A boundary value problem for higher-order semilinear partial differential equations

S. Kharibegashvili \& B. Midodashvili

To cite this article: S. Kharibegashvili \& B. Midodashvili (2019) A boundary value problem for higher-order semilinear partial differential equations, Complex Variables and Elliptic Equations, 64:5, 766-776, DOI: 10.1080/17476933.2018.1508286

To link to this article: https://doi.org/10.1080/17476933.2018.1508286

Published online: 20 Aug 2018.

Submit your article to this journal

Article views: 13

View Crossmark data ©

A boundary value problem for higher-order semilinear partial differential equations

S. Kharibegashvili ${ }^{\mathrm{a}, \mathrm{b}}$ and B. Midodashvili ${ }^{\mathrm{c}, \mathrm{d}}$
${ }^{\text {a }}$. Javakhishvili Tbilisi State University A. Razmadze Mathematical Institute, Tbilisi, Georgia; ${ }^{\text {b }}$ Georgian Technical University Department of Mathematics, Tbilisi, Georgia; ${ }^{\text {CI. Javakhishvili Tbilisi State University }}$ Faculty of Exact and Natural Sciences, Tbilisi, Georgia; ${ }^{\text {d }}$ Gori State Teaching University Faculty of Education, Exact and Natural Sciences, Gori, Georgia

ABSTRACT

One boundary value problem for a class of higher-order semilinear partial differential equations is considered. Theorems on existence, uniqueness and nonexistence of solutions of this problem are proved.

ARTICLE HISTORY

Received 21 June 2018 Accepted 27 July 2018

COMMUNICATED BY

A. Soldatov

KEYWORDS

Semilinear higher-order equations; hypoelliptic operators; existence; uniqueness and nonexistence of solutions

AMS SUBJECT CLASSIFICATION 35G30

1. Statetement of the problem

In the Euclidian space \mathbb{R}^{n} of the variables $x=\left(x_{1}, \ldots, x_{n}\right)$ and t we consider the semilinear equation of the type

$$
\begin{equation*}
L_{f}:=\frac{\partial^{4 k} u}{\partial t^{4 k}}-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a_{i j} \frac{\partial u}{\partial x_{i}}\right)+f(u)=F, \tag{1}
\end{equation*}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a given continuous function, $a_{i j}=a_{j i}=a_{i j}(x), i, j=1, \ldots, n, F=$ $F(x, t)$ are given, and $u=u(x, t)$ is an unknown real functions, k is a natural number, $n \geq 2$.

For the equation (1) we consider the boundary value problem: find in the cylindrical domain $D_{T}:=\Omega \times(0, T)$, where Ω is an open Lipschitz domain in \mathbb{R}^{n}, a solution $u=$ $u(x, t)$ of that equation according to the boundary conditions

$$
\begin{gather*}
\left.u\right|_{\Gamma}=0, \tag{2}\\
\left.\frac{\partial^{i} u}{\partial t^{i}}\right|_{\Omega_{0} \cup \Omega_{T}}=0, \quad i=0, \ldots, 2 k-1, \tag{3}
\end{gather*}
$$

[^0]where $\Gamma:=\partial \Omega \times(0, T)$ is the lateral face of the cylinder $D_{T}, \Omega_{0}: x \in \Omega, t=0$ and Ω_{T} : $x \in \Omega, t=T$ are upper and lower bases of this cylinder, respectively.

A numerous literature is dedicated to the research of initial and mixed problems for the high order semilinear hyperbolic equations having a structure different from (1) for example, see works [1-11] and works cited there). Note that some of the results in this direction have been discussed in the workshop materials [12].

Denote by $C^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)$ the space of functions u continuous in \bar{D}_{T}, having continuous partial derivatives $\partial u / \partial x_{i}, \partial^{2} u / \partial x_{i} \partial x_{j}, \partial^{l} u / \partial t^{l}, i, j=1, \ldots, n ; l=1, \ldots, 4 k$, in \bar{D}_{T}. Assume

$$
C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right):=\left\{u \in C^{2,4 k}\left(\bar{D}_{T}\right):\left.u\right|_{\Gamma}=0,\left.\quad \frac{\partial^{i} u}{\partial t^{i}}\right|_{\Omega_{0} \cup \Omega_{T}}=0, i=0, \ldots, 2 k-1\right\}
$$

Let $a_{i j}=a_{i j}(x) \in C^{1}(\bar{\Omega}), i, j=1, \ldots, n$, and $u \in C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)$ be a classical solution of the problem (1)-(3). Multiplying both parts of the equation (1) by an arbitrary function $\varphi \in C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)$ and integrating the obtained equation by parts over the domain D_{T}, we obtain

$$
\begin{align*}
& \int_{D_{T}}\left[\frac{\partial^{2 k} u}{\partial t^{2 k}} \cdot \frac{\partial^{2 k} \varphi}{\partial t^{2 k}}+\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{j}}\right] \mathrm{d} x \mathrm{~d} t+\int_{D_{T}} f(u) \varphi \mathrm{d} x \mathrm{~d} t \\
& \quad=\int_{D_{T}} F \varphi \mathrm{~d} x \mathrm{~d} t \quad \forall \varphi \in C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right) \tag{4}
\end{align*}
$$

Below, we assume that the operator $K:=\sum_{i, j=1}^{n} \partial / \partial x_{j}\left(a_{i j}(x)\left(\partial u / \partial x_{i}\right)\right)$ is strongly elliptic in $\bar{\Omega}$, i.e.

$$
\begin{equation*}
k_{0}|\xi|^{2} \leq \sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \leq k_{1}|\xi|^{2} \quad \forall x \in \bar{\Omega}, \quad \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n} \tag{5}
\end{equation*}
$$

where $k_{0}, k_{1}=$ const $>0,|\xi|^{2}=\sum_{i=1}^{n} \xi_{i}{ }^{2}$. Note that (5) implies the hypoellipticity of the linear part of the operator from (1), i.e. L_{0} is hyppoelliptic for each $x=x_{0} \in \bar{\Omega}$ [13].

Introduce the Hilbert space $W_{0}^{1,2 k}\left(D_{T}\right)$ as a completion with respect to the norm

$$
\begin{equation*}
\|u\|_{W_{0}^{1,2 k}\left(D_{T}\right)}^{2}=\int_{D_{T}}\left[u^{2}+\sum_{i=1}^{2 k}\left(\frac{\partial^{i} u}{\partial t^{i}}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] \mathrm{d} x \mathrm{~d} t \tag{6}
\end{equation*}
$$

of the classical space $C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)$.
Remark 1.1: It follows from (6) that if $u \in W_{0}^{1,2 k}\left(D_{T}\right)$, then $u \in W_{2}^{1^{o}}\left(D_{T}\right)$ and $\partial^{i} u / \partial t^{i} \in$ $L_{2}\left(D_{T}\right), i=2, \ldots, 2 k$. Here $W_{2}^{1}\left(D_{T}\right)$ is the well-known Sobolev space [14] consisting of the elements of $L_{2}\left(D_{T}\right)$, having the first order generalized derivatives from $L_{2}\left(D_{T}\right)$, and $W_{2}^{1^{o}}\left(D_{T}\right)=\left\{u \in W_{2}^{1}\left(D_{T}\right):\left.u\right|_{\partial D_{T}}=0\right\}$, where the equality $\left.u\right|_{\partial D_{T}}=0$ is understood in the sense of the trace theory [14].

We take the equality (4) as a basis for our definition of the weak generalized solution u of the problem (1), (2), (3).

Below, on the function $f=f(u)$ we impose the following requirements

$$
\begin{equation*}
f \in C(\mathbb{R}), \quad|f(u)| \leq M_{1}+M_{2}|u|^{\alpha}, \quad u \in \mathbb{R} \tag{7}
\end{equation*}
$$

where $M_{i}=$ const $\geq 0, i=1,2$, and

$$
\begin{equation*}
0 \leq \alpha=\text { const }<\frac{n+1}{n-1} \tag{8}
\end{equation*}
$$

Remark 1.2: The embedding operator $I: W_{2}^{1}\left(\bar{D}_{T}\right) \rightarrow L_{q}\left(D_{T}\right)$ represents a linear continuous compact operator for $1<q<2(n+1) /(n-1)$, when $n>1$ [14]. At the same time the Nemytsky operator $N: L_{q}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$, acting by the formula $N u=-f(u)$, due to (7) is continuous and bounded if $q \geq 2 \alpha$ [15]. Thus, since due to (8) we have $2 \alpha<2(n+1) /(n-1)$, then there exists a number q such that $1<q<2(n+1) /(n-1)$ and $q \geq 2 \alpha$. Therefore, in this case the operator

$$
\begin{equation*}
N_{0}=N I: W_{2}^{1^{0}}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right) \tag{9}
\end{equation*}
$$

will be continuous and compact. Besides, from $u \in W_{0}^{1,2 k}\left(D_{T}\right)$ it follows that $f(u) \in$ $L_{2}\left(D_{T}\right)$ and, if $u_{m} \rightarrow u$ in the space $W_{0}^{1,2 k}\left(D_{T}\right)$, then $f\left(u_{m}\right) \rightarrow f(u)$ in the space $L_{2}\left(D_{T}\right)$.

Definition 1.1: Let the function f satisfy the conditions (7) and (8), $F \in L_{2}\left(D_{T}\right)$. The function $u \in W_{0}^{1,2 k}\left(D_{T}\right)$ is said to be a weak generalized solution of the problem (1)-(3), if for any $\varphi \in W_{0}^{1,2 k}\left(D_{T}\right)$ the integral equality (4) is valid.

It is not difficult to verify that if the solution of the problem (1)-(3) in the sense of Definition 1.1 belongs to the class $C_{0}^{2,4 k}\left(D_{T}, \partial D_{T}\right)$, then it will also be a classical solution of this problem.

2. The solvability of problem (1)-(3)

In the space $C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)$, together with the scalar product

$$
\begin{equation*}
(u, v)_{o}=\int_{D_{T}}\left[u \cdot v+\sum_{i=1}^{2 k} \frac{\partial^{i} u}{\partial t^{i}} \frac{\partial^{i} v}{\partial t^{i}}+\sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}}\right] \mathrm{d} x \mathrm{~d} t \tag{10}
\end{equation*}
$$

with norm $\|\cdot\|_{0}=\|u\|_{W_{0}^{1,2 k}\left(D_{T}\right)}$ defined by the right-hand side part of equality (6), let us introduce the following scalar product

$$
\begin{equation*}
(u, v)_{1}=\int_{D_{T}}\left[\frac{\partial^{2 k} u}{\partial t^{2 k}} \frac{\partial^{2 k} v}{\partial t^{2 k}}+\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}\right] \mathrm{d} x \mathrm{~d} t \tag{11}
\end{equation*}
$$

with norm

$$
\begin{equation*}
\|u\|_{1}^{2}=\int_{D_{T}}\left[\left(\frac{\partial^{2 k} u}{\partial t^{2 k}}\right)^{2}+\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}\right] \mathrm{d} x \mathrm{~d} t \tag{12}
\end{equation*}
$$

where $u, v \in C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)$.

Lemma 2.1: The inequalities

$$
\begin{equation*}
c_{1}\|u\|_{0} \leq\|u\|_{1} \leq c_{2}\|u\|_{0} \quad \forall u \in C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right) \tag{13}
\end{equation*}
$$

hold, where the positive constants c_{1} and c_{2} do not depend on u.
Proof: If $u \in C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)$ then for fixed $t \in[0, T]$ the function $u(\cdot, t) \in W_{2}^{1^{o}}(\Omega)$ and due to a known inequality [14]

$$
\begin{equation*}
\|u(\cdot, t)\|_{L_{2}(\Omega)}^{2} \leq c_{0} \int_{\Omega} \sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}(x, t) \mathrm{d} x \tag{14}
\end{equation*}
$$

whence, in view of (5), we have

$$
\begin{equation*}
\|u(\cdot, t)\|_{L_{2}(\Omega)}^{2} \leq \frac{c_{0}}{k_{0}} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}(x, t) \mathrm{d} x \tag{15}
\end{equation*}
$$

where the positive constants k_{0} and $c_{0}=c_{0}(\Omega)$ do not depend on $t \in[0, T]$ and u. Integrating inequalities (14) and (15) on $t \in[0, T]$ we obtain

$$
\begin{gather*}
\|u\|_{L_{2}\left(D_{T}\right)}^{2} \leq c_{0} \int_{D_{T}} \sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}(x, t) \mathrm{d} x \mathrm{~d} t \tag{16}\\
\|u\|_{L_{2}\left(D_{T}\right)}^{2} \leq \frac{c_{0}}{k_{0}} \int_{D_{T}} \sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}(x, t) \mathrm{d} x \mathrm{~d} t \tag{17}
\end{gather*}
$$

Let us evaluate the norms $\left\|\partial^{i} u / \partial t^{i}\right\|_{L_{2}\left(D_{T}\right)}$ for $i=1, \ldots, 2 k-1$ through $\left\|\partial^{2 k} u / \partial t^{2 k}\right\|_{L_{2}\left(D_{T}\right)}$. Since $u \in C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)$ satisfies equalities (3), then it is easy to see that

$$
\begin{equation*}
\frac{\partial^{i} u(\cdot, t)}{\partial t^{i}}=\frac{1}{(2 k-i-1)!} \int_{0}^{t}(t-\tau)^{2 k-i-1} \frac{\partial^{2 k} u(\cdot, \tau)}{\partial t^{2 k}} \mathrm{~d} \tau, \quad i=1, \ldots, 2 k-1 \tag{18}
\end{equation*}
$$

From (18), using Cauchy inequality, we obtain

$$
\begin{aligned}
& \left(\frac{\partial^{i} u(\cdot, t)}{\partial t^{i}}\right)^{2} \leq \frac{1}{((2 k-i-1)!)^{2}} \int_{0}^{t}(t-\tau)^{2(2 k-i-1)} \mathrm{d} \tau \int_{0}^{t}\left(\frac{\partial^{2 k} u(\cdot, t)}{\partial t^{2 k}}\right)^{2} \mathrm{~d} \tau \\
& \quad=\frac{t^{4 k-2 i-1}}{((2 k-i-1)!)^{2}(4 k-2 i-1)} \int_{0}^{t}\left(\frac{\partial^{2 k} u(\cdot, t)}{\partial t^{2 k}}\right)^{2} \mathrm{~d} \tau \\
& \quad \leq T^{4 k-2 i-1} \int_{0}^{T}\left(\frac{\partial^{2 k} u(\cdot, \tau)}{\partial t^{2 k}}\right)^{2} \mathrm{~d} \tau
\end{aligned}
$$

whence

$$
\begin{equation*}
\int_{0}^{T}\left(\frac{\partial^{i} u(\cdot, t)}{\partial t^{i}}\right)^{2} \mathrm{~d} t \leq T^{4 k-2 i} \int_{0}^{T}\left(\frac{\partial^{2 k} u(\cdot, \tau)}{\partial t^{2 k}}\right)^{2} \mathrm{~d} \tau, \quad i=1, \ldots, 2 k-1 \tag{19}
\end{equation*}
$$

Integrating both parts of inequality (19) over the domain Ω we obtain

$$
\begin{equation*}
\left\|\frac{\partial^{i} u}{\partial t^{i}}\right\|_{L_{2}\left(D_{T}\right)}^{2} \leq T^{4 k-2 i}\left\|\frac{\partial^{2 k} u}{\partial t^{2 k}}\right\|_{L_{2}\left(D_{T}\right)}^{2} \quad, \quad i=1, \ldots, 2 k-1 \tag{20}
\end{equation*}
$$

Due to (5) we have

$$
\begin{equation*}
k_{0} \int_{D_{T}} \sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \mathrm{~d} x \mathrm{~d} t \leq \int_{D_{T}} \sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}} \mathrm{~d} x \mathrm{~d} t \leq k_{1} \int_{D_{T}} \sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \mathrm{~d} x \mathrm{~d} t . \tag{21}
\end{equation*}
$$

Finally, from (6), (12), (16), (17), (20) and (21) we easily obtain (13). Lemma 2.1 is proved.

Remark 2.1: If we complete the space $C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)$ under the norm [12] due to Lemma 2.1, then in view of (10) we obtain the same Hilbert space $W_{0}^{1,2 k}\left(D_{T}\right)$ with equivalent scalar products (10) and (11).

Consider the following condition

$$
\begin{equation*}
\lim _{|u| \rightarrow \infty} \inf \frac{f(u)}{u} \geq 0 \tag{22}
\end{equation*}
$$

Lemma 2.2: Let $F \in L_{2}\left(D_{T}\right)$ and the conditions (7), (8) and (22) be fulfilled. Then for a weak generalized solution $u \in W_{0}^{1,2 k}\left(D_{T}\right)$ of the problem (1)-(3) the a priori estimate

$$
\begin{equation*}
\|u\|_{0}=\|u\|_{W_{0}^{1,2 k}\left(D_{T}\right)} \leq c_{3}\|F\|_{L_{2}\left(D_{T}\right)}+c_{4} \tag{23}
\end{equation*}
$$

is valid with constants $c_{3}>0$ and $c_{4} \geq 0$, independent of u and F.
Proof: Since $f \in C(\mathbb{R})$, then from (22) it follows that for each $\varepsilon>0$ there exists a number $M_{\varepsilon} \geq 0$ such that

$$
\begin{equation*}
u f(u) \geq-M_{\varepsilon}-\varepsilon u^{2} \quad \forall u \in \mathbb{R} . \tag{24}
\end{equation*}
$$

Assuming that $\varphi=u \in W_{0}^{1,2 k}\left(D_{T}\right)$ in equality (4) and taking into account (24) and (12), for each $\varepsilon>0$ we have

$$
\begin{align*}
\|u\|_{1}^{2}= & -\int_{D_{T}} u f(u) \mathrm{d} x \mathrm{~d} t+\int_{D_{T}} F u \mathrm{~d} x \mathrm{~d} t \leq M_{\varepsilon} m e s D_{T}+\varepsilon \int_{D_{T}} u^{2} \mathrm{~d} x \mathrm{~d} t \\
& +\int_{D_{T}}\left(\frac{1}{4 \varepsilon} F^{2}+\varepsilon u^{2}\right) \mathrm{d} x \mathrm{~d} t=\frac{1}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+M_{\varepsilon} m e s D_{T}+2 \varepsilon\|u\|_{L_{2}\left(D_{T}\right)}^{2} \\
\leq & \frac{1}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+M_{\varepsilon} m e s D_{T}+2 \varepsilon\|u\|_{0}^{2} . \tag{25}
\end{align*}
$$

Due to (13) from (25) we have

$$
c_{1}^{2}\|u\|_{0}^{2} \leq\|u\|_{1}^{2} \leq \frac{1}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+M_{\varepsilon} m e s D_{T}+2 \varepsilon\|u\|_{0}^{2},
$$

whence, for $\varepsilon=\frac{1}{4} c_{1}^{2}$ we obtain

$$
\|u\|_{0}^{2} \leq 2 c_{1}^{-4}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+2 c_{1}^{-2} M_{\varepsilon} \operatorname{mes}_{T} .
$$

From the last inequality follows (23) for $c_{3}=2 c_{1}^{-4}$ and $c_{4}=2 c_{1}^{-2} M_{\varepsilon}$ mes D_{T}, where $\varepsilon=$ $\frac{1}{4} c_{1}^{2}$. Lemma 2.2 is proved.

Remark 2.2: First we consider a linear problem correspondent to (1)-(3), i.e. when $f=0$. In this case for $F \in L_{2}\left(D_{T}\right)$ we analogously introduce a notion of a weak generalized solution $u \in W_{0}^{1,2 k}\left(D_{T}\right)$ of this problem for which it is valid the integral equality

$$
\begin{align*}
(u, \varphi)_{1} & =\int_{D_{T}}\left[\frac{\partial^{2 k} u}{\partial t^{2 k}} \frac{\partial^{2 k} \varphi}{\partial t^{2 k}}+\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{j}}\right] \mathrm{d} x \mathrm{~d} t \\
& =\int_{D_{T}} F \varphi \mathrm{~d} x \mathrm{~d} t \quad \forall \varphi \in W_{0}^{1,2 k}\left(D_{T}\right) . \tag{26}
\end{align*}
$$

In view of (13) we have

$$
\begin{align*}
& \left|\int_{D_{T}} F \varphi \mathrm{~d} x \mathrm{~d} t\right| \leq\|F\|_{L_{2}\left(D_{T}\right)}\|\varphi\|_{L_{2}\left(D_{T}\right)} \\
& \|F\|_{L_{2}\left(D_{T}\right)}\|\varphi\|_{0} \leq c_{1}^{-1}\|F\|_{L_{2}\left(D_{T}\right)}\|\varphi\|_{1} \tag{27}
\end{align*}
$$

Due to Remark 2.1, (26) and (27) from the Riess theorem it follows the existence of a unique function $u \in W_{0}^{1,2 k}\left(D_{T}\right)$ which satisfies equality (26) for any $\varphi \in W_{0}^{1,2 k}\left(D_{T}\right)$ and for its norm is valid the estimate

$$
\begin{equation*}
\|u\|_{1} \leq c_{1}^{-1}\|F\|_{L_{2}\left(D_{T}\right)} \tag{28}
\end{equation*}
$$

Due to (13) from (28) we obtain

$$
\begin{equation*}
\|u\|_{0}=\|u\|_{W_{0}^{1,2 k}\left(D_{T}\right)} \leq c_{1}^{-2}\|F\|_{L_{2}\left(D_{T}\right)} \tag{29}
\end{equation*}
$$

Thus, introducing the notation $u=L_{0}^{-1} F$, we find that to the linear problem corresponding to (1)-(3), i.e. when $f=0$, there corresponds the linear bounded operator

$$
L_{0}^{-1}: L_{2}\left(D_{T}\right) \rightarrow W_{0}^{1,2 k}\left(D_{T}\right)
$$

and for its norm the estimate

$$
\begin{equation*}
\left\|L_{0}^{-1}\right\|_{L_{2}\left(D_{T}\right) \rightarrow W_{0}^{1,2 k}\left(D_{T}\right)} \leq c_{1}^{-2} \tag{30}
\end{equation*}
$$

holds by virtue of (29).
Taking into account Definition 1.1 and Remark 2.2, we can rewrite the equality (4), equivalent to the problem (1)-(3) in the form

$$
\begin{equation*}
u=L_{0}^{-1}[-f(u)+F] \tag{31}
\end{equation*}
$$

in the Hilbert space $W_{0}^{1,2 k}\left(D_{T}\right)$.

Remark 2.3: Since due to (6) and Remark 1.1 the space $W_{0}^{1,2 k}\left(D_{T}\right)$ is continuously embedded into the space $W_{2}^{1^{0}}\left(D_{T}\right)$, taking into account (9) from Remark 1.2, when the conditions (7) and (8) are fulfilled, we see that the operator

$$
N_{1}=N I I_{1}: W_{0}^{1,2 k}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)
$$

where $I_{1}: W_{0}^{1,2 k}\left(D_{T}\right) \rightarrow W_{2}^{1^{0}}\left(D_{T}\right)$ is the embedding operator, is likewise continuous and compact.

We rewrite the equation (31) as

$$
\begin{equation*}
u=A u:=L_{0}^{-1}\left(N_{1} u+F\right) \tag{32}
\end{equation*}
$$

Then, taking into account (30) and Remark 2.3, we conclude that the operator A : $W_{0}^{1,2 k}\left(D_{T}\right) \rightarrow W_{0}^{1,2 k}\left(D_{T}\right)$ from (32) is continuous and compact. At the same time according to the a priori estimate (23) of Lemma 2.2 in which the constants $c_{3}=2 c_{1}^{-4}$ and $c_{4}=2 c_{1}^{-2} M_{\varepsilon} m e s D_{T}, \varepsilon=\frac{1}{4} c_{1}^{2}$ for any parameter $\tau \in[0,1]$ and for every solution $u \in$ $W_{0}^{1,2 k}\left(D_{T}\right)$ of equation $u=\tau A u$ with the above-mentioned parameter the a priori estimate (23) is valid with the same constants $c_{3}>0$ and $c_{4} \geq 0$, independent of u, F and τ. Therefore, by the Schaefer's fixed point theorem [16] equation (32) and hence the problem (1)-(3) has at least one weak generalized solution u from the space $W_{0}^{1,2 k}\left(D_{T}\right)$. Thus, the following theorem is valid.

Theorem 2.1: Let the conditions (7), (8) and (22) be fulfilled. Then for any $F \in L_{2}\left(D_{T}\right)$ the problem (1)-(3) has at least one weak generalized solution $u \in W_{0}^{1,2 k}\left(D_{T}\right)$.

3. Uniqueness of the solution of problem (1)-(3)

Theorem 3.1: Let f be a monotone function and satisfy the conditions (7), (8). Then for any $F \in L_{2}\left(D_{T}\right)$ the problem (1)-(3) cannot have more than one weak generalized solution in the space $W_{0}^{1,2 k}\left(D_{T}\right)$.

Proof: Let $F \in L_{2}\left(D_{T}\right)$, and moreover, let u_{1} and u_{2} be two weak generalized solutions of the problem (1)-(3) from the space $W_{0}^{1,2 k}\left(D_{T}\right)$, i.e. according to (4) the equalities

$$
\begin{align*}
& \int_{D_{T}}\left[\frac{\partial^{2 k} u_{m}}{\partial t^{2 k}} \frac{\partial^{2 k} \varphi}{\partial t^{2 k}}+\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial u_{m}}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{j}}\right] \mathrm{d} x \mathrm{~d} t \\
& \quad=-\int_{D_{T}} f\left(u_{m}\right) \varphi \mathrm{d} x \mathrm{~d} t+\int_{D_{T}} F \varphi \mathrm{~d} x \mathrm{~d} t \quad \forall \varphi \in W_{0}^{1,2 k}\left(D_{T}\right), \tag{33}
\end{align*}
$$

are valid, $m=1,2$.

From (33), for the difference $v=u_{2}-u_{1}$ we have

$$
\begin{align*}
& \int_{D_{T}} {\left[\frac{\partial^{2 k} v}{\partial t^{2 k}} \frac{\partial^{2 k} \varphi}{\partial t^{2 k}}+\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial v}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{j}}\right] \mathrm{d} x \mathrm{~d} t } \\
& \quad=-\int_{D_{T}}\left(f\left(u_{2}\right)-f\left(u_{1}\right)\right) \varphi \mathrm{d} x \mathrm{~d} t \quad \forall \varphi \in W_{0}^{1,2 k}\left(D_{T}\right) . \tag{34}
\end{align*}
$$

Putting $\varphi=v \in W_{0}^{1,2 k}\left(D_{T}\right)$ in the equality (34), in view of (12) we obtain

$$
\begin{equation*}
\|v\|_{1}=-\int_{D_{T}}\left(f\left(u_{2}\right)-f\left(u_{1}\right)\right)\left(u_{2}-u_{1}\right) \mathrm{d} x \mathrm{~d} t \tag{35}
\end{equation*}
$$

Since f is a monotone function, we have

$$
\begin{equation*}
\left(f\left(s_{2}\right)-f\left(s_{1}\right)\right)\left(s_{2}-s_{1}\right) \geq 0 \quad \forall s_{1}, s_{2} \in \mathbb{R}^{n} \tag{36}
\end{equation*}
$$

From (13), (35) and (36) it follows that

$$
c_{1}\|v\|_{0} \leq\|v\|_{1} \leq 0
$$

whence we find that $v=0$, i.e. $u_{2}=u_{1}$, and hence the proof of the Theorem 3.1 is complete.

From Theorem 2.1 and 3.1 in its turn it follows

Theorem 3.2: Let fbe a monotone function and satisfy the conditions (7), (8) and (22). Then for any $F \in L_{2}\left(D_{T}\right)$ the problem (1)-(3) has a unique weak generalized solution in the space $W_{0}^{1,2 k}\left(D_{T}\right)$.

4. Nonexistence of a solution of problem (1)-(3)

Let for simplicity $\Omega:|x|<1$.

Theorem 4.1: Let $F^{0} \in L_{2}\left(D_{T}\right),\left\|F^{0}\right\|_{L_{2}\left(D_{T}\right)} \neq 0, F^{0} \geq 0$ and $F=\mu F^{0}, \mu=$ const >0. Then, if conditions (7), (8) are fulfilled and $f(u) \leq-|u|^{\alpha} \forall u \in \mathbb{R}^{n}, \alpha>1$, there exist a number $\mu_{0}=\mu_{0}\left(F^{0}, \alpha\right)>0$ such that for $\mu>\mu_{0}$ the problem (1)-(3) cannot have a weak generalized solution in the space $W_{0}^{1,2 k}\left(D_{T}\right)$.

Proof: Assume that the conditions of the theorem are fulfilled and the solution $u \in$ $W_{0}^{1,2 k}\left(D_{T}\right)$ of the problem (1)-(3) exists for any fixed $\mu>0$. Then the equality (4) takes
the form

$$
\begin{align*}
& \int_{D_{T}}\left[\frac{\partial^{2 k} u}{\partial t^{2 k}} \cdot \frac{\partial^{2 k} \varphi}{\partial t^{2 k}}+\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{j}}\right] \mathrm{d} x \mathrm{~d} t=-\int_{D_{T}} f(u) \varphi \mathrm{d} x \mathrm{~d} t \\
& \quad+\mu \int_{D_{T}} F^{0} \varphi \mathrm{~d} x \mathrm{~d} t \quad \forall \varphi \in W_{0}^{1,2 k}\left(D_{T}\right) . \tag{37}
\end{align*}
$$

By integration by parts it can be easily verified that

$$
\begin{align*}
& \int_{D_{T}} {\left[\frac{\partial^{2 k} u}{\partial t^{2 k}} \cdot \frac{\partial^{2 k} \varphi}{\partial t^{2 k}}+\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{j}}\right] \mathrm{d} x \mathrm{~d} t } \\
& \quad=\int_{D_{T}} u\left[\frac{\partial^{4 k} \varphi}{\partial t^{4 k}}-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a_{i j} \frac{\partial \varphi}{\partial x_{i}}\right)\right] \varphi \mathrm{d} x \mathrm{~d} t \\
& \quad=\int_{D_{T}} u L_{0} \varphi \mathrm{~d} x \mathrm{~d} t \quad \forall \varphi \in C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right), \tag{38}
\end{align*}
$$

where the space $C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)$ was introduced in the first section, besides

$$
C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right) \subset W_{0}^{1,2 k}\left(D_{T}\right)
$$

In view of (38) and conditions of the theorem from (37) we obtain

$$
\begin{equation*}
\int_{D_{T}}|u|^{\alpha} \varphi \mathrm{d} x \mathrm{~d} t \leq \int_{D_{T}} u L_{0} \varphi \mathrm{~d} x \mathrm{~d} t-\mu \int_{D_{T}} F^{0} \varphi \mathrm{~d} x \mathrm{~d} t \quad \forall \varphi \in C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right) . \tag{39}
\end{equation*}
$$

Below we use the method of test functions [17]. As a test function we take $\varphi \in$ $C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)$ such that $\left.\varphi\right|_{D_{T}}>0$. If in Young's inequality with parameter $\varepsilon>0$

$$
a b \leq \frac{\varepsilon}{\alpha} a^{\alpha}+\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} b^{\alpha^{\prime}} ; a, b \geq 0, \quad \alpha^{\prime}=\frac{\alpha}{\alpha-1}
$$

we take $a=|u| \varphi^{1 / \alpha}, b=\left|L_{0} \varphi\right| / \varphi^{1 / \alpha}$, then taking into account that $\alpha^{\prime} / \alpha=\alpha^{\prime}-1$ we have

$$
\begin{equation*}
\left|u L_{0} \varphi\right|=|u| \varphi^{1 / \alpha} \frac{\left|L_{0} \varphi\right|}{\varphi^{1 / \alpha}} \leq \frac{\varepsilon}{\alpha}|u|^{\alpha} \varphi+\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \frac{\left|L_{0} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} \tag{40}
\end{equation*}
$$

From (39), (40) we have the inequality

$$
\left(1-\frac{\varepsilon}{\alpha}\right) \int_{D_{T}}|u|^{\alpha} \varphi \mathrm{d} x \mathrm{~d} t=\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \int_{D_{T}} \frac{\left|L_{0} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} \mathrm{~d} x \mathrm{~d} t-\mu \int_{D_{T}} F^{0} \varphi \mathrm{~d} x \mathrm{~d} t
$$

whence for $\varepsilon<\alpha$ we get

$$
\begin{equation*}
\int_{D_{T}}|u|^{\alpha} \varphi \mathrm{d} x \mathrm{~d} t \leq \frac{\alpha}{(\alpha-\varepsilon) \alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \int_{D_{T}} \frac{\left|L_{0} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} \mathrm{~d} x \mathrm{~d} t-\frac{\alpha \mu}{\alpha-\varepsilon} \int_{D_{T}} F^{0} \varphi \mathrm{~d} x \mathrm{~d} t \tag{41}
\end{equation*}
$$

Taking into account the equalities $\alpha^{\prime}=\alpha /(\alpha-1), \alpha=\alpha^{\prime} /\left(\alpha^{\prime}-1\right)$ and $\min _{0<\varepsilon<\alpha} \alpha /$ $\left((\alpha-\varepsilon) \alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}\right)=1$ which is achieved at $\varepsilon=1$, from (41) we find that

$$
\begin{equation*}
\int_{D_{T}}|u|^{\alpha} \varphi \mathrm{d} x \mathrm{~d} t \leq \int_{D_{T}} \frac{\left|L_{0} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} \mathrm{~d} x \mathrm{~d} t-\alpha^{\prime} \mu \int_{D_{T}} F^{0} \varphi \mathrm{~d} x \mathrm{~d} t . \tag{42}
\end{equation*}
$$

Note that it is not difficult to show the existence of a test function φ such that

$$
\begin{equation*}
\varphi \in C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right),\left.\varphi\right|_{D_{T}}>0, \kappa_{0}=\int_{D_{T}} \frac{\left|L_{0} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} \mathrm{~d} x \mathrm{~d} t<+\infty \tag{43}
\end{equation*}
$$

Indeed, as it can be easily verified, the function

$$
\varphi(x, t)=\left[\left(1-|x|^{2}\right) t(T-t)\right]^{m}
$$

for a sufficiently large positive m satisfies conditions (43).
Since by the condition of the theorem $F^{0} \in L_{2}\left(D_{T}\right),\left\|F^{0}\right\|_{L_{2}\left(D_{T}\right)} \neq 0, F^{0} \geq 0$, and mes $D_{T}<+\infty$, due to the fact that $\left.\varphi\right|_{D_{T}}>0$ we have

$$
\begin{equation*}
0<\kappa_{1}=\int_{D_{T}} F^{0} \varphi \mathrm{~d} x \mathrm{~d} t<+\infty \tag{44}
\end{equation*}
$$

Denote by $g(\mu)$ the right-hand side of the inequality (42) which is a linear function with respect to μ. From (43) and (44) we have

$$
\begin{equation*}
g(\mu)<0 \quad \text { for } \mu>\mu_{0} \quad \text { and } \quad g(\mu)>0 \quad \text { for } \mu<\mu_{0} \tag{45}
\end{equation*}
$$

where

$$
g(\mu)=\kappa_{0}-\alpha^{\prime} \mu \kappa_{1}, \quad \mu_{0}=\frac{\kappa_{0}}{\alpha^{\prime} \kappa_{1}}>0 .
$$

Owing to (45) for $\mu>\mu_{0}$, the right-hand side of the inequality (42) is negative, whereas the left-hand side of that inequality is nonnegative. The obtained contradiction proves the theorem.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] Chen G, Wang S. Existence and non-existence of global solutions for nonlinear hyperbolic equations of higher order. Comment Math Univ Carolin. 1995;36(3):475-487.
[2] Chen X. Existence and nonexistence of global solutions for nonlinear evolution equation of fourth order. Appl Math J Chinese Univ Ser B. 2001;16(3):251-258.
[3] Aliev AB, Lichaei BH. Existence and nonexistence of global solutions of the Cauchy problem for higher order semilinear pseudohyperbolic equations. Nonlinear Anal. 2010;72(7-8): 3275-3288.
[4] Wang YZ, Wang YX. Existence and nonexistence of global solutions for a class of nonlinear wave equations of higher order. Nonlinear Anal. 2010;72(12):4500-4507.
[5] Galactionov VA, Mitidieri EL, Pohozaev SI. Blow-up for higher - order parabolic, hyperbolic, dispersion and Schrodinger equations; 2014. (Chapman and Hall/CRC monographs and research notes in mathematics).
[6] Ma T, Gu J, Li L. Asymptotic behaviour of solutions to a class of fourth-order nonlinear evolution equations with dispersive and dissipative terms. J Inequal Appl. 2016;2016(1):318. 1-7.
[7] Kiguradze T, Ben-Rabha R. On strong well-posedness of initial-boundary value problems for higher order nonlinear hyperbolic equations with two independent variables. Georgian Math J. 2017;24(3):409-428.
[8] Lin G, Gao Y, Sun Y. On local existence and blow-up solutions for nonlinear wave equations of higher - order Kirchhoff type with strong dissipation. Int J Mod Nonlinear Theory Appl. 2017;6(1):11-25.
[9] Kharibegashvili S, Midodashvili B. Solvability of characteristic boundary - value problems for nonlinear equations with iterated wave operator in the principal part. Electron J Differ Equ. 2008;2008(72):12 pp.
[10] Kharibegashvili S, Midodashvili B. On one boundary value problem for a nonlinear equation with iterated wave operator in the principal part. Georgian Math J. 2008;15(3):541-554.
[11] Kharibegashvili S. Boundary value problems for some classes of nonlinear wave equations. Mem Differ Equ Math Phys. 2009;46:1-114.
[12] Kharibegashvili S. The boundary value problem for one class of semilinear partial differential equations. Proceedings of the International Workshop (QUALITDE); 2017 Dec 24-26; Tbilisi, Georgia; 2017. p. 81-82.
[13] Hormander L. The analysis of linear partial differential operators II: differential operators with constant coefficients. Berlin: Springer-Verlag; 1983.
[14] Ladyzhenskaya OA. The boundary value problems of mathematical physics. New York: Springer-Verlag; 1985.
[15] Kufner A, Fucik S. Nonlinear differential equations. Amsterdam - New York: Elsevier; 1980.
[16] Evans LC. Partial differential equations. Providence (RI): Amer. Math. Soc.; 1998. (Grad. Stud. Math.; vol. 19).
[17] Mitidieri E, Pohozhaev SI. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. TrMat Inst Steklova [Proc Steklov Inst Math]. 2001;234:1-384. 2001;234(3):1-362.

[^0]: CONTACT S. Kharibegashvili © kharibegashvili@yahoo.com

