed module up to isomorphism withL in dimension 1 and P in dimension 0.
The image dk+1k+1(NLk+1) is an n-sided ideal ofLk and the kth homotopy of the simplicial Leibniz n-algebraL∗ is defined

as πk(L∗) = Hk(NL∗, ∂∗) = Ker ∂k/ Im ∂k+1. Note that in any homotopy πk, k ≥ 1, the n-bracket induced by that of Lk
vanishes. We say that an augmented simplicial Leibniz n-algebra (L∗, d00,L) is aspherical if πk(L∗) = 0 for all k ≥ 1 and d

0
0

induces an isomorphism of Leibniz n-algebras π0(L∗)
∼=
−→L.

The following lemma will be useful in the sequel

Lemma 3. Let (L∗, d00,L) be an aspherical augmented simplicial Leibniz n-algebra. SupposeΦ : nLb→ Vect andΨ : Vect→
Vect are functors such that the diagram

nLb

U

��

Φ //
Vect

Vect

Ψ

77nnnnnnnnnnnn

commutes, where U is the forgetful functor from the category nLb to the category Vect. Then the augmented simplicial vector
space (Φ(L∗),Φ(d00),Φ(L)) is acyclic.

Proof. Straightforward from the fact that an acyclic augmented simplicial vector space (U(L∗),U(d00),U(L)) has a linear
left (right) contraction. �

3. Homology as derived functors

In [9] the homologywith trivial coefficients nHL∗(L) of a Leibniz n-algebraL is introduced as the homology of an explicit
chain complex nCL∗(L), which is the Leibniz complex [7] associated to the Leibniz algebraDn−1(L) and its co-representation
L. Let us briefly recall the construction of nHL∗(L).
In [7] the homology HL∗(g,M) of a Leibniz algebra g with coefficients in a co-representation M of g is computed to be

the homology of the Leibniz complex CL∗(g,M) given by

CLk(g,M) = M ⊗ g⊗k, k ≥ 0,
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with the boundary map ∂k : CLk(g,M)→ CLk−1(g,M) defined by

∂k(m, x1, . . . , xk) = ([m, x1], x2, . . . , xk)+
∑
2≤i≤k

(−1)i([xi,m], xi, . . . , x̂i, . . . , xk)

+

∑
1≤i≤j≤k

(−1)j+1(m, x1, . . . , xi−1, [xi, xj], xi+1, . . . , x̂j, . . . , xk).

An essential fact for the construction of the complex nCL∗(L) in [9] is that any Leibniz n-algebraL can be considered as
a co-representation of the Leibniz algebraDn−1(L) using the following bilinear maps

[−,−] : L×Dn−1(L)→ L, [l, l1 ⊗ · · · ⊗ ln−1] = [l, l1, . . . , ln−1];
[−,−] : Dn−1(L)×L→ L, [l1 ⊗ · · · ⊗ ln−1, l] = −[l, l1, . . . , ln−1].

Then the complex nCL∗(L) is defined to be CL∗(Dn−1(L),L). Thus

nHL∗(L) = H∗(nCL∗(L)) = HL∗(Dn−1(L),L).
Note that whenL is a Leibniz 2-algebra, that is, a Leibniz algebra, then we have

2CLk(L) = CLk(L,L) = CLk+1(L)
for all k ≥ 0. Hence

2HLk(L) = HLk+1(L).
In the sequel we shall need the following easily verified equality

nHL0(L) = HL0(L⊗n−1,L) = Coker(∂1 : L⊗n → L) = Ab(L)

and the fact that nHLk(F ) = 0, k ≥ 1, if F is a free Leibniz n-algebra [9].
Nowwe show that the homology of Leibniz n-algebras is fitted in the context of homology theory developed by Quillen in

a very general framework [12]. Let us recall that the Quillen homology of an object X in an algebraic category C is defined as
the derived functors of the abelianization functorAb : C→ AbC from C to the abelian categoryAbC of abelian group objects
in C. This theory can be applied for Leibniz n-algebras. Given a Leibniz n-algebraL, Quillen homology ofL is defined by

HQk (L) = Hk(Ab(F∗)), k ≥ 0,
where F∗ → L is an aspherical augmented simplicial Leibniz n-algebra such that each component Fk, k ≥ 0, is a free Leib-
niz n-algebra. Here Ab(F∗) is the simplicial vector space obtained by applying the functor Ab : nLb→ Vect dimensionwise
to F∗.

Theorem 4. Let L be a Leibniz n-algebra. Then there is an isomorphism

HQk (L) ∼= nHLk(L), k ≥ 0.

Proof. SinceF∗ → L is an aspherical simplicial Leibniz n-algebra, it is a consequence of Lemma 3 that nCLk(F∗)→ nCLk(L)
is an acyclic simplicial vector space. Using the facts that nHLk(Fq) = 0 and nHL0(Fq) = Ab(Fq) for k ≥ 1, q ≥ 0, it follows
that both spectral sequences for the bicomplex nCL∗(F∗) degenerate and give the required isomorphism. �

4. Crossedm-cubes and catm-Leibniz n-algebras

4.1. Definitions and equivalence

The following notion of a crossed m-cube of Leibniz n-algebras is derived from the definition of crossed m-cube of
algebras [18] by considering h-functions of n arguments satisfying the fundamental identity (1).

Definition 5. A crossedm-cube of Leibniz n-algebras {MA : A ⊆ 〈m〉, µi, h} is a family of Leibniz n-algebras {MA} together
with homomorphisms µi : MA → MA\{i} for i ∈ 〈m〉, A ⊆ 〈m〉 and n-linear functions h : MA1 × · · · ×MAn −→ MA1∪···∪An
for A1, . . . , An ⊆ 〈m〉, such that for all a ∈ MA, a1 ∈ MA1 , . . ., a2n−1 ∈ MA2n−1 , i, j ∈ 〈m〉, 2 ≤ k ≤ n and j1, . . . , jk ∈ 〈n〉 the
following conditions hold:

(x1) µia = a if i 6∈ A;
(x2) µiµja = µjµia;
(x3) µih(a1, . . . , an) = h(µia1, . . . , µian);
(x4) h(a1, . . . , aj1 , . . . , ajk , . . . , an) = h(a1, . . . , µiaj1 , . . . , ajk , . . . , an)

= · · · = h(a1, . . . , aj1 , . . . , µiajk , . . . , an) if i ∈ Aj1 ∩ · · · ∩ Ajk;
(x5) h(a1, . . . , an) = [a1, . . . , an] if A1 = · · · = An;

(x6) h(h(a1, . . . , an), an+1, . . . , a2n−1) =
∑
k∈〈n〉

h(a1, . . . , h(ak, an+1, . . . , a2n−1), . . . , an).
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A morphism of crossed m-cubes of Leibniz n-algebras, {MA} → {M′A}, is a family
{
fA :MA →M′A, A ⊆ 〈m〉

}
of

homomorphisms of Leibniz n-algebras commuting with the µi and the h-functions. The resultant category of crossed m-
cubes of Leibniz n-algebras will be denoted by nLbXm.

Example 6. Let L be a Leibniz n-algebra and I1, . . ., Im be n-sided ideals of L. LetMA = ∩j∈A Ij for A ⊆ 〈m〉 (hereM∅ is
understood to meanL); given i ∈ 〈m〉, defineµi :MA →MA\{i} to be the inclusion; let h :MA1 × · · · ×MAn →MA1∪···∪An ,
for A1, . . . , An ⊆ 〈m〉, be given by the n-bracket inL: h(a1, . . . , an) = [a1, . . . , an]. Then {MA} is a crossedm-cube of Leibniz
n-algebras, called the inclusion crossedm-cube given by the Leibniz n-algebraL and its n-sided ideals I1, . . . , Im.

Note that, given a crossed m-cube of Leibniz n-algebras {MA}, if Ai = A, i ∈ B and Aj = A \ A′, j ∈ 〈n〉 \ B for some
∅ 6= B ⊆ 〈n − 1〉 and A′ ⊆ A ⊆ 〈m〉, then the functions h : MA1 × · · · ×MAn −→ MA define an action of the Leibniz
n-algebraMA\A′ onMA. Moreover, every homomorphism µi : MA → MA\{i}, together with such an action ofMA\{i} onMA,
is a crossed module of Leibniz n-algebras. In particular, for m = 1 we find that a crossed 1-cube is the same as a crossed
module of Leibniz n-algebras.
According to [10] the category of crossed modules of Leibniz n-algebras is equivalent to that of cat1-Leibniz n-algebras.

Belowwe prove the higher dimensional version of this result, similarly to the case of groups [19] and algebras [18]. First, by
close analogy with Loday’s original notion of catm-groups [20], we give the definition of a catm-Leibniz n-algebra, which is
equivalent to anm-fold category object in nLb.

Definition 7. A catm-Leibniz n-algebra (N , si, ti) is a Leibniz n-algebraN togetherwith 2m endomorphisms si, ti : N → N ,
i ∈ 〈m〉, such that

(c1) tisi = si, siti = ti,
(c2) sisj = sjsi, titj = tjti, sitj = tjsi for i 6= j,

(c3) [Ker si,Ker ti,N n−2
] = 0.

A morphism of catm-Leibniz n-algebras (N , si, ti)→ (N ′, s′i, t
′

i ) is a homomorphism of Leibniz n-algebras ϕ : N → N ′

such that ϕsi = s′iϕ, ϕti = t
′

iϕ for all i ∈ 〈m〉. The resultant category of cat
m-Leibniz n-algebras will be denoted by nLbCm.

Theorem 8. The categories nLbXm and nLbCm are equivalent.
Proof. To any catm-Leibniz n-algebra (N , si, ti)we correspond a crossedm-cube of Leibniz n-algebras {MA : A ⊆ 〈m〉, µi, h}
defined as follows:

MA =
⋂
i∈A

Ker si ∩
⋂
i6∈A

Im si;

µi(a) = ti(a), a ∈MA;

h(a1, . . . , an) = [a1, . . . , an], a1 ∈MA1 , . . . , an ∈MAn .

Straightforward calculations show thatMA indeed is a crossedm-cube of Leibniz n-algebras. For instance, the equality

h(a1, . . . , aj1 , . . . , ajk , . . . , an) = h(a1, . . . , µiaj1 , . . . , ajk , . . . , an)

in (x4) is a consequence of (c3). In fact,

[a1, . . . , aj1 , . . . , ajk , . . . , an] − [a1, . . . , µiaj1 , . . . , ajk , . . . , an] = [a1, . . . , aj1 − µiaj1 , . . . , ajk , . . . , an] = 0

since aj1 − µiaj1 ∈ Ker ti and ajk ∈ Ker si.
Conversely, given a crossed m-cube of Leibniz n-algebras {MA}, choose an ordering of the subsets of 〈m〉 and define a

catm-Leibniz n-algebra (N , si, ti) with underlying vector space N =
⊕
A⊆〈m〉MA. Thus any element of N can be written

uniquely as
∑
A⊆〈m〉 aA with aA ∈MA. ThenN has an n-linear bracket given by[ ∑

A1⊆〈m〉

aA1 , . . . ,
∑
An⊆〈m〉

aAn

]
=

∑
A1,...,An⊆〈m〉

h(aA1 , . . . , aAn).

The equality (x6) amounts exactly that the fundamental identity (1) holds. The endomorphisms si, ti : N → N , i ∈ 〈m〉,
are

si
∑
A⊆〈m〉

aA =
∑
A⊆〈m〉
i6∈A

aA, ti
∑
A⊆〈m〉

aA =
∑
A⊆〈m〉

µiaA.

Obviously si indeed is a homomorphism of Leibniz n-algebras, whilst ti is a homomorphism because of the equality (x3). It
is easy to see that (x1) and (x2) imply that all equalities in (c1) and (c2) hold. It remains to check the condition (c3). Let[ ∑

A1⊆〈m〉

aA1 , . . . ,
∑
Ak⊆〈m〉

aAk , . . . ,
∑
Al⊆〈m〉

aAl , . . . ,
∑
An⊆〈m〉

aAn

]
∈ [Ker si,Ker ti,N n−2

]
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and suppose
∑
Ak⊆〈m〉

aAk ∈ Ker si,
∑
Al⊆〈m〉

aAl ∈ Ker ti. Then aAk = 0 if i 6∈ Ak and µiaAl = −aAl\{i} if i ∈ Al. Respectively
h(aA1 , . . . , aAk , . . . , aAl , . . . , aAn) = 0 if i 6∈ Ak and

h(aA1 , . . . , aAk , . . . , aAl , . . . , aAn) = −h(aA1 , . . . , aAk , . . . , aAl\{i}, . . . , aAn)

if i ∈ Al. Then, by (x4) we have[ ∑
A1⊆〈m〉

aA1 , . . . ,
∑
Ak⊆〈m〉

aAk , . . . ,
∑
Al⊆〈m〉

aAl , . . . ,
∑
An⊆〈m〉

aAn

]
=

∑
A1,...,An⊆〈m〉

h(aA1 , . . . , aAk , . . . , aAl , . . . , aAn)

=

∑
A1,...,An⊆〈m〉
i∈Ak∩Al

h(aA1 , . . . , aAk , . . . , aAl , . . . , aAn)+
∑

A1,...,An⊆〈m〉
i∈Ak,i6∈Al

h(aA1 , . . . , aAk , . . . , aAl , . . . , aAn)

=

∑
A1,...,An⊆〈m〉
i∈Ak∩Al

h(aA1 , . . . , aAk , . . . , µiaAl , . . . , aAn)

+

∑
A1,...,An⊆〈m〉
i∈Ak,i6∈Al

h(aA1 , . . . , aAk , . . . , aAl , . . . , aAn) = 0.

Thus (N , si, ti) is a catm-Leibniz n-algebra.
The above constructed assignments {MA} � (N , si, ti) are clearly functorial. Moreover, if (N , si, ti) is a catm-Leibniz

n-algebra andMA = Ker i∈A
⋂
si ∩

⋂
i6∈A Im si, then the canonical homomorphism

⊕
A⊆〈m〉MA → N is an isomorphism.

This implies that the assignments are quasi-inverses to each other. �

Note that Theorem 8 in the casem = 1 recovers Theorem 10 in [10].

4.2. Functors E(m) and Ab(m)

If M is a crossed m-cube of Leibniz n-algebras, the associated catm-Leibniz n-algebra is endowed with m compatible
category structures. Then by applying the crossed module nerve structure E(1) in the m-independent directions, this
construction leads naturally to an m-simplicial Leibniz n-algebra, called the multinerve of M. Taking the diagonal of this
m-simplicial Leibniz n-algebra gives a simplicial Leibniz n-algebra denoted by E(m)(M)∗.
Let VectXm denote the subcategory of the category of abelian crossedm-cubes of groups (for the definition we refer the

reader to [21,14]) consisting of those abelian crossedm-cubes {GA : A ⊆ 〈m〉, µi, h} in which each abelian group GA has a
structure of vector space and each µi is a homomorphism of vector spaces. Then we define the abelianization functor

Ab(m) : nLbXm
→ VectXm

as follows: for any crossedm-cube of Leibniz n-algebras {MA : A ⊆ 〈m〉, µi, h}

Ab(m)(M)A =
MA∑

A1∪···∪An=A
D(A1, . . . , An)

,

where D(A1, . . . , An) is the subspace ofMA generated by the elements h(a1, . . . , an), for h : MA1 × · · · ×MAn → MA and
aj ∈MAj , j ∈ 〈n〉. The homomorphism

µ̃i : Ab(m)(M)A → Ab(m)(M)A\{i}, A ⊆ 〈m〉, i ∈ 〈m〉,
is induced by the homomorphism µi and the function

h̃ : Ab(m)(M)A1 × · · · × Ab(m)(M)An → Ab(m)(M)A1∪···∪An , A1, . . . , An ⊆ 〈m〉,
is induced by h and therefore is the trivial map.
Here we point out that, under the equivalence described in Theorem 8, the functor Ab(m) assigns to any catm-Leibniz

n-algebra (N , si, ti) the abelian catm-group (vector space) (N /[N , . . . ,N ], s̃i, t̃i), where s̃i and t̃i are induced by si and ti.
The following assertion establishes the commutativity relation between the functors Ab(m) and E(m), which plays an

essential role to obtain Hopf type formulas for the homology of Leibniz n-algebras.

Proposition 9. Let M be a crossed m-cube of Leibniz n-algebras and m ≥ 1. Then there is an isomorphism of simplicial vector
spaces

Ab
(
E(m)(M)∗

)
∼= E(m)

(
Ab(m)(M)

)
∗

Proof. The proof will be done by induction onm.
Form = 1, given a crossedmodule of Leibniz n-algebrasM = (L

µ
−→P ), we have to show an isomorphism of simplicial

vector spaces
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Ab
(
E(1)(L

µ
−→P )∗

)
∼= E(1)

(
Ab(1)(L

µ
−→P )

)
∗
.

By Lemma 2 we get

Ab(1)
(
L

µ
−→P

)
=
(
L/[L,P n−1]

µ̃
−→P/[P , . . . ,P ]

)
.

It is easy to see that the homomorphisms of vector spaces(
L o P

)
/[L o P , . . . ,L o P ]

α
�
β

L/[L,P n−1] × P/[P , . . . ,P ],

given by α(l, p) = (l, p) and β(l, p) = (l, p), where the bar denotes a coset, are well defined and inverses to each other.
Using isomorphism α we have

Ab
(
E(1)(L

µ
−→P )2

)
∼= L/[L, (L o P )n−1] ×

(
L o P

)
/[L o P , . . . ,L o P ]

∼= L/[L,P n−1] ×L/[L,P n−1] × P/[P , . . . ,P ] = E(1)
(
Ab(1)(L

µ
−→P )

)
2,

since [L, (L o P )n−1] = [L,P n−1]. Indeed, [L, (L o P )n−1] is generated by the elements

[(l1, p1), . . . , (lk−1, pk−1), l, (lk+1, pk+1), . . . , (ln, pn)] = [l1, . . . , lk−1, l, lk+1, . . . , ln]
+Σ{l1, . . . , lk−1, l, lk+1, . . . , ln, p1, . . . , pk−1, 0, pk+1, . . . , pn}
= [µl1, . . . , µlk−1, l, µlk+1, . . . , µln]
+Σ{µl1, . . . , µlk−1, l, µlk+1, . . . , µln, p1, . . . , pk−1, 0, pk+1, . . . , pn} ∈ [L,P n−1].

By similar computations we get isomorphisms between higher terms of simplicial vector spaces Ab
(
E(1)(L

µ
−→P )∗

)
and

E(1)
(
Ab(1)(L

µ
−→P )

)
∗
, which are compatible with face and degeneracy maps.

Proceeding by induction, we suppose that the assertion is true form− 1 and we will prove it form.
Given a crossed m-cube of Leibniz n-algebrasM, by applying the nerve E(1) to m − 1 directions we obtain an (m − 1)-

simplicial object in the category of crossed modules. Its diagonal, E(m−1)(M)∗, is a simplicial crossed module of Leibniz
n-algebras. As a consequence of Theorem 8, E(m−1)(M)∗ is just a simplicial Leibniz n-algebra endowed with 1-fold category
structure induced by some structural endomorphisms sj, tj of the corresponding to M catm-Leibniz n-algebra. Since the
abelianization of a cat1-Leibniz n-algebra is just the abelianization of the underlying Leibniz n-algebra endowed with
induced structural endomorphisms, the inductive hypothesis implies the isomorphism

Ab(1)
(
E(m−1)(M)∗

)
∼= E(m−1)

(
Ab(m)(M)

)
∗
. (2)

On the other hand, by construction, E(m)(M)∗ is the diagonal of the bisimplicial Leibnizn-algebra obtained by applying the
crossedmodule nerve construction E(1) to the simplicial crossedmodule E(m−1)(M)∗, that is, E(m)(M)k = E(1)(E(m−1)(M)k)k,
for k ≥ 0. Since the assertion is true form = 1, applying the abelianization functor to this equality and using (2) we have

Ab
(
E(m)(M)k

)
= Ab

(
E(1)

(
E(m−1)(M)k

)
k

)
∼= E(1)

(
Ab(1)

(
E(m−1)(M)

)
k

)
k

∼= E(1)
(
E(m−1)

(
Ab(m)(M)

)
k

)
k = E

(m)(Ab(m)(M)
)
k. �

5. Hopf type formulas

5.1. m-fold Čech derived functors

The diagonal of the multinerve of crossed m-cubes of Leibniz n-algebras is closely related to the m-fold Čech derived
functors of functors from the category nLb to the category of vector spaces, which we consider immediately below, whilst
the general situation has been dealt with in [15].
Let us consider the set 〈m〉. The subsets of 〈m〉 are ordered by inclusion. This ordered set determines in the usual way

a category Cm. For every pair (A, B) of subsets with A ⊆ B ⊆ 〈m〉, there is the unique morphism ρAB : A → B in Cm. Any
morphism in Cm, not an identity, is generated by ρAA∪{j} for all A ⊆ 〈m〉, A 6= 〈m〉 and j ∈ 〈m〉 \ A.
Anm-cube of Leibniz n-algebras is a functor F : Cm → nLb. Amorphism between m-cubes F, F′ is a natural transformation

κ : F→ F′.

Example 10. Let (L∗, d00,L) be an augmented simplicial Leibniz n-algebra. A natural m-cube of Leibniz n-algebras F(m) =

F(m)(L∗, d00,L) : Cm → nLb,m ≥ 1, is defined as follows:

F(m)(A) = Lm−1−|A| for all A ⊆ 〈m〉,
F(m)(ρAA∪{j}) = d

m−1−|A|
k−1 for all A 6= 〈m〉, j ∈ 〈m〉 \ A,
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where |A| denotes the cardinality of A, L−1 = L and k ∈ 〈m − |A|〉 is the preimage of j for the unique monotone bijection
〈m− |A|〉

≈
−→〈m〉 \ A between the subsets 〈m− |A|〉 and 〈m〉 \ A of positive integers.

Given an m-cube of Leibniz n-algebras F, there is a natural homomorphism of Leibniz n-algebras F(A)
αA
−→ lim

B⊃A
F(B) for

any A ⊆ 〈m〉, A 6= 〈m〉.

Definition 11. An m-cube of Leibniz n-algebras F will be called an m-presentation of a Leibniz n-algebraL if F(〈m〉) = L.
An m-presentation F of L is called free if F(A) is a free Leibniz n-algebra for all A 6= 〈m〉 and it is called exact if αA is an
epimorphism for all A 6= 〈m〉.

Note that a free exact 1-presentation of a Leibniz n-algebraL is the same as the free presentation ofL in [9].
The following lemma is straightforward.

Lemma 12. An augmented simplicial Leibniz n-algebra (L∗, d00,L), with π0(L∗) ∼= L, is aspherical if and only if the m-cube of
Leibniz n-algebras F(m)(L∗, d00,L) is an exact m-presentation of L for all m ≥ 1.

Given a homomorphism of Leibniz n-algebras α : R→ L, the Čech augmented complex for α is the augmented simplicial
Leibniz n-algebra (Č(α)∗, α,L) given by

Č(α)k = R×L · · · ×L R︸ ︷︷ ︸
(k+1)−times

= {(r0, . . . , rk) ∈ Rk+1
| α(r0) = · · · = α(rk)},

dki (r0, . . . , rk) = (r0, . . . , r̂i, . . . , rk),

ski (r0, . . . , rk) = (r0, . . . , ri, ri, ri+1, . . . , rk)

for k ≥ 0, 0 ≤ i ≤ k.
Now let F be anm-presentation of the Leibniz n-algebraL. Applying Č in them-independent directions, this construction

leads naturally to an augmented m-simplicial Leibniz n-algebra. Taking the diagonal we obtain an augmented simplicial
Leibniz n-algebra (Č (m)(F)∗, α,L) called an augmented m-fold Čech complex for F, where α = F(ρ∅

〈m〉) : F(∅)→ L. In case
F is a free exactm-presentation ofL, then (Č (m)(F)∗, α,L)will be called anm-fold Čech resolution ofL.

Definition 13. Let T : nLb → Vect be a functor. Define the kth m-fold Čech derived functor L(m)k T : nLb → Vect, k ≥ 0, of
the functor T by choosing a free exactm-presentation F for each Leibniz n-algebraL, and setting

L(m)k T (L) = πk(T Č
(m)(F)∗),

where (Č (m)(F)∗, α,L) is them-fold Čech resolution of the Leibniz n-algebraL for the free exactm-presentation F ofL.

Note that thanks to [15] the m-fold Čech derived functors are well defined. Furthermore, it follows directly from the
definition that, for k ≥ 1, the value of the kthm-fold Čech derived functor on a free Leibniz n-algebra is trivial.

Lemma 14. Let F be an m-presentation of a Leibniz n-algebraL. There is an isomorphism of simplicial Leibniz n-algebras

Č (m)(F)∗ ∼= E(m)(M)∗,

where M is the inclusion crossed m-cube of Leibniz n-algebras defined by the Leibniz n-algebra F(∅) and its n-sided ideals
Ii = Ker F(ρ∅{i}), i ∈ 〈m〉 (see Example 6).

Proof. Form = 1 the required isomorphism

λ∗ : E(1)(I1 ↪→ F(∅))∗
≈
−→ Č(F(∅)→ L)∗

is given by λ0 = idF(∅) and λk(x1, . . . , xk, f ) = (x1 + · · · + xk + f , x2 + · · · + xk + f , . . . , xk + f , f ) for all k ≥ 1 and
(x1, . . . , xk, f ) ∈ I1 o · · · o I1 o F(∅). It is routine and we left to the reader to check that every λk is a homomorphism of
Leibniz n-algebras and they commute with the face and degeneracy maps.
Then by repeated application of this isomorphism, we get an isomorphism of m-simplicial Leibniz n-algebras. Applying

the diagonal we obtain the result for anym. �

Now we calculate themthm-fold Čech derived functors of the abelianization functor Ab : nLb→ Vect.

Theorem 15. Let L be a Leibniz n-algebra and F a free exact m-presentation of L. Then there is an isomorphism

L(m)m Ab(L) ∼=

∩
i∈〈m〉

Ii ∩ [F , . . . ,F ]∑
A1∪···∪An=〈m〉

[ ∩
i∈A1

Ii, . . . , ∩
i∈An

Ii]
, m ≥ 1,

where F = F(∅) and Ii = Ker (F(∅)→ F({i})) for i ∈ 〈m〉.
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Proof. Using Lemma 14, we get L(m)m Ab(L) ∼= πm
(
AbE(m)(M)∗

)
, where M is the inclusion crossed m-cube induced by

the Leibniz n-algebra F and its n-sided ideals I1, . . . , Im. Hence Proposition 9 implies an isomorphism L
(m)
m Ab(L) ∼=

πm
(
E(m)Ab(m)(M)∗

)
. Then, by [14, Proposition 13] (see also [6, Proposition 3.4]), there is an isomorphism

L(m)m Ab(L) ∼= ∩
l∈〈m〉

Ker
(
Ab(m)(M)〈m〉

µ̃l
−→Ab(m)(M)〈m〉\{l}

)
. (3)

By definition of the functor Ab(m), we have

Ab(m)(M)A =

∩
i∈A

Ii∑
A1∪···∪An=A

[ ∩
i∈A1

Ii, . . . , ∩
i∈An

Ii]
for all A ⊆ 〈m〉.

Now we set up the inductive hypothesis. Letm = 1, then

L(1)1 Ab(L) ∼= Ker
( I1

[I1,F n−1]
−→

F

[F , . . . ,F ]

)
=

I1 ∩ [F , . . . ,F ]

[I1,F n−1]
.

Proceeding by induction, letm ≥ 2 and suppose that the result is true form− 1 and we will prove it form.
Let us consider l ∈ 〈m〉 and denote by F{l} the restriction of the functor F : Cm → nLb to the subcategory of Cm consisting

of all subsets A ⊆ 〈m〉with l 6∈ A. It is easy to check that F{l} is a free exact (m−1)-presentation of the free Leibniz n-algebra
F(〈m〉 \ {l}). Since L(m−1)m−1 Ab

(
F(〈m〉 \ {l})

)
= 0, our inductive hypothesis implies that

∩
i∈〈m〉\{l}

Ii ∩ [F , . . . ,F ] =
∑

A1∪···∪An=〈m〉\{l}

[ ∩
i∈A1

Ii, . . . , ∩
i∈An

Ii]. (4)

Then from (3) and (4) we can easily deduce the required isomorphism. �

5.2. The main result

We finally give the main theorem of this paper, which expresses the homology of Leibniz n-algebras with trivial
coefficients by Hopf type formulas.
We need the following lemmawhich is the Leibniz n-algebra analog of the well-known fact for simplicial groups (see for

example [22]).

Lemma 16. Let L∗ be a simplicial Leibniz n-algebra and A ⊆ 〈m〉, A 6= 〈m〉. Then dmm(∩i∈A Ker d
m
i−1) = ∩i∈A Ker d

m−1
i−1 , m ≥ 2.

Theorem 17 (Hopf Type Formula). Let L be a Leibniz n-algebra and F a free exact m-presentation of L. Then there is an
isomorphism

nHLm(L) ∼=
∩
i∈〈m〉

Ii ∩ [F , . . . ,F ]∑
A1∪···∪An=〈m〉

[ ∩
i∈A1

Ii, . . . , ∩
i∈An

Ii]
, m ≥ 1,

where F = F(∅) and Ii = Ker
(
F(∅)→ F({i})

)
for i ∈ 〈m〉.

Proof. Let (F∗, d00,L) be an aspherical augmented simplicial Leibniz n-algebra. Consider the short exact sequence of
augmented simplicial Leibniz n-algebras
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By the induced long exact homotopy sequence and the fact that all homotopy groups of F∗ are trivial in dimensions≥ 1, we
have the isomorphisms of vector spaces

πmAb(F∗) ∼=
∩
i∈〈m〉

Ker d̃m−1i−1

d̃mm( ∩i∈〈m〉
Ker d̃mi−1)

, m ≥ 1. (5)

Since d̃mi is the restriction of d
m
i to [Fm, . . . , Fm], we have Ker d̃

m
i = Ker d

m
i ∩ [Fm, . . . , Fm]. Hence ∩i∈〈m〉 Ker d̃

m
i−1 =

∩i∈〈m〉 Ker dmi−1 ∩ [Fm, . . . , Fm] and ∩i∈〈m〉 Ker d̃
m−1
i−1 = ∩i∈〈m〉 Ker d

m−1
i−1 ∩ [Fm−1, . . . , Fm−1].

Since the shift of F∗ is the contractible augmented simplicial object (Dec(F∗), d10, F0) (see [23]), by Lemma 12 them-cube
of Leibniz n-algebras F(m)(Dec(F∗), d10, F0) is a free exactm-presentation of F0. Hence, by Theorem 15 we have

L(m)m Ab(F0) ∼=
∩
i∈〈m〉

Ker dmi−1 ∩ [Fm, . . . , Fm]∑
A1∪···∪An=〈m〉

[ ∩
i∈A1
Ker dmi−1, . . . , ∩i∈An

Ker dmi−1]
= 0, m ≥ 1,

implying, form ≥ 1, the following equality

∩
i∈〈m〉

Ker dmi−1 ∩ [Fm, . . . , Fm] =
∑

A1∪···∪An=〈m〉

[ ∩
i∈A1
Ker dmi−1, . . . , ∩i∈An

Ker dmi−1]. (6)

Since (F∗, d00,L) is an aspherical augmented simplicial Leibniz n-algebra, d
m
m(∩i∈〈m〉 Ker d

m
i−1) = ∩i∈〈m〉 Ker d

m−1
i−1 , m ≥ 1.

Using this fact, the equality (6) and Lemma 16, it is easy to see that

d̃mm( ∩i∈〈m〉
Ker d̃mi−1) = d

m
m

( ∑
A1∪···∪An=〈m〉

[ ∩
i∈A1
Ker dmi−1, . . . , ∩i∈An

Ker dmi−1]
)

=

∑
A1∪···∪An=〈m〉

[
∩
i∈A1
Ker dm−1i−1 , . . . , ∩i∈An

Ker dm−1i−1

]
.

Thus by (5) and Theorem 4 we have

nHLm(L) ∼=
( ∩
i∈〈m〉

Ker dm−1i−1 ) ∩ [Fm−1, . . . , Fm−1]∑
A1∪···∪An=〈m〉

[
∩
i∈A1
Ker dm−1i−1 , . . . , ∩i∈A

Ker dm−1i−1

] .
Using again Lemma 12 and Theorem 15 the proof is completed. �

This result extends the Hopf formula for the first homology of a Leibniz n-algebra [9] to higher homologies. Moreover,
for n = 2, Theorem 17 describes the (m + 1)th homology HLm+1(L) of a Leibniz algebra L via a Hopf type formula, for all
m ≥ 1.
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