LSO BHMBIRML 9336603638 SMS IHMB6INO S35R3800L 8MdBdI, B. 175, N4, 2007
BULLETIN OF THE GEORGIAN NATIONAL ACADEMY OF SCIENCES, vol. 175, no. 4, 2007

Mathematics

Selected Papers of the Symposium dedicated to the 80th Birthday of Academician Revaz Gambkrelidze
(Batumi, 17-21 September, 2007)

Loewner Conjecture for Quasihomogeneous Polynomials
George Khimshiashvili

A. Razmadze Mathematical Institute and I.Chavchavadze State University, Tbilisi

ABSTRACT. We prove that the Loewner conjecture holds true for quasihomogeneous real polynomials of two
variables and give an explicit bound for the topological index of the Loewner vector field in terms of the weights of
variables. We also formulate a quaternionic analog of the named conjecture and discuss its connections with several
topics of differential topology and singularity theory. © 2007 Bull. Georg. Natl. Acad. Sci.
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1. We deal with a well-known conjecture attributed to Loewner (see, e.g., [1, 2, 3]). Let P be a real polynomial of
two variables. Obviously, P defines a smooth (infinitely differentiable) real-valued function on the plane which we
identify with the complex plane C. Recall that the Cauchy-Riemann operator D acts on a differentiable function fon C
by the formula Df'= 8f/ 0x + i Jf/dy. Separating the real and imaginary parts of Df one obtains a pair of real-valued
functions or a vector field on C. If fis a smooth function, then one can iterate the action of D and, for each natural »,
consider the vector field Z_f corresponding to the function D"f. In particular, one can apply this construction to a real
polynomial P as above. The resulting vector-fields Z P are called Loewner vector fields of P (as in [2, 3]). Thus, for
each natural », one can speak of the n-th Loewner field of P. Recall that, for a smooth vector field 7, the local
topological (or mapping) degree deg (};z) is defined at any isolated zero z of V' (see, e.g., [4] for a modern exposition
of the theory of mapping degree).

The Loewner conjecture is concerned with the local degrees of vector fields Z, /. Namely, let P be a polynomial
which does not contain monomials of degree less than three and such that the origin is its isolated critical point.

The Loewner conjecture claims that, for an arbitrary natural #, if the vector field L, P has an isolated zero at the
origin then its index (local topological degree) at the origin does not exceed #. In other words:

deg(L,P,0)<n.

Thus this is in fact a whole infinite sequence of conjectures and it is convenient to denote by Z(n) the special
case referring to the n-th Loewner field. It is well known that the validity of Z(2) has important consequences in the
theory of umbilical points of two-dimensional surfaces, in particular, it would imply the famous Caratheodory conjec-
ture about the existence of (at least) two umbilical points on a smooth surface homeomorphic to the sphere [1].

Despite such a simple formulation and important applications, the Loewner conjecture remains largely open. For
n=l, its validity follows from the classical results of Poincare and Bendixson (see, €.g., [3]). In order to put this fact in
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a proper context, we will explain below how it can be derived from a general result on the local degree of gradient
vector field established by the present author and proved in full detail in [4]. For clarity and convenience this
observation is formulated as Theorem 1. It is easy to show that the estimate given in Theorem 1 is exact. Thus the
Loewner conjecture for »=1 (Z(1) in our notation) is well understood.

However, the situation is drastically different already for »=2. Namely, Z(2) was only established for various
special classes of polynomials [2,3,5]. The most general result belongs to N. Ando who proved that L(2) holds true for
any homogeneous polynomial (of two real variables) P and gave exact estimates for deg (L,P, 0) in terms of the
(algebraic) degree of P [5].

The aim of this note is to show that Z(2) holds for each quasihomogeneous polynomial and give estimates for
deg(Z,P, 0) in terms of the quasihomogeneous type of P (weights of variables and quasihomogeneous degree of P).
Our Theorem 2 gives a direct generalization of the aforementioned result of N. Ando. The method of proof is essen-
tially different from the one used by N. Ando and reveals curious connections of LC with some topics from differential
topology and singularity theory. Our approach also suggests further extensions of LC, some of which are mentioned
in the sequel. This research was conducted in the framework of an INTAS project. The author acknowledges financial
support by INTAS grant No. 05-1000008-7805.

2. In order to give precise formulations of our results let us recall a few necessary concepts and constructions.
Recall that a critical point of polynomial P is called algebraically isolated if it is isolated as the critical points of P
considered as function of two complex variables [6]. In such a case the Milnor number of the critical point is defined
which serves as a certain complexity measure of the critical point [6]. Recall also that the corank of P is defined as the
corank of its Hessian.

Theorem 1. Let P be a real polynomial with an algebraically isolated critical point at the origin of corank 2
and let m be the Milnor number of P at the origin. Then

-[\m 1- 1 <deg(L,P,0)<1.

As will be shown below, this follows from our previous results about the geometry of local level surfaces. Before
giving the details of the argument we present our second result which may be considered as the main result of this
paper. To this end recall that polynomial P is called (w,, w,; d) quasihomogeneous if all the monomials present in P
have the same degree d as the variables are considered with the weights w,, w,. For such a polynomial, the Milnor
number at the origin can be expressed through the weights and degree by the well-known formula going back to
J. Milnor [6].

Theorem 2. Let P be a real quasihomogeneous polynomial with an algebraically isolated critical point at the
origin of corank 2 and let m be the Milnor number of P at the origin. Then

2[m -2 <deg(L,P,0)<2.

Before giving an outline of proof we make some comments. As was mentioned above, the Milnor number m can
be computed explicitly. Thus our result provides a two-sided estimate for the Loewner index in terms of weights and
degree of P. For a homogeneous polynomial, both weights are equal to one and it is easy to verify that the above
inequalities turn into the ones given by N. Ando in [5]. As was shown in [5], these estimates are exact (sharp) for
homogeneous polynomials. We were able to verify that exactness holds for many quasihomogeneous types but the
exactness in general remains unknown.

3. We are now going to explain how the above theorems can be derived from our previous results about the Euler
characteristic of local level surfaces near an isolated critical point. First of all notice that, for a real polynomial P as above,
the Loewner vector field L, P differs from the gradient 6P only a multiple. Thus the values of their local degrees coincide,
so in order to prove Theorem 1 it is sufficient to prove a similar statement for the gradient of P. Recall now that there
exists a remarkable relation between the local gradient degree and Euler characteristics of local level surfaces. Namely, for
any real polynomial in # variables with an algebraically isolated critical point at the origin one has:

e {P=a}nS)=1-(-1)"deg (6P,0),

where « is a sufficiently small real number, S is a sufficiently small sphere centered at the origin and symbol e stays
for the Euler characteristic (see [4] for details). Notice further that, for n=2, the intersection of the local level surface
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with sphere S consists of a finite amount of points, hence the Euler characteristic in the left hand side is non-negative.
This immediately gives the second inequality in Theorem 1. It remains to notice that the first inequality follows from
the definition of the Milnor number and a well-known estimate for the local degree. Thus we see that Theorem 1 is
merely a consequence of general results of singularity theory.

As to Theorem 2, the situation appears to be entirely similar but one should use a more complicated formula, also
proved in [4], which relates the Milnor number to the sum of indices of critical points of the restriction of P to S. This
in fact appears to be a form of the Euler-Poincare formula for manifolds with boundary. In this way one can show that
the half-sum of the local degrees at the boundary is expressible through the Milnor number. Next, one takes into
account that, according to the main result of [5], this half-sum is equal to deg (Z,P,0). Combining these two observa-
tions one arrives at the inequalities given in Theorem 2. In order to make this argument rigorous one needs to make
some perturbations of P so that the results of [4] become applicable, which is not necessarily the case for the original
polynomial P. Thus the full proof becomes rather lengthy so, the technical details of the argument will be presented
elsewhere.

The link between the Loewner conjecture and singularity theory which we used above, seems interesting by
itself. In particular, it is now appropriate to wonder if a similar reasoning may be applied to the next case of the
Loewner conjecture, namely, for proving the inequality deg (L,P, 0) < 3. We succeeded to prove this inequality for
several series from the Arnold list of singularities of low modality. It would be interesting to do the same by applying
a proper version of Morse theory as above.

4. Our discussion also suggests that the Loewner conjecture can be generalized as follows. Consider a real
polynomial P in four variables and identify R” with the skew-field of quaternions H. Notice then that there exists a
natural analogue of the Cauchy-Riemann operator, usually called the Fueter operator [7], which acts on a quaternionic
function /by the formula

Ff=0f/ 0x+idf Oy+ 0/ du + k 3 ov.

Applying it repeatedly to a polynomial P as above, we obtain a sequence of vector fields which will be called
Fueter vector fields and denoted £, P. A natural problem now is to estimate the local degrees of Fueter vector fields.
In this setting, already the case where n=1 is more delicate. Using the aforementioned relation between the Euler
characteristic and local degree, it is easy to find out that there can be no universal upper bound for the local degree
of /| P. Namely, the degree deg (,P.0) can take arbitrarily big positive values depending on the algebraic degree of
polynomial P. To our mind, this fact emphasizes a very special flavour and delicacy of the Loewner conjecture. Its
natural analogue in quaternionic setting becomes then to find the exact low and upper bounds for deg (/,P, 0) for
polynomials with the Milnor number m.

This problem seems quite nontrivial even for homogeneous polynomials of degree d. In this case we can indicate
reasonable bounds in terms of the Petrovsky number P(4;d). We refer to [4, 6] for the definition and general discus-
sion of Petrovsky numbers.

Theorem 3. Let P be a real homogeneous polynomial of four variables of degree d > 3 with an isolated critical
point at the origin. Then

-P(4;d) < deg (F P.0) < P(4d).

This can be proved in the same way as Theorem 1 using a natural linear transformation which connects the Fueter
field with the gradient vector field of P and the estimate for the gradient degree given in [4, 6]. It remains unclear if
those bounds are exact. Actually, this is a particular case of a general problem of obtaining exact estimates for gradient
vector fields which remains unsolved for polynomials of degree bigger than three [4]. Anyway, for »=I one has a
reasonable conjecture but it remains unclear what are the exact estimates for deg (#,7.0) for n > 2. It would be
interesting to find out if such estimates in quaternionic case have geometric applications in the spirit of the Caratheodory
conjecture.
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