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1. STATEMENT OF THE PROBLEM

For the nonlinear wave equation

�u := utt − ∆u = λ|u|α + F, (1)

where λ and α are given positive constants, F is a given real function, and u is the unknown real
function, we consider the characteristic Cauchy problem of finding a solution u(x, t) of Eq. (1) in
the future light cone D : t > |x|, x = (x1, . . . , xn), n > 1, with the boundary condition

u|∂D = f. (2)

Here f is a given real function on the characteristic cone ∂D : t = |x|.
Note that existence and nonexistence issues for global solutions of the Cauchy problem for

semilinear equations of the form (1) with the initial conditions u|t=0 = u0 and ut|t=0 = u1 were
considered in [1–17].

As to the characteristic problem in the linear case, that is, problem (1), (2) with λ = 0, this
problem is known to be well posed and globaly solvable in appropriate function spaces [18–22].

In what follows, we show that, under certain conditions on the nonlinearity exponent α and the
functions F and f , problem (1), (2) has no global solutions, although, as will be justified below,
the problem is locally solvable.

Before introducing the notion of a weak generalized solution of problem (1), (2), note that if
u ∈ C2

(
D̄
)

is a classical solution of this problem, then, by multiplying both sides of Eq. (1) by an
arbitrary function ϕ ∈ C1

(
D̄
)

compactly supported with respect to the variable r = (t2 + |x|2)1/2,
i.e., vanishing for sufficiently large r, and by integrating by parts, we obtain

∫

∂D

∂u

∂N
ϕds −

∫

D

utϕtdx dt +
∫

D

∇u∇ϕdx dt = λ

∫

D

|u|αϕdx dt +
∫

D

Fϕdx dt, (3)

where
∂

∂N
= νn+1

∂

∂t
−

n∑

i=1

νi

∂

∂xi

(4)

is the conormal derivative, ν = (ν1, ν2, . . . , νn, νn+1) is the unit outward normal on ∂D, and

∇ = (∂/∂x1, . . . , ∂/∂xn).
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Since the conormal derivative (4) is an intrinsic differential operator on the characteristic cone
∂D : t = |x|, it follows from (2) that relation (3) can be rewritten in the form

−
∫

D

utϕtdx dt +
∫

D

∇u∇ϕdx dt = λ

∫

D

|u|αϕdx dt +
∫

D

Fϕdx dt −
∫

∂D

∂f

∂N
ϕds. (5)

Relation (5) can be used as a basis of the definition of a weak generalized solution of problem (1), (2).

Definition 1. Let F ∈ L̃2,loc(D) and f ∈ W̃ 1
2,loc(∂D). A function u ∈ L̃α,loc(D) ∩ W̃ 1

2,loc(D) is
called a weak generalized solution of problem (1), (2) if the integral relation (5) is valid for each
function ϕ ∈ C1

(
D̄
)

compactly supported with respect to the variable r = (t2 + |x|2)1/2. Such a
solution is also referred to as a global solution of problem (1), (2).

Here the space L̃α,loc(D) [respectively, W̃ 1
2,loc(∂D)] consists of functions F (respectively, f) whose

restriction to the set D∩{t < τ} (respectively, ∂D∩{t < τ}) belongs to the space Lα(D∩{t < τ})
[respectively, W 1

2 (∂D ∩{t < τ})] for each τ > 0. The spaces L̃α,loc(D) and W̃ 1
2,loc(D) are defined in

a similar way. The space W 1
2 (Ω) is the well-known Sobolev space.

In a similar way, one can pose the characteristic problem for Eq. (1) in the finite domain
Dτ = D ∩ {t < τ}, τ = const > 0, i.e., Dτ : |x| < t < τ . We set Sτ = ∂D ∩ ∂Dτ , i.e., Sτ : t = |x|
for t ≤ τ .

Definition 2. Let F ∈ L2 (Dτ ) and f ∈ W 1
2 (Sτ). A function u ∈ Lα (Dτ ) ∩ W 1

2 (Dτ ) is called
a weak generalized solution of Eq. (1) in the domain Dτ with the boundary condition u|Sτ

= f
instead of (2) if the integral relation

−
∫

Dτ

utϕtdx dt +
∫

Dτ

∇u∇ϕdx dt = λ

∫

Dτ

|u|αϕdx dt +
∫

Dτ

Fϕdx dt −
∫

Sτ

∂f

∂N
ϕds (6)

is valid for each function ϕ ∈ C1
(
D̄τ

)
such that ϕ|∂Dτ \Sτ

= 0.

2. NONEXISTENCE OF A GLOBAL SOLUTION OF PROBLEM (1), (2)

Theorem 1. Let

F ∈ L̃2,loc(D), F |D ≥ 0, (7)

f ∈ W̃ 1
2,loc(∂D), f |∂D ≥ 0,

∂f

∂r

∣
∣∣
∣
∂D

≥ 0. (8)

If the nonlinearity exponent α in Eq. (1) satisfies the inequalities

1 < α ≤ n + 1
n − 1

, (9)

then, apart from the trivial solution for F = f = 0, problem (1), (2) has no global weak generalized
solution u ∈ L̃α,loc(D) ∩ W̃ 1

2,loc(D).

Proof. Note that the last inequality in condition (8) should be treated in the generalized sense:
by virtue of the assumption that f ∈ W̃ 1

2,loc(∂D), there exists a generalized derivative ∂f/∂r

belonging to L̃2,loc(∂D), which is nonnegative, and consequently, the inequality
∫

∂D

∂f

∂r
ψ ds ≥ 0 (10)

is valid for each function ψ ∈ C(∂D), ψ ≥ 0, compactly supported with respect to the variable r.
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We use the method of test functions [14, pp. 10–12]. Suppose that, under the assumptions of
the theorem, there exists a nontrivial global weak generalized solution u ∈ L̃α,loc(D) ∩ W̃ 1

2,loc(D)
of problem (1), (2).

By assuming that ϕ ∈ C2
(
D̄
)

and diam suppϕ < +∞ in the integral relation (5), by integrating
by parts on the left-hand side in this relation, and by taking into account the boundary condition (2),
we obtain

−
∫

D

utϕtdx dt +
∫

D

∇u∇ϕdx dt =
∫

D

u�ϕdx dt −
∫

∂D

u
∂ϕ

∂N
ds

=
∫

D

u�ϕdx dt −
∫

∂D

f
∂ϕ

∂N
ds.

(11)

Now, by using the fact that the conormal derivative ∂/∂N on ∂D coincides with minus the
derivative with respect to the spherical variable r = (t2 + |x|2)1/2 and by choosing the test function
in the form ϕ(x, t) = ϕ0 [R−2 (t2 + |x|2)], where ϕ0 ∈ C2((−∞,+∞)), ϕ0 ≥ 0, ϕ′

0 ≤ 0, ϕ0(σ) = 1 for
0 ≤ σ ≤ 1, and ϕ0(σ) = 0 for σ ≥ 2, R = const > 0 [14, p. 22], from (7), (8), and (10), we obtain

∫

D

Fϕdx dt ≥ 0,
∫

∂D

f
∂ϕ

∂N
ds ≥ 0,

∫

∂D

∂f

∂N
ϕds ≤ 0. (12)

Relation (5), together with (11) and (12), implies that
∫

D

u�ϕdx dt ≥ λ

∫

D

|u|αϕdx dt. (13)

By using the Hölder inequality

∫

D

g1g2dx dt ≤

⎛

⎝
∫

D

|g1|α dx dt

⎞

⎠

1/α⎛

⎝
∫

D

|g2|α
′
dx dt

⎞

⎠

1/α′

,
1
α

+
1
α′ = 1,

we obtain ∫

D

u�ϕdx dt ≤
∫

D

(
|u|ϕ1/α

) (
ϕ−1/α|�ϕ|

)
dx dt

≤

⎛

⎝
∫

D

|u|αϕdx dt

⎞

⎠

1/α⎛

⎝
∫

D

ϕ−α′/α|�ϕ|α′
dx dt

⎞

⎠

1/α′

=

⎛

⎝
∫

D

|u|αϕdx dt

⎞

⎠

1/α⎛

⎝
∫

D

|�ϕ|α′

ϕα′−1
dx dt

⎞

⎠

1/α′

.

(14)

It follows from (13) and (14) that

λ

∫

D

|u|αϕdx dt ≤

⎛

⎝
∫

D

|u|αϕdx dt

⎞

⎠

1/α⎛

⎝
∫

D

|�ϕ|α′

ϕα′−1
dx dt

⎞

⎠

1/α′

,

which readily implies the inequality
∫

D

|u|αϕdx dt ≤ λ−α′
∫

D

|�ϕ|α′

ϕα′−1
dx dt. (15)
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After the change of variables t = Rξ0, x = Rξ, we have ϕ(x, t) = ϕ0 (ξ2
0 + |ξ|2) and

∫

D

|�ϕ|α′

ϕα′−1
dx dt =

∫

D

|2(1 − n)ϕ′
0 + 4R−2 (t2 − |x|2) ϕ′′

0 |
α′

R2α′ϕα′−1
dx dt

= Rn+1−2α′
∫

1≤|ξ0|2+|ξ|2≤2,
ξ0>|ξ|

|2(1 − n)ϕ′
0 + 4 (ξ2

0 − |ξ|2) ϕ′′
0 |

α′

ϕα′−1
0

dξ dξ0.
(16)

The existence of a test function ϕ(x, t) = ϕ0 [R−2 (t2 + |x|2)] with the above-mentioned proper-
ties for which the integrals on the right-hand sides in (15) and (16) are finite was proved in [14, p. 22].

From (15) and (16), we obtain the a priori estimate
∫

D

|u|αϕdx dt ≤ CRn+1−2α′
(17)

with a positive constant C independent of R. By passing to the limit as R → ∞ in (17) for the
case in which n+1−2α′ < 0 [if n > 1, then this is equivalent to the condition α < (n+1)/(n−1)],
we obtain

∫
D
|u|αdx dt = 0 and hence arrive at a contradiction with our assumption. The limit

case n + 1 − 2α′ = 0, i.e., α = (n + 1)/(n − 1), in condition (9) can be treated by analogy with
[14, p. 23]. The proof of the theorem is complete.

Remark 1. Although, under the assumptions of Theorem 1, problem (1), (2) has no global
solutions, there may exist a local solution of the characteristic problem in the domain Dτ in the
sense of Definition 2, that is, of the problem

�u(x, t) = λ|u(x, t)|α + F (x, t), (x, t) ∈ Dτ , (18)
u(x, t) = f(x, t), (x, t) ∈ Sτ . (19)

Therefore, we naturally face the problem of estimating the number t = T such that problem (18),
(19) has a solution in the domain Dτ for τ < T but has no solution in the space Lα (Dτ )∩W 1

2 (Dτ )
for τ ≥ T .

To this end, we suppose that u ∈ Lα (Dτ) ∩ W 1
2 (Dτ ) is a solution of problem (18), (19) in

the domain Dτ in the sense of the integral relation (6). For the test function in (6), we take the
function ϕ(x, t) = ϕ0 [(2/τ 2) (t2 + |x|2)], where ϕ0 ∈ C2((−∞,+∞)) is the function introduced
above in the proof of Theorem 1. Obviously, this function satisfies all assumptions in Definition 2.
By integrating by parts on the left-hand side in (6), just as in (11), we obtain

∫

Dτ

u�ϕdx dt = λ

∫

Dτ

|u|αϕdx dt +
∫

Dτ

Fϕdx dt +
∫

Sτ

f
∂ϕ

∂N
ds −

∫

Sτ

∂f

∂N
ϕds. (20)

By analogy with (12), by (7) and (8), we have the inequalities
∫

Dτ

Fϕdx dt ≥ 0,
∫

Sτ

f
∂ϕ

∂N
ds ≥ 0,

∫

Sτ

∂f

∂N
ϕds ≤ 0. (21)

We assume that F , f , and ϕ are given functions and introduce a function of one variable τ by
setting

γ(τ) =
∫

Dτ

Fϕdx dt +
∫

Sτ

f
∂ϕ

∂N
ds −

∫

Sτ

∂f

∂N
ϕds, τ > 0. (22)

By virtue of the absolute continuity of the integral and inequalities (21), the function γ(τ) given
by (22) is nonnegative, continuous, and nondecreasing; moreover,

lim
τ→0

γ(τ) = 0. (23)
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Taking into account (22), we rewrite relation (20) in the form

λ

∫

Dτ

|u|αϕdx dt =
∫

Dτ

u�ϕdx dt − γ(τ). (24)

In the Young inequality ab ≤ (ε/α)aα +
(
α′εα′−1

)−1
bα′

, a, b ≥ 0, α′ = α/(α−1), with parameter
ε > 0, we set a = |u|ϕ1/α and b = |�ϕ|/ϕ1/α. Then, by virtue of the relation α′/α = α′−1, we have

|u�ϕ| = |u|ϕ1/α |�ϕ|
ϕ1/α

≤ ε

α
|u|αϕ +

1
α′εα′−1

|�ϕ|α′

ϕα′−1
. (25)

Relation (24), together with (25), implies that

(
λ − ε

α

) ∫

Dτ

|u|αϕdx dt ≤ 1
α′εα′−1

∫

Dτ

|�ϕ|α′

ϕα′−1
dx dt − γ(τ),

whence it follows that
∫

Dτ

|u|αϕdx dt ≤ α

(λα − ε)α′εα′−1

∫

Dτ

|�ϕ|α′

ϕα′−1
dx dt − α

λα − ε
γ(τ) (26)

for ε < λα.
By using the relations

α′ =
α

α − 1
, α =

α′

α′ − 1
, min

0<ε<λα

α

(λα − ε)α′εα′−1
=

1
λα′ ,

(where the minimum is attained at ε = λ), from (26), we obtain
∫

Dτ

|u|αϕdx dt ≤ 1
λα′

∫

Dτ

|�ϕ|α′

ϕα′−1
dx dt − α′

λ
γ(τ). (27)

By the properties of the function ϕ0, we have

ϕ(x, t) = ϕ0

[
2τ−2

(
t2 + |x|2

)]
= 0

for r = (t2 + |x|2)1/2 ≥ τ . Therefore, after the change of variables t =
√

2 τξ0, x =
√

2 τξ, just as
in the derivation of (16), one can readily see that

∫

Dτ

|�ϕ|α′

ϕα′−1
dx dt =

∫

r=(t2+|x|2)1/2≤τ

|�ϕ|α′

ϕα′−1
dx dt =

(√
2 τ
)n+1−2α′

κ0, (28)

where

κ0 =
∫

1≤|ξ0|2+|ξ|2≤2

|2(1 − n)ϕ′
0 + 4 (ξ2

0 − |ξ|2)ϕ′′
0 |

α′

ϕα′−1
0

dξ dξ0 < +∞.

Since ϕ0(σ) = 1 for 0 ≤ σ ≤ 1, it follows from (27) and (28) that

∫

r≤τ/
√

2

|u|αdx dt ≤
∫

Dτ

|u|αϕdx dt ≤
(√

2 τ
)n+1−2α′

λα′ κ0 −
α′

λ
γ(τ). (29)
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For α < (n + 1)/(n − 1), i.e., for n + 1 − 2α′ < 0, the equation

g(τ) =

(√
2 τ
)n+1−2α′

λα′ κ0 −
α′

λ
γ(τ) = 0 (30)

has a unique positive root τ = τ0 > 0, since

g1(τ) =
((√

2 τ
)n+1−2α′/

λα′
)

κ0

is a positive continuous strictly decreasing function on the interval (0,+∞); moreover,

lim
τ→0

g1(τ) = +∞, lim
τ→+∞

g1(τ) = 0

and, as was mentioned above, γ(τ) is a nonnegative continuous nondecreasing function. Since
we assume that at least one of the functions F and f is not trivial, we have limτ→+∞ γ(τ) > 0.
Furthermore, g(τ) < 0 for τ > τ0, and g(τ) > 0 for 0 < τ < τ0. Consequently, if τ > τ0, then
the right-hand side of (29) is negative, which is impossible. Therefore, if problem (18), (19) has a
solution in the domain Dτ , then necessarily τ ≤ τ0 and hence the estimate

T ≤ τ0 (31)

is valid for the number τ = T in Remark 1, where τ0 is the unique positive root of Eq. (30).
In the limit case α = (n + 1)/(n − 1) for n + 1 − 2α′ = 0, if

lim
τ→+∞

γ(τ) >
κ0

α′λα′−1
, (32)

then we use exactly the same argument as in the case α < (n + 1)/(n − 1) and again obtain the
estimate (31), where τ0 is the least positive root of Eq. (30), whose existence is guaranteed by (32).

Remark 2. Since the right-hand sides in Eq. (1) and the boundary condition (2), as well as
the derivative ∂f/∂r, are nonnegative under conditions (7) and (8), it follows from well-known
properties of the solution of a linear characteristic problem [19, p. 745 of the Russian translation;
22, p. 84] that the solution u(x, t) of the nonlinear problem (1), (2) is also nonnegative for n = 2
and n = 3. But in this case, if α = 1, then the above-mentioned solution satisfies the linear problem

�u = λu + F, u|∂D = f,

which is globally solvable in the corresponding function spaces.
Remark 3. If 0 < α < 1, then problem (1), (2) can have more than one solution. For example,

if F = 0 and f = 0, then conditions (7) and (8) are satisfied, but problem (1), (2) has (in addition
to the trivial solution) infinitely many global linearly independent solutions uσ(x, t) depending on
the parameter σ ≥ 0 and given by the formula

uσ(x, t) =
{

β [(t − σ)2 − |x|2]1/(1−α) if t > σ + |x|
0 if |x| ≤ t ≤ σ + |x|,

where β = λ1/(1−α) [4α/(1 − α)2 + 2(n + 1)/(1 − α)]−1/(1−α). One can readily see that uσ(x, t) ∈
L̃α,loc(D) ∩ W̃ 1

2,loc(D). Moreover, uσ(x, t) ∈ C1
(
D̄
)
, and if 1/2 ≤ α < 1, then uσ(x, t) ∈ C2

(
D̄
)
.

Remark 4. The assertion of Theorem 1 becomes invalid if relation (9) is replaced by the
inequality α > (n + 1)/(n − 1), and, at the same time, only the second condition in (8), i.e.,
the condition f |∂D ≥ 0, is violated. Indeed, the function

u(x, t) = −ε
(
1 + t2 − |x|2

)1/(1−α)
, ε = const > 0,
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is a global classical and hence generalized solution of problem (1), (2) with f = −ε (∂f/∂r|∂D = 0),
and

F =
[
2ε

n + 1
α − 1

− 4ε
α

(α − 1)2
t2 − |x|2

1 + t2 − |x|2 − λεα

]
(
1 + t2 − |x|2

)α/(1−α)
;

moreover, one can readily see that F |D ≥ 0 if α > (n + 1)/(n − 1) and

0 < ε ≤
{

2
λ

[
n + 1
α − 1

− 2α
(α − 1)2

]}1/(α−1)

.

Note that the inequality n + 1− 2α/(α− 1) > 0 is equivalent to the inequality α > (n + 1)/(n− 1).
Remark 5. The assertion of Theorem 1 becomes invalid if only the third condition in (8), i.e.,

the condition ∂f/∂r|∂D ≥ 0, is violated. Indeed, the function u(x, t) = β [(t + 1)2 − |x|2]1/(1−α),
where β = λ1/(1−α) [4α/(1 − α)2 + 2(n + 1)/(1 − α)]1/(α−1), is a global classical solution of prob-
lem (1), (2) for F = 0, and f = u|∂D: t=|x| = β [(t + 1)2 − t2]1/(1−α)

> 0.

3. LOCAL SOLVABILITY
OF THE CHARACTERISTIC CAUCHY PROBLEM

In what follows, we restrict our considerations to problem (18), (19) in the domain Dτ with the
homogeneous boundary condition (19):

u|Sτ
= 0. (33)

First, consider the linear case in which λ = 0 in Eq. (18), that is, the problem

Lu(x, t) = F (x, t), (x, t) ∈ Dτ , u(x, t) = 0, (x, t) ∈ Sτ , (34)

where, for convenience, we have introduced the notation L = � (= ∂2/∂t2 − ∆).

Definition 3. Let F ∈ L2 (Dτ ). A function

u ∈ W̊ 1
2 (Dτ , Sτ ) =

{
u ∈ W 1

2 (Dτ ) : u|Sτ
= 0
}

is called a strong generalized solution of problem (34) if there exists a sequence of functions
um = W 2

2 (Dτ ) ∩ W̊ 1
2 (Dτ , Sτ ) such that

lim
m→∞

‖um − u‖W 1
2 (Dτ ) = 0, lim

m→∞
‖Lum − F‖L2(Dτ ) = 0.

To derive the desired a priori estimate for a solution u ∈ W 2
2 (Dτ ) of problem (34), we use

the argument in [23]. By multiplying both sides of Eq. (34) by 2ut, by integrating the resulting
relation over the domain Dδ, 0 < δ ≤ τ , and by performing simple transformations with the use of
integration by parts, we obtain

∫

Ωδ

[

u2
t +

n∑

i=1

u2
xi

]

dx = 2
∫

Dδ

Futdx dt, (35)

where Ωδ = Dτ ∩ {t = δ}. By setting w(δ) =
∫
Ωδ

[
u2

t +
∑n

i=1 u2
xi

]
dx and by using the inequality

2Fut ≤ εu2
t + ε−1F 2, from (35), we obtain

w(δ) ≤ ε

δ∫

0

w(σ)dσ +
1
ε
‖F‖2

L2(Dδ), 0 < δ ≤ τ, (36)

for each ε = const > 0.
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Since ‖F‖2
L2(Dδ) is a nondecreasing function of δ, it follows from (36) and the Gronwall lemma

[24, p. 13 of the Russian translation] that w(δ) ≤ ε−1‖F‖2
L2(Dδ) exp δε; therefore, by virtue of the

relation infε>0(exp δε)/ε = eδ and the fact that this greatest lower bound is attained at ε = 1/δ,
the last inequality acquires the form w(δ) ≤ eδ‖F‖2

L2(Dδ). In turn, this implies that

∫

Dτ

[

u2
t +

n∑

i=1

u2
xi

]

dx dt =

τ∫

0

w(σ)dσ ≤ eτ 2‖F‖2
L2(Dτ ),

and consequently,
‖u‖W̊ 1

2 (Dτ ,Sτ ) ≤
√

e τ‖F‖L2(Dτ ). (37)

Here we have used the fact that the norm

‖u‖W 1
2 (Dτ ) =

⎧
⎨

⎩

∫

Dτ

[

u2 + u2
t +

n∑

i=1

u2
xi

]

dx dt

⎫
⎬

⎭

1/2

in the space W̊ 1
2 (Dτ , Sτ ) is equivalent to the norm

‖u‖ =

⎧
⎨

⎩

∫

Dτ

[

u2
t +

n∑

i=1

u2
xi

]

dx dt

⎫
⎬

⎭

1/2

.

Since the space C∞
0 (Dτ ) is dense in L2 (Dτ ), it follows that, for a given F ∈ L2 (Dτ ), there

exists a sequence of functions Fm ∈ C∞
0 (Dτ ) such that limm→∞ ‖Fm − F‖L2(Dτ ) = 0. For a given

m, we continue the function Fm by zero outside Dτ and retain the same notation for the continued
function; then we have the inclusion Fm ∈ C∞ (Rn+1

+

)
, and for the support of this function, we have

suppFm ⊂ D, where Rn+1
+ = Rn+1 ∩{t ≥ 0}. By um we denote the solution of the Cauchy problem

Lum = Fm, um|t=0 = 0, ∂um/∂t|t=0 = 0. We know that um exists, is unique, and belongs to
the space C∞(Rn+1

+

)
; moreover, since suppFm ⊂ D, um|t=0 = 0, and ∂um/∂t|t=0 = 0, it follows

from the geometric properties of the dependence domain of the solution of the wave equation that
[25, p. 191 of the Russian translation] suppum ⊂ D: t > |x|. Using the same notation for the
restriction of um to Dτ , one can readily see that um ∈ W 2

2 (Dτ) ∩ W̊ 1
2 (Dτ , Sτ); by (37),

‖um − um1‖W̊ 1
2 (Dτ ,Sτ ) ≤

√
e τ ‖Fm − Fm1‖L2(Dτ ) . (38)

Since {Fm} is a Cauchy sequence in L2 (Dτ ), it follows from (38) that {um} is also a Cauchy
sequence in the complete space W̊ 1

2 (Dτ , Sτ ). Therefore, there exists a function u ∈ W̊ 1
2 (Dτ , Sτ )

such that limm→∞ ‖um − u‖W̊ 1
2 (Dτ ,Sτ) = 0; since Lum = Fm → F in L2 (Dτ ), it follows from

Definition 3 that u is a strong generalized solution of problem (34). The uniqueness of a strong
generalized solution of problem (34) in the space W̊ 1

2 (Dτ , Sτ ) follows from the a priori estimate (37).
Consequently, we can represent the solution u of problem (34) in the form u = L−1F , where
L−1 : L2 (Dτ) → W̊ 1

2 (Dτ , Sτ ) is a linear continuous operator, whose norm, by virtue of (37), can
be estimated as ∥

∥L−1
∥
∥

L2(Dτ )→W̊ 1
2 (Dτ ,Sτ )

≤
√

e τ. (39)

Remark 6. The embedding operator I : W̊ 1
2 (Dτ , Sτ ) → Lq (Dτ) is a linear continuous compact

operator for 1 < q < 2(n+1)/(n−1) and n > 1 [26, p. 81]. At the same time, the Nemytskii operator
T : Lq (Dτ) → L2 (Dτ ) given by the formula Tu = λ|u|α is continuous and bounded if q ≥ 2α
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[27, p. 349; 28, pp. 66–67 of the Russian translation]. Therefore, if α < (n + 1)/(n − 1), then there
exists a number q such that 1 < 2α ≤ q < 2(n + 1)/(n − 1) and hence the operator

T0 = TI : W̊ 1
2 (Dτ , Sτ) → L2 (Dτ ) (40)

is a continuous compact operator. Moreover, the inclusion u ∈ W̊ 1
2 (Dτ , Sτ ) implies that so much

the more u ∈ Lα (Dτ ). Throughout the preceding considerations, we have assumed that α > 1.

Definition 4. Let F ∈ L2 (Dτ ) and 1 < α < (n + 1)/(n − 1). A function u ∈ W̊ 1
2 (Dτ , Sτ )

is called a strong generalized solution of the nonlinear problem (18), (33) if there exists a se-
quence of functions um ∈ W 2

2 (Dτ ) ∩ W̊ 1
2 (Dτ , Sτ ) such that um → u in the space W̊ 1

2 (Dτ , Sτ) and
[Lum − λ |um|α] → F in the space L2 (Dτ ). In this case, the convergence of the sequence {λ |um|α}
to the function λ|u|α in the space L2 (Dτ ) as um → u in the space W̊ 1

2 (Dτ , Sτ ) follows from Re-
mark 6; moreover, since |u|α ∈ L2 (Dτ ), it follows from the boundedness of the domain Dτ that so
much the more u ∈ Lα (Dτ ).

Remark 7. One can readily see that, by Remark 6, if 1 < α < (n + 1)/(n − 1), then a strong
generalized solution u of problem (18), (33) in the sense of Definition 4 is a weak generalized solution
of this problem for f = 0 in the sense of Definition 2, i.e., in the sense of the integral identity (6).

Remark 8. Note that if F ∈ L2 (Dτ ) and 1 < α < (n + 1)/(n− 1), then a function u belonging
to W̊ 1

2 (Dτ , Sτ ) is a strong generalized solution of problem (18), (33) if and only if u is a solution
of the functional equation

u = L−1 (λ|u|α + F ) (41)

in the space W̊ 1
2 (Dτ , Sτ ).

We rewrite Eq. (41) in the form
u = Au + u0, (42)

where, by virtue of (39) and (40) and by Remark 6, A = L−1T0 : W̊ 1
2 (Dτ , Sτ ) → W̊ 1

2 (Dτ , Sτ) is a
continuous compact operator in the space W̊ 1

2 (Dτ , Sτ ) and u0 = L−1F ∈ W̊ 1
2 (Dτ , Sτ ).

Remark 9. Let

B (0, z2) :=
{

u ∈ W̊ 1
2 (Dτ , Sτ ) : ‖u‖W̊ 1

2 (Dτ ,Sτ ) ≤ z2

}

be the closed (convex) ball of radius z2 > 0 in the Hilbert space W̊ 1
2 (Dτ , Sτ ) centered at zero.

Since A : W̊ 1
2 (Dτ , Sτ ) → W̊ 1

2 (Dτ , Sτ ), 1 < α < (n + 1)/(n − 1), is a continuous compact operator,
it follows from the Schauder principle that, to prove the solvability of Eq. (42), it suffices to show
that the operator A1 given by the formula A1u = Au + u0 maps the ball B (0, z2) into itself for
some z2 > 0 [29, p. 370]. To this end, below we represent the desired estimate for ‖Au‖W̊ 1

2 (Dτ ,Sτ ).

If u ∈ W̊ 1
2 (Dτ , Sτ ), then by ũ we denote the function that is the continuation of u as an even

function around the plane t = τ into the domain D∗
τ : τ < t < 2τ − |x|; i.e.,

ũ(t, x) =
{

u(x, t) for (x, t) ∈ Dτ

u(x, 2τ − t) for (x, t) ∈ D∗
τ ,

and ũ(x, t) = u(x, t) for t = τ , |x| < τ in the sense of the trace theory. Obviously, ũ ∈ W̊ 1
2

(
D̃τ

)
,

where D̃τ : |x| < t < 2τ − |x|. Moreover, D̃τ = Dτ ∪ {(x, t) : t = τ, |x| < τ} ∪ D∗
τ .

By using the inequality [30, p. 258]
∫
Ω
|v|dΩ ≤ (mes Ω)1−1/p‖v‖p,Ω, p ≥ 1, and by taking into

account the relations ‖ũ‖p

Lp(D̃τ )
= 2‖u‖p

Lp(Dτ ) and ‖ũ‖2

W̊ 1
2 (D̃τ ) = 2‖u‖2

W̊ 1
2 (Dτ ,Sτ )

, from the well-

known multiplicative inequality [26, p. 78] ‖v‖p,Ω ≤ β ‖vx‖α̃

m,Ω ‖v‖1−α̃
r,Ω , v ∈ W̊ 1

2 (Ω), Ω ⊂ Rn+1,
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α̃ = (1/r − 1/p) (1/r − 1/m̃)−1, m̃ = (n + 1)m/(n + 1 − m), for Ω = D̃τ ⊂ Rn+1, v = ũ, r = 1,
m = 2, and 1 < p ≤ 2(n + 1)/(n − 1), where β = const > 0 is independent of v and τ , we obtain

‖u‖Lp(Dτ ) ≤ c0 (mes Dτ )
1/p+1/(n+1)−1/2 ‖u‖W̊ 1

2 (Dτ ,Sτ ) ∀u ∈ W̊ 1
2 (Dτ , Sτ) , (43)

where c0 = const > 0 is independent of u.
Since mes Dτ = (ωn/(n + 1)) τn+1, where ωn is the volume of the unit ball in Rn, it follows

from (43) with p = 2α that

‖u‖L2α(Dτ ) ≤ c0�̃α,nτ δn‖u‖ringW 1
2 (Dτ ,Sτ ) ∀u ∈ W̊ 1

2 (Dτ , Sτ) , (44)

where δn = (n + 1)(1/(2α) + 1/(n + 1) − 1/2) and �̃α,n = (ωn/(n + 1))δn/(n+1).
By virtue of (44), the number ‖T0u‖L2(Dτ ), where u ∈ W̊ 1

2 (Dτ , Sτ ) and T0 is the operator given
by (40), satisfies the estimate

‖T0u‖L2(Dτ ) ≤ λ

⎡

⎣
∫

Dτ

|u|2αdx dt

⎤

⎦

1/2

= λ‖u‖α
L2α(Dτ ) ≤ λ�α,nταδn‖u‖α

W̊ 1
2 (Dτ ,Sτ )

, (45)

where �α,n =
[
c0�̃α,n

]α
.

Now from (39) and (45), we find that the number ‖Au‖W̊ 1
2 (Dτ ,Sτ), where Au = L−1T0u, admits

the estimate

‖Au‖W̊ 1
2 (Dτ ,Sτ) ≤

∥∥L−1
∥∥

L2(Dτ )→W̊ 1
2 (Dτ ,Sτ)

‖T0u‖L2(Dτ )

≤
√

e λ�α,nτ 1+αδn‖u‖α
W̊ 1

2 (Dτ ,Sτ)
∀u ∈ W̊ 1

2 (Dτ , Sτ ) .
(46)

Note that δn > 0 for α < (n + 1)/(n − 1).
Consider the equation

azα + b = z (47)
for the unknown z, where

a =
√

e λ�α,nτ 1+αδn , b =
√

e τ‖F‖L2(Dτ ). (48)

If τ > 0, then, obviously, a > 0 and b ≥ 0. Arguing by analogy with the case in which α = 3
[29, pp. 373–374], one can show that (1) if b = 0, then, along with the zero root z1 = 0, Eq. (47)
has the unique positive root z2 = a−1/(α−1); (2) if b > 0, then Eq. (47) has two positive roots z1

and z2, 0 < z1 < z2, for 0 < b < b0, where

b0 =
[
α−1/(α−1) − α−α/(α−1)

]
a−1/(α−1); (49)

moreover, these roots merge for b = b0, and we obtain the single positive root z1 = z2 = z0 =
(αa)−1/(α−1); (3) if b > b0, then Eq. (47) does not have a nonnegative root.

Note that if 0 < b < b0, then z1 < z0 = (αa)−1/(α−1) < z2. By (48) and (49), the condition
b ≤ b0 is equivalent to the condition

√
e τ‖F‖L2(Dτ ) ≤

[√
e λ�α,nτ 1+αδn

]−1/(α−1) [
α−1/(α−1) − αα/(α−1)

]
,

or
‖F‖L2(Dτ ) ≤ γn,λ,ατ−αn , αn > 0, (50)

where

γn,λ,α =
[
α−1/(α−1) − αα/(α−1)

]
(λ�α,n)−1/(α−1) exp

[
−1

2

(
1 +

1
α − 1

)]
,

αn = 1 +
1

α − 1
[1 + αδn] .
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By virtue of the absolute continuity of the Lebesgue integral, we have limτ→0 ‖F‖L2(Dτ ) = 0.
At the same time, limτ→0 τ−αn = +∞. Therefore, there exists a number τ1 = τ1(F ), 0 < τ1 < +∞,
such that inequality (50) is valid for

0 < τ ≤ τ1(F ). (51)

Now let us show that if condition (51) is satisfied, then the operator

A1u = Au + u0 : W̊ 1
2 (Dτ , Sτ ) → W̊ 1

2 (Dτ , Sτ)

maps the ball B (0, z2), where z2 is the maximum positive root of Eq. (47) (see Remark 9), into
itself. Indeed, if u ∈ B (0, z2), then, by (46)–(48), we have

‖A1u‖W̊ 1
2 (Dτ ,Sτ ) ≤ a‖u‖α

W̊ 1
2 (Dτ ,Sτ )

+ b ≤ azα
2 + b = z2.

Therefore, by Remarks 7–9, the following assertion is valid.

Theorem 2. Let F ∈ L̃2,loc(D), 1 < α < (n+1)/(n−1), and let τ satisfy condition (51). Then
problem (18), (33) in the domain Dτ has at least one strong generalized solution u ∈ W̊ 1

2 (Dτ , Sτ )
in the sense of Definition 4, which is also a weak generalized solution of this problem in the sense
of Definition 2.

Remark 10. Note that if 1 < α < (n + 1)/(n − 1), then the uniqueness of the solution of
problem (18), (33) in the domain Dτ can be proved in the narrower function space

E̊1
2 =

⎧
⎪⎨

⎪⎩
u ∈ W̊ 1

2 (Dτ , Sτ ) : ess sup
0<σ≤τ

∫

Ωσ=D∩{t=σ}

[

u2
t +

n∑

i=1

u2
xi

]

dx < +∞

⎫
⎪⎬

⎪⎭

than W̊ 1
2 (Dτ , Sτ).

Remark 11. It follows from the preceding assertions that, by virtue of the estimates (31)
and (51), the number t = T considered in Remark 1 lies in the interval [τ1, τ0].
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