On the Nonexistence of Global Solutions of the Characteristic Cauchy Problem for a Nonlinear Wave Equation in a Conical Domain

S. S. Kharibegashvili
Mathematical Institute, Georgian Academy of Sciences, Tbilisi, Georgia
Received July 2, 2004

DOI: 10.1134/S0012266106020157

1. STATEMENT OF THE PROBLEM

For the nonlinear wave equation

$$
\begin{equation*}
\square u:=u_{t t}-\Delta u=\lambda|u|^{\alpha}+F, \tag{1}
\end{equation*}
$$

where λ and α are given positive constants, F is a given real function, and u is the unknown real function, we consider the characteristic Cauchy problem of finding a solution $u(x, t)$ of Eq. (1) in the future light cone $D: t>|x|, x=\left(x_{1}, \ldots, x_{n}\right), n>1$, with the boundary condition

$$
\begin{equation*}
\left.u\right|_{\partial D}=f . \tag{2}
\end{equation*}
$$

Here f is a given real function on the characteristic cone $\partial D: t=|x|$.
Note that existence and nonexistence issues for global solutions of the Cauchy problem for semilinear equations of the form (1) with the initial conditions $\left.u\right|_{t=0}=u_{0}$ and $\left.u_{t}\right|_{t=0}=u_{1}$ were considered in [1-17].

As to the characteristic problem in the linear case, that is, problem (1), (2) with $\lambda=0$, this problem is known to be well posed and globaly solvable in appropriate function spaces [18-22].

In what follows, we show that, under certain conditions on the nonlinearity exponent α and the functions F and f, problem (1), (2) has no global solutions, although, as will be justified below, the problem is locally solvable.

Before introducing the notion of a weak generalized solution of problem (1), (2), note that if $u \in C^{2}(\bar{D})$ is a classical solution of this problem, then, by multiplying both sides of Eq. (1) by an arbitrary function $\varphi \in C^{1}(\bar{D})$ compactly supported with respect to the variable $r=\left(t^{2}+|x|^{2}\right)^{1 / 2}$, i.e., vanishing for sufficiently large r, and by integrating by parts, we obtain

$$
\begin{equation*}
\int_{\partial D} \frac{\partial u}{\partial N} \varphi d s-\int_{D} u_{t} \varphi_{t} d x d t+\int_{D} \nabla u \nabla \varphi d x d t=\lambda \int_{D}|u|^{\alpha} \varphi d x d t+\int_{D} F \varphi d x d t \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\partial}{\partial N}=\nu_{n+1} \frac{\partial}{\partial t}-\sum_{i=1}^{n} \nu_{i} \frac{\partial}{\partial x_{i}} \tag{4}
\end{equation*}
$$

is the conormal derivative, $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{n}, \nu_{n+1}\right)$ is the unit outward normal on ∂D, and

$$
\nabla=\left(\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}\right) .
$$

Since the conormal derivative (4) is an intrinsic differential operator on the characteristic cone $\partial D: t=|x|$, it follows from (2) that relation (3) can be rewritten in the form

$$
\begin{equation*}
-\int_{D} u_{t} \varphi_{t} d x d t+\int_{D} \nabla u \nabla \varphi d x d t=\lambda \int_{D}|u|^{\alpha} \varphi d x d t+\int_{D} F \varphi d x d t-\int_{\partial D} \frac{\partial f}{\partial N} \varphi d s \tag{5}
\end{equation*}
$$

Relation (5) can be used as a basis of the definition of a weak generalized solution of problem (1), (2).
Definition 1. Let $F \in \tilde{L}_{2, \text { loc }}(D)$ and $f \in \tilde{W}_{2, \text { loc }}^{1}(\partial D)$. A function $u \in \tilde{L}_{\alpha, \text { loc }}(D) \cap \tilde{W}_{2, \text { loc }}^{1}(D)$ is called a weak generalized solution of problem (1), (2) if the integral relation (5) is valid for each function $\varphi \in C^{1}(\bar{D})$ compactly supported with respect to the variable $r=\left(t^{2}+|x|^{2}\right)^{1 / 2}$. Such a solution is also referred to as a global solution of problem (1), (2).

Here the space $\tilde{L}_{\alpha, \text { loc }}(D)\left[\right.$ respectively, $\left.\tilde{W}_{2, \text { loc }}^{1}(\partial D)\right]$ consists of functions F (respectively, f) whose restriction to the set $D \cap\{t<\tau\}$ (respectively, $\partial D \cap\{t<\tau\})$ belongs to the space $L_{\alpha}(D \cap\{t<\tau\})$ [respectively, $\left.W_{2}^{1}(\partial D \cap\{t<\tau\})\right]$ for each $\tau>0$. The spaces $\tilde{L}_{\alpha, \text { loc }}(D)$ and $\tilde{W}_{2, \text { loc }}^{1}(D)$ are defined in a similar way. The space $W_{2}^{1}(\Omega)$ is the well-known Sobolev space.

In a similar way, one can pose the characteristic problem for Eq. (1) in the finite domain $D_{\tau}=D \cap\{t<\tau\}, \tau=$ const >0, i.e., $D_{\tau}:|x|<t<\tau$. We set $S_{\tau}=\partial D \cap \partial D_{\tau}$, i.e., $S_{\tau}: t=|x|$ for $t \leq \tau$.

Definition 2. Let $F \in L_{2}\left(D_{\tau}\right)$ and $f \in W_{2}^{1}\left(S_{\tau}\right)$. A function $u \in L_{\alpha}\left(D_{\tau}\right) \cap W_{2}^{1}\left(D_{\tau}\right)$ is called a weak generalized solution of Eq. (1) in the domain D_{τ} with the boundary condition $\left.u\right|_{S_{\tau}}=f$ instead of (2) if the integral relation

$$
\begin{equation*}
-\int_{D_{\tau}} u_{t} \varphi_{t} d x d t+\int_{D_{\tau}} \nabla u \nabla \varphi d x d t=\lambda \int_{D_{\tau}}|u|^{\alpha} \varphi d x d t+\int_{D_{\tau}} F \varphi d x d t-\int_{S_{\tau}} \frac{\partial f}{\partial N} \varphi d s \tag{6}
\end{equation*}
$$

is valid for each function $\varphi \in C^{1}\left(\bar{D}_{\tau}\right)$ such that $\left.\varphi\right|_{\partial D_{\tau} \backslash S_{\tau}}=0$.

2. NONEXISTENCE OF A GLOBAL SOLUTION OF PROBLEM (1), (2)

Theorem 1. Let

$$
\begin{align*}
& F \in \tilde{L}_{2, \text { loc }}(D),\left.\quad F\right|_{D} \geq 0 \tag{7}\\
& f \in \tilde{W}_{2, \mathrm{loc}}^{1}(\partial D),\left.\quad f\right|_{\partial D} \geq 0,\left.\quad \frac{\partial f}{\partial r}\right|_{\partial D} \geq 0 . \tag{8}
\end{align*}
$$

If the nonlinearity exponent α in Eq. (1) satisfies the inequalities

$$
\begin{equation*}
1<\alpha \leq \frac{n+1}{n-1} \tag{9}
\end{equation*}
$$

then, apart from the trivial solution for $F=f=0$, problem (1), (2) has no global weak generalized solution $u \in \tilde{L}_{\alpha, \text { loc }}(D) \cap \tilde{W}_{2, \text { loc }}^{1}(D)$.

Proof. Note that the last inequality in condition (8) should be treated in the generalized sense: by virtue of the assumption that $f \in \tilde{W}_{2, \text { loc }}^{1}(\partial D)$, there exists a generalized derivative $\partial f / \partial r$ belonging to $\tilde{L}_{2, \text { loc }}(\partial D)$, which is nonnegative, and consequently, the inequality

$$
\begin{equation*}
\int_{\partial D} \frac{\partial f}{\partial r} \psi d s \geq 0 \tag{10}
\end{equation*}
$$

is valid for each function $\psi \in C(\partial D), \psi \geq 0$, compactly supported with respect to the variable r.

We use the method of test functions [14, pp. 10-12]. Suppose that, under the assumptions of the theorem, there exists a nontrivial global weak generalized solution $u \in \tilde{L}_{\alpha, \operatorname{loc}}(D) \cap \tilde{W}_{2, \mathrm{loc}}^{1}(D)$ of problem (1), (2).

By assuming that $\varphi \in C^{2}(\bar{D})$ and $\operatorname{diam} \operatorname{supp} \varphi<+\infty$ in the integral relation (5), by integrating by parts on the left-hand side in this relation, and by taking into account the boundary condition (2), we obtain

$$
\begin{align*}
-\int_{D} u_{t} \varphi_{t} d x d t+\int_{D} \nabla u \nabla \varphi d x d t & =\int_{D} u \square \varphi d x d t-\int_{\partial D} u \frac{\partial \varphi}{\partial N} d s \\
& =\int_{D} u \square \varphi d x d t-\int_{\partial D} f \frac{\partial \varphi}{\partial N} d s . \tag{11}
\end{align*}
$$

Now, by using the fact that the conormal derivative $\partial / \partial N$ on ∂D coincides with minus the derivative with respect to the spherical variable $r=\left(t^{2}+|x|^{2}\right)^{1 / 2}$ and by choosing the test function in the form $\varphi(x, t)=\varphi_{0}\left[R^{-2}\left(t^{2}+|x|^{2}\right)\right]$, where $\varphi_{0} \in C^{2}((-\infty,+\infty)), \varphi_{0} \geq 0, \varphi_{0}^{\prime} \leq 0, \varphi_{0}(\sigma)=1$ for $0 \leq \sigma \leq 1$, and $\varphi_{0}(\sigma)=0$ for $\sigma \geq 2, R=$ const >0 [14, p. 22], from (7), (8), and (10), we obtain

$$
\begin{equation*}
\int_{D} F \varphi d x d t \geq 0, \quad \int_{\partial D} f \frac{\partial \varphi}{\partial N} d s \geq 0, \quad \int_{\partial D} \frac{\partial f}{\partial N} \varphi d s \leq 0 . \tag{12}
\end{equation*}
$$

Relation (5), together with (11) and (12), implies that

$$
\begin{equation*}
\int_{D} u \square \varphi d x d t \geq \lambda \int_{D}|u|^{\alpha} \varphi d x d t . \tag{13}
\end{equation*}
$$

By using the Hölder inequality

$$
\int_{D} g_{1} g_{2} d x d t \leq\left(\int_{D}\left|g_{1}\right|^{\alpha} d x d t\right)^{1 / \alpha}\left(\int_{D}\left|g_{2}\right|^{\alpha^{\prime}} d x d t\right)^{1 / \alpha^{\prime}}, \quad \frac{1}{\alpha}+\frac{1}{\alpha^{\prime}}=1
$$

we obtain

$$
\begin{align*}
\int_{D} u \square \varphi d x d t & \leq \int_{D}\left(|u| \varphi^{1 / \alpha}\right)\left(\varphi^{-1 / \alpha}|\square \varphi|\right) d x d t \\
& \leq\left(\int_{D}|u|^{\alpha} \varphi d x d t\right)^{1 / \alpha}\left(\int_{D} \varphi^{-\alpha^{\prime} / \alpha}|\square \varphi|^{\alpha^{\prime}} d x d t\right)^{1 / \alpha^{\prime}} \tag{14}\\
& =\left(\int_{D}|u|^{\alpha} \varphi d x d t\right)^{1 / \alpha}\left(\int_{D} \frac{|\square \varphi|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t\right)^{1 / \alpha^{\prime}}
\end{align*}
$$

It follows from (13) and (14) that

$$
\lambda \int_{D}|u|^{\alpha} \varphi d x d t \leq\left(\int_{D}|u|^{\alpha} \varphi d x d t\right)^{1 / \alpha}\left(\int_{D} \frac{|\square \varphi|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t\right)^{1 / \alpha^{\prime}},
$$

which readily implies the inequality

$$
\begin{equation*}
\int_{D}|u|^{\alpha} \varphi d x d t \leq \lambda^{-\alpha^{\prime}} \int_{D} \frac{|\square \varphi|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t \tag{15}
\end{equation*}
$$

After the change of variables $t=R \xi_{0}, x=R \xi$, we have $\varphi(x, t)=\varphi_{0}\left(\xi_{0}^{2}+|\xi|^{2}\right)$ and

$$
\begin{align*}
\int_{D} \frac{|\square \varphi|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t & =\int_{D} \frac{\left|2(1-n) \varphi_{0}^{\prime}+4 R^{-2}\left(t^{2}-|x|^{2}\right) \varphi_{0}^{\prime \prime}\right|^{\alpha^{\prime}}}{R^{2 \alpha^{\prime}} \varphi^{\alpha^{\prime}-1}} d x d t \\
& =R^{n+1-2 \alpha^{\prime}} \int_{\substack{1 \leq\left|\xi_{0}\right|^{2}+|\xi|^{2} \leq 2, \xi_{0}>|\xi|}} \frac{\left|2(1-n) \varphi_{0}^{\prime}+4\left(\xi_{0}^{2}-|\xi|^{2}\right) \varphi_{0}^{\prime \prime}\right|^{\alpha^{\prime}}}{\varphi_{0}^{\alpha^{\prime}-1}} d \xi d \xi_{0} . \tag{16}
\end{align*}
$$

The existence of a test function $\varphi(x, t)=\varphi_{0}\left[R^{-2}\left(t^{2}+|x|^{2}\right)\right]$ with the above-mentioned properties for which the integrals on the right-hand sides in (15) and (16) are finite was proved in [14, p. 22].

From (15) and (16), we obtain the a priori estimate

$$
\begin{equation*}
\int_{D}|u|^{\alpha} \varphi d x d t \leq C R^{n+1-2 \alpha^{\prime}} \tag{17}
\end{equation*}
$$

with a positive constant C independent of R. By passing to the limit as $R \rightarrow \infty$ in (17) for the case in which $n+1-2 \alpha^{\prime}<0$ [if $n>1$, then this is equivalent to the condition $\alpha<(n+1) /(n-1)$], we obtain $\int_{D}|u|^{\alpha} d x d t=0$ and hence arrive at a contradiction with our assumption. The limit case $n+1-2 \alpha^{\prime}=0$, i.e., $\alpha=(n+1) /(n-1)$, in condition (9) can be treated by analogy with [14, p. 23]. The proof of the theorem is complete.

Remark 1. Although, under the assumptions of Theorem 1, problem (1), (2) has no global solutions, there may exist a local solution of the characteristic problem in the domain D_{τ} in the sense of Definition 2, that is, of the problem

$$
\begin{align*}
\square u(x, t) & =\lambda|u(x, t)|^{\alpha}+F(x, t), \quad(x, t) \in D_{\tau}, \tag{18}\\
u(x, t) & =f(x, t), \quad(x, t) \in S_{\tau} . \tag{19}
\end{align*}
$$

Therefore, we naturally face the problem of estimating the number $t=T$ such that problem (18), (19) has a solution in the domain D_{τ} for $\tau<T$ but has no solution in the space $L_{\alpha}\left(D_{\tau}\right) \cap W_{2}^{1}\left(D_{\tau}\right)$ for $\tau \geq T$.

To this end, we suppose that $u \in L_{\alpha}\left(D_{\tau}\right) \cap W_{2}^{1}\left(D_{\tau}\right)$ is a solution of problem (18), (19) in the domain D_{τ} in the sense of the integral relation (6). For the test function in (6), we take the function $\varphi(x, t)=\varphi_{0}\left[\left(2 / \tau^{2}\right)\left(t^{2}+|x|^{2}\right)\right]$, where $\varphi_{0} \in C^{2}((-\infty,+\infty))$ is the function introduced above in the proof of Theorem 1. Obviously, this function satisfies all assumptions in Definition 2. By integrating by parts on the left-hand side in (6), just as in (11), we obtain

$$
\begin{equation*}
\int_{D_{\tau}} u \square \varphi d x d t=\lambda \int_{D_{\tau}}|u|^{\alpha} \varphi d x d t+\int_{D_{\tau}} F \varphi d x d t+\int_{S_{\tau}} f \frac{\partial \varphi}{\partial N} d s-\int_{S_{\tau}} \frac{\partial f}{\partial N} \varphi d s \tag{20}
\end{equation*}
$$

By analogy with (12), by (7) and (8), we have the inequalities

$$
\begin{equation*}
\int_{D_{\tau}} F \varphi d x d t \geq 0, \quad \int_{S_{\tau}} f \frac{\partial \varphi}{\partial N} d s \geq 0, \quad \int_{S_{\tau}} \frac{\partial f}{\partial N} \varphi d s \leq 0 \tag{21}
\end{equation*}
$$

We assume that F, f, and φ are given functions and introduce a function of one variable τ by setting

$$
\begin{equation*}
\gamma(\tau)=\int_{D_{\tau}} F \varphi d x d t+\int_{S_{\tau}} f \frac{\partial \varphi}{\partial N} d s-\int_{S_{\tau}} \frac{\partial f}{\partial N} \varphi d s, \quad \tau>0 \tag{22}
\end{equation*}
$$

By virtue of the absolute continuity of the integral and inequalities (21), the function $\gamma(\tau)$ given by (22) is nonnegative, continuous, and nondecreasing; moreover,

$$
\begin{equation*}
\lim _{\tau \rightarrow 0} \gamma(\tau)=0 \tag{23}
\end{equation*}
$$

Taking into account (22), we rewrite relation (20) in the form

$$
\begin{equation*}
\lambda \int_{D_{\tau}}|u|^{\alpha} \varphi d x d t=\int_{D_{\tau}} u \square \varphi d x d t-\gamma(\tau) \tag{24}
\end{equation*}
$$

In the Young inequality $a b \leq(\varepsilon / \alpha) a^{\alpha}+\left(\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}\right)^{-1} b^{\alpha^{\prime}}, a, b \geq 0, \alpha^{\prime}=\alpha /(\alpha-1)$, with parameter $\varepsilon>0$, we set $a=|u| \varphi^{1 / \alpha}$ and $b=|\square \varphi| / \varphi^{1 / \alpha}$. Then, by virtue of the relation $\alpha^{\prime} / \alpha=\alpha^{\prime}-1$, we have

$$
\begin{equation*}
|u \square \varphi|=|u| \varphi^{1 / \alpha} \frac{|\square \varphi|}{\varphi^{1 / \alpha}} \leq \frac{\varepsilon}{\alpha}|u|^{\alpha} \varphi+\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \frac{|\square \varphi|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} . \tag{25}
\end{equation*}
$$

Relation (24), together with (25), implies that

$$
\left(\lambda-\frac{\varepsilon}{\alpha}\right) \int_{D_{\tau}}|u|^{\alpha} \varphi d x d t \leq \frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \int_{D_{\tau}} \frac{|\square \varphi|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t-\gamma(\tau)
$$

whence it follows that

$$
\begin{equation*}
\int_{D_{\tau}}|u|^{\alpha} \varphi d x d t \leq \frac{\alpha}{(\lambda \alpha-\varepsilon) \alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \int_{D_{\tau}} \frac{|\square \varphi|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t-\frac{\alpha}{\lambda \alpha-\varepsilon} \gamma(\tau) \tag{26}
\end{equation*}
$$

for $\varepsilon<\lambda \alpha$.
By using the relations

$$
\alpha^{\prime}=\frac{\alpha}{\alpha-1}, \quad \alpha=\frac{\alpha^{\prime}}{\alpha^{\prime}-1}, \quad \min _{0<\varepsilon<\lambda \alpha} \frac{\alpha}{(\lambda \alpha-\varepsilon) \alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}}=\frac{1}{\lambda^{\alpha^{\prime}}}
$$

(where the minimum is attained at $\varepsilon=\lambda$), from (26), we obtain

$$
\begin{equation*}
\int_{D_{\tau}}|u|^{\alpha} \varphi d x d t \leq \frac{1}{\lambda^{\alpha^{\prime}}} \int_{D_{\tau}} \frac{|\square \varphi|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t-\frac{\alpha^{\prime}}{\lambda} \gamma(\tau) \tag{27}
\end{equation*}
$$

By the properties of the function φ_{0}, we have

$$
\varphi(x, t)=\varphi_{0}\left[2 \tau^{-2}\left(t^{2}+|x|^{2}\right)\right]=0
$$

for $r=\left(t^{2}+|x|^{2}\right)^{1 / 2} \geq \tau$. Therefore, after the change of variables $t=\sqrt{2} \tau \xi_{0}, x=\sqrt{2} \tau \xi$, just as in the derivation of (16), one can readily see that

$$
\begin{equation*}
\int_{D_{\tau}} \frac{|\square \varphi|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t=\int_{r=\left(t^{2}+|x|^{2}\right)^{1 / 2} \leq \tau} \frac{|\square \varphi|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t=(\sqrt{2} \tau)^{n+1-2 \alpha^{\prime}} \varkappa_{0} \tag{28}
\end{equation*}
$$

where

$$
\varkappa_{0}=\int_{1 \leq\left|\xi_{0}\right|^{2}+|\xi|^{2} \leq 2} \frac{\left|2(1-n) \varphi_{0}^{\prime}+4\left(\xi_{0}^{2}-|\xi|^{2}\right) \varphi_{0}^{\prime \prime}\right|^{\alpha^{\prime}}}{\varphi_{0}^{\alpha^{\prime}-1}} d \xi d \xi_{0}<+\infty
$$

Since $\varphi_{0}(\sigma)=1$ for $0 \leq \sigma \leq 1$, it follows from (27) and (28) that

$$
\begin{equation*}
\int_{r \leq \tau / \sqrt{2}}|u|^{\alpha} d x d t \leq \int_{D_{\tau}}|u|^{\alpha} \varphi d x d t \leq \frac{(\sqrt{2} \tau)^{n+1-2 \alpha^{\prime}}}{\lambda^{\alpha^{\prime}}} \varkappa_{0}-\frac{\alpha^{\prime}}{\lambda} \gamma(\tau) \tag{29}
\end{equation*}
$$

For $\alpha<(n+1) /(n-1)$, i.e., for $n+1-2 \alpha^{\prime}<0$, the equation

$$
\begin{equation*}
g(\tau)=\frac{(\sqrt{2} \tau)^{n+1-2 \alpha^{\prime}}}{\lambda^{\alpha^{\prime}}} \varkappa_{0}-\frac{\alpha^{\prime}}{\lambda} \gamma(\tau)=0 \tag{30}
\end{equation*}
$$

has a unique positive root $\tau=\tau_{0}>0$, since

$$
g_{1}(\tau)=\left((\sqrt{2} \tau)^{n+1-2 \alpha^{\prime}} / \lambda^{\alpha^{\prime}}\right) \varkappa_{0}
$$

is a positive continuous strictly decreasing function on the interval $(0,+\infty)$; moreover,

$$
\lim _{\tau \rightarrow 0} g_{1}(\tau)=+\infty, \quad \lim _{\tau \rightarrow+\infty} g_{1}(\tau)=0
$$

and, as was mentioned above, $\gamma(\tau)$ is a nonnegative continuous nondecreasing function. Since we assume that at least one of the functions F and f is not trivial, we have $\lim _{\tau \rightarrow+\infty} \gamma(\tau)>0$. Furthermore, $g(\tau)<0$ for $\tau>\tau_{0}$, and $g(\tau)>0$ for $0<\tau<\tau_{0}$. Consequently, if $\tau>\tau_{0}$, then the right-hand side of (29) is negative, which is impossible. Therefore, if problem (18), (19) has a solution in the domain D_{τ}, then necessarily $\tau \leq \tau_{0}$ and hence the estimate

$$
\begin{equation*}
T \leq \tau_{0} \tag{31}
\end{equation*}
$$

is valid for the number $\tau=T$ in Remark 1, where τ_{0} is the unique positive root of Eq. (30).
In the limit case $\alpha=(n+1) /(n-1)$ for $n+1-2 \alpha^{\prime}=0$, if

$$
\begin{equation*}
\lim _{\tau \rightarrow+\infty} \gamma(\tau)>\frac{\varkappa_{0}}{\alpha^{\prime} \lambda^{\alpha^{\prime}-1}} \tag{32}
\end{equation*}
$$

then we use exactly the same argument as in the case $\alpha<(n+1) /(n-1)$ and again obtain the estimate (31), where τ_{0} is the least positive root of Eq. (30), whose existence is guaranteed by (32).

Remark 2. Since the right-hand sides in Eq. (1) and the boundary condition (2), as well as the derivative $\partial f / \partial r$, are nonnegative under conditions (7) and (8), it follows from well-known properties of the solution of a linear characteristic problem [19, p. 745 of the Russian translation; 22, p. 84] that the solution $u(x, t)$ of the nonlinear problem (1), (2) is also nonnegative for $n=2$ and $n=3$. But in this case, if $\alpha=1$, then the above-mentioned solution satisfies the linear problem

$$
\square u=\lambda u+F,\left.\quad u\right|_{\partial D}=f,
$$

which is globally solvable in the corresponding function spaces.
Remark 3. If $0<\alpha<1$, then problem (1), (2) can have more than one solution. For example, if $F=0$ and $f=0$, then conditions (7) and (8) are satisfied, but problem (1), (2) has (in addition to the trivial solution) infinitely many global linearly independent solutions $u_{\sigma}(x, t)$ depending on the parameter $\sigma \geq 0$ and given by the formula

$$
u_{\sigma}(x, t)=\left\{\begin{array}{cl}
\beta\left[(t-\sigma)^{2}-|x|^{2}\right]^{1 /(1-\alpha)} & \text { if } t>\sigma+|x| \\
0 & \text { if }|x| \leq t \leq \sigma+|x|,
\end{array}\right.
$$

where $\beta=\tilde{\lambda}^{1 /(1-\alpha)}\left[4 \alpha /(1-\alpha)^{2}+2(n+1) /(1-\alpha)\right]^{-1 /(1-\alpha)}$. One can readily see that $u_{\sigma}(x, t) \in$ $\tilde{L}_{\alpha, \text { loc }}(D) \cap \tilde{W}_{2, \text { loc }}^{1}(D)$. Moreover, $u_{\sigma}(x, t) \in C^{1}(\bar{D})$, and if $1 / 2 \leq \alpha<1$, then $u_{\sigma}(x, t) \in C^{2}(\bar{D})$.

Remark 4. The assertion of Theorem 1 becomes invalid if relation (9) is replaced by the inequality $\alpha>(n+1) /(n-1)$, and, at the same time, only the second condition in (8), i.e., the condition $\left.f\right|_{\partial D} \geq 0$, is violated. Indeed, the function

$$
u(x, t)=-\varepsilon\left(1+t^{2}-|x|^{2}\right)^{1 /(1-\alpha)}, \quad \varepsilon=\text { const }>0
$$

is a global classical and hence generalized solution of problem (1), (2) with $f=-\varepsilon\left(\partial f /\left.\partial r\right|_{\partial D}=0\right)$, and

$$
F=\left[2 \varepsilon \frac{n+1}{\alpha-1}-4 \varepsilon \frac{\alpha}{(\alpha-1)^{2}} \frac{t^{2}-|x|^{2}}{1+t^{2}-|x|^{2}}-\lambda \varepsilon^{\alpha}\right]\left(1+t^{2}-|x|^{2}\right)^{\alpha /(1-\alpha)}
$$

moreover, one can readily see that $\left.F\right|_{D} \geq 0$ if $\alpha>(n+1) /(n-1)$ and

$$
0<\varepsilon \leq\left\{\frac{2}{\lambda}\left[\frac{n+1}{\alpha-1}-\frac{2 \alpha}{(\alpha-1)^{2}}\right]\right\}^{1 /(\alpha-1)}
$$

Note that the inequality $n+1-2 \alpha /(\alpha-1)>0$ is equivalent to the inequality $\alpha>(n+1) /(n-1)$.
Remark 5. The assertion of Theorem 1 becomes invalid if only the third condition in (8), i.e., the condition $\partial f /\left.\partial r\right|_{\partial D} \geq 0$, is violated. Indeed, the function $u(x, t)=\beta\left[(t+1)^{2}-|x|^{2}\right]^{1 /(1-\alpha)}$, where $\beta=\lambda^{1 /(1-\alpha)}\left[4 \alpha /(1-\alpha)^{2}+2(n+1) /(1-\alpha)\right]^{1 /(\alpha-1)}$, is a global classical solution of problem (1), (2) for $F=0$, and $f=\left.u\right|_{\partial D: t=|x|}=\beta\left[(t+1)^{2}-t^{2}\right]^{1 /(1-\alpha)}>0$.

3. LOCAL SOLVABILITY

OF THE CHARACTERISTIC CAUCHY PROBLEM

In what follows, we restrict our considerations to problem (18), (19) in the domain D_{τ} with the homogeneous boundary condition (19):

$$
\begin{equation*}
\left.u\right|_{S_{\tau}}=0 . \tag{33}
\end{equation*}
$$

First, consider the linear case in which $\lambda=0$ in Eq. (18), that is, the problem

$$
\begin{equation*}
L u(x, t)=F(x, t), \quad(x, t) \in D_{\tau}, \quad u(x, t)=0, \quad(x, t) \in S_{\tau}, \tag{34}
\end{equation*}
$$

where, for convenience, we have introduced the notation $L=\square\left(=\partial^{2} / \partial t^{2}-\Delta\right)$.
Definition 3. Let $F \in L_{2}\left(D_{\tau}\right)$. A function

$$
u \in \dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)=\left\{u \in W_{2}^{1}\left(D_{\tau}\right):\left.u\right|_{S_{\tau}}=0\right\}
$$

is called a strong generalized solution of problem (34) if there exists a sequence of functions $u_{m}=W_{2}^{2}\left(D_{\tau}\right) \cap W_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$ such that

$$
\lim _{m \rightarrow \infty}\left\|u_{m}-u\right\|_{W_{2}^{1}\left(D_{\tau}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|L u_{m}-F\right\|_{L_{2}\left(D_{\tau}\right)}=0 .
$$

To derive the desired a priori estimate for a solution $u \in W_{2}^{2}\left(D_{\tau}\right)$ of problem (34), we use the argument in [23]. By multiplying both sides of Eq. (34) by $2 u_{t}$, by integrating the resulting relation over the domain $D_{\delta}, 0<\delta \leq \tau$, and by performing simple transformations with the use of integration by parts, we obtain

$$
\begin{equation*}
\int_{\Omega_{\delta}}\left[u_{t}^{2}+\sum_{i=1}^{n} u_{x_{i}}^{2}\right] d x=2 \int_{D_{\delta}} F u_{t} d x d t \tag{35}
\end{equation*}
$$

where $\Omega_{\delta}=D_{\tau} \cap\{t=\delta\}$. By setting $w(\delta)=\int_{\Omega_{\delta}}\left[u_{t}^{2}+\sum_{i=1}^{n} u_{x_{i}}^{2}\right] d x$ and by using the inequality $2 F u_{t} \leq \varepsilon u_{t}^{2}+\varepsilon^{-1} F^{2}$, from (35), we obtain

$$
\begin{equation*}
w(\delta) \leq \varepsilon \int_{0}^{\delta} w(\sigma) d \sigma+\frac{1}{\varepsilon}\|F\|_{L_{2}\left(D_{\delta}\right)}^{2}, \quad 0<\delta \leq \tau \tag{36}
\end{equation*}
$$

for each $\varepsilon=$ const >0.

Since $\|F\|_{L_{2}\left(D_{\delta}\right)}^{2}$ is a nondecreasing function of δ, it follows from (36) and the Gronwall lemma [24, p. 13 of the Russian translation] that $w(\delta) \leq \varepsilon^{-1}\|F\|_{L_{2}\left(D_{\delta}\right)}^{2} \exp \delta \varepsilon$; therefore, by virtue of the relation $\inf _{\varepsilon>0}(\exp \delta \varepsilon) / \varepsilon=e \delta$ and the fact that this greatest lower bound is attained at $\varepsilon=1 / \delta$, the last inequality acquires the form $w(\delta) \leq e \delta\|F\|_{L_{2}\left(D_{\delta}\right)}^{2}$. In turn, this implies that

$$
\int_{D_{\tau}}\left[u_{t}^{2}+\sum_{i=1}^{n} u_{x_{i}}^{2}\right] d x d t=\int_{0}^{\tau} w(\sigma) d \sigma \leq e \tau^{2}\|F\|_{L_{2}\left(D_{\tau}\right)}^{2}
$$

and consequently,

$$
\begin{equation*}
\|u\|_{W_{2}^{1}\left(D_{\tau}, S_{\tau}\right)} \leq \sqrt{e} \tau\|F\|_{L_{2}\left(D_{\tau}\right)} \tag{37}
\end{equation*}
$$

Here we have used the fact that the norm

$$
\|u\|_{W_{2}^{1}\left(D_{\tau}\right)}=\left\{\int_{D_{\tau}}\left[u^{2}+u_{t}^{2}+\sum_{i=1}^{n} u_{x_{i}}^{2}\right] d x d t\right\}^{1 / 2}
$$

in the space ${ }_{W}^{\circ}{ }_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$ is equivalent to the norm

$$
\|u\|=\left\{\int_{D_{\tau}}\left[u_{t}^{2}+\sum_{i=1}^{n} u_{x_{i}}^{2}\right] d x d t\right\}^{1 / 2}
$$

Since the space $C_{0}^{\infty}\left(D_{\tau}\right)$ is dense in $L_{2}\left(D_{\tau}\right)$, it follows that, for a given $F \in L_{2}\left(D_{\tau}\right)$, there exists a sequence of functions $F_{m} \in C_{0}^{\infty}\left(D_{\tau}\right)$ such that $\lim _{m \rightarrow \infty}\left\|F_{m}-F\right\|_{L_{2}\left(D_{\tau}\right)}=0$. For a given m, we continue the function F_{m} by zero outside D_{τ} and retain the same notation for the continued function; then we have the inclusion $F_{m} \in C^{\infty}\left(R_{+}^{n+1}\right)$, and for the support of this function, we have $\operatorname{supp} F_{m} \subset D$, where $R_{+}^{n+1}=R^{n+1} \cap\{t \geq 0\}$. By u_{m} we denote the solution of the Cauchy problem $L u_{m}=F_{m},\left.u_{m}\right|_{t=0}=0, \partial u_{m} /\left.\partial t\right|_{t=0}=0$. We know that u_{m} exists, is unique, and belongs to the space $C^{\infty}\left(R_{+}^{n+1}\right)$; moreover, since $\operatorname{supp} F_{m} \subset D,\left.u_{m}\right|_{t=0}=0$, and $\partial u_{m} /\left.\partial t\right|_{t=0}=0$, it follows from the geometric properties of the dependence domain of the solution of the wave equation that [25, p. 191 of the Russian translation] supp $u_{m} \subset D: t>|x|$. Using the same notation for the restriction of u_{m} to D_{τ}, one can readily see that $u_{m} \in W_{2}^{2}\left(D_{\tau}\right) \cap \mathscr{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$; by (37),

$$
\begin{equation*}
\left\|u_{m}-u_{m_{1}}\right\|_{\tilde{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)} \leq \sqrt{e} \tau\left\|F_{m}-F_{m_{1}}\right\|_{L_{2}\left(D_{\tau}\right)} . \tag{38}
\end{equation*}
$$

Since $\left\{F_{m}\right\}$ is a Cauchy sequence in $L_{2}\left(D_{\tau}\right)$, it follows from (38) that $\left\{u_{m}\right\}$ is also a Cauchy sequence in the complete space $\dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$. Therefore, there exists a function $u \in \dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$ such that $\lim _{m \rightarrow \infty}\left\|u_{m}-u\right\|_{\dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)}=0$; since $L u_{m}=F_{m} \rightarrow F$ in $L_{2}\left(D_{\tau}\right)$, it follows from Definition 3 that u is a strong generalized solution of problem (34). The uniqueness of a strong generalized solution of problem (34) in the space $\grave{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$ follows from the a priori estimate (37). Consequently, we can represent the solution u of problem (34) in the form $u=L^{-1} F$, where $L^{-1}: L_{2}\left(D_{\tau}\right) \rightarrow \grave{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$ is a linear continuous operator, whose norm, by virtue of (37), can be estimated as

$$
\begin{equation*}
\left\|L^{-1}\right\|_{L_{2}\left(D_{\tau}\right) \rightarrow \dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)} \leq \sqrt{e} \tau \tag{39}
\end{equation*}
$$

Remark 6. The embedding operator $I: \dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right) \rightarrow L_{q}\left(D_{\tau}\right)$ is a linear continuous compact operator for $1<q<2(n+1) /(n-1)$ and $n>1$ [26, p. 81]. At the same time, the Nemytskii operator $T: L_{q}\left(D_{\tau}\right) \rightarrow L_{2}\left(D_{\tau}\right)$ given by the formula $T u=\lambda|u|^{\alpha}$ is continuous and bounded if $q \geq 2 \alpha$
[27, p. 349; 28, pp. 66-67 of the Russian translation]. Therefore, if $\alpha<(n+1) /(n-1)$, then there exists a number q such that $1<2 \alpha \leq q<2(n+1) /(n-1)$ and hence the operator

$$
\begin{equation*}
T_{0}=T I: \grave{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right) \rightarrow L_{2}\left(D_{\tau}\right) \tag{40}
\end{equation*}
$$

is a continuous compact operator. Moreover, the inclusion $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$ implies that so much the more $u \in L_{\alpha}\left(D_{\tau}\right)$. Throughout the preceding considerations, we have assumed that $\alpha>1$.

Definition 4. Let $F \in L_{2}\left(D_{\tau}\right)$ and $1<\alpha<(n+1) /(n-1)$. A function $u \in \dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$ is called a strong generalized solution of the nonlinear problem (18), (33) if there exists a sequence of functions $u_{m} \in W_{2}^{2}\left(D_{\tau}\right) \cap \grave{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$ such that $u_{m} \rightarrow u$ in the space $\grave{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$ and $\left[L u_{m}-\lambda\left|u_{m}\right|^{\alpha}\right] \rightarrow F$ in the space $L_{2}\left(D_{\tau}\right)$. In this case, the convergence of the sequence $\left\{\lambda\left|u_{m}\right|^{\alpha}\right\}$ to the function $\lambda|u|^{\alpha}$ in the space $L_{2}\left(D_{\tau}\right)$ as $u_{m} \rightarrow u$ in the space $\dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$ follows from Remark 6; moreover, since $|u|^{\alpha} \in L_{2}\left(D_{\tau}\right)$, it follows from the boundedness of the domain D_{τ} that so much the more $u \in L_{\alpha}\left(D_{\tau}\right)$.

Remark 7. One can readily see that, by Remark 6, if $1<\alpha<(n+1) /(n-1)$, then a strong generalized solution u of problem (18), (33) in the sense of Definition 4 is a weak generalized solution of this problem for $f=0$ in the sense of Definition 2, i.e., in the sense of the integral identity (6).

Remark 8. Note that if $F \in L_{2}\left(D_{\tau}\right)$ and $1<\alpha<(n+1) /(n-1)$, then a function u belonging to $\dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$ is a strong generalized solution of problem (18), (33) if and only if u is a solution of the functional equation

$$
\begin{equation*}
u=L^{-1}\left(\lambda|u|^{\alpha}+F\right) \tag{41}
\end{equation*}
$$

in the space $\dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$.
We rewrite Eq. (41) in the form

$$
\begin{equation*}
u=A u+u_{0}, \tag{42}
\end{equation*}
$$

where, by virtue of (39) and (40) and by Remark $6, A=L^{-1} T_{0}: \dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right) \rightarrow \dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$ is a continuous compact operator in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$ and $u_{0}=L^{-1} F \in \dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$.

Remark 9. Let

$$
B\left(0, z_{2}\right):=\left\{u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right):\|u\|_{\dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)} \leq z_{2}\right\}
$$

be the closed (convex) ball of radius $z_{2}>0$ in the Hilbert space ${ }_{W}^{\circ}\left(D_{\tau}, S_{\tau}\right)$ centered at zero. Since $A: \grave{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right) \rightarrow \grave{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right), 1<\alpha<(n+1) /(n-1)$, is a continuous compact operator, it follows from the Schauder principle that, to prove the solvability of Eq. (42), it suffices to show that the operator A_{1} given by the formula $A_{1} u=A u+u_{0}$ maps the ball $B\left(0, z_{2}\right)$ into itself for some $z_{2}>0\left[29\right.$, p. 370]. To this end, below we represent the desired estimate for $\|A u\|_{\dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)}$.

If $u \in \dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$, then by \tilde{u} we denote the function that is continuation of u as an even function around the plane $t=\tau$ into the domain $D_{\tau}^{*}: \tau<t<2 \tau-|x|$; i.e.,

$$
\tilde{u}(t, x)= \begin{cases}u(x, t) & \text { for } \quad(x, t) \in D_{\tau} \\ u(x, 2 \tau-t) & \text { for } \quad(x, t) \in D_{\tau}^{*},\end{cases}
$$

and $\tilde{u}(x, t)=u(x, t)$ for $t=\tau,|x|<\tau$ in the sense of the trace theory. Obviously, $\tilde{u} \in \stackrel{\circ}{W}_{2}^{1}\left(\tilde{D}_{\tau}\right)$, where $\tilde{D}_{\tau}:|x|<t<2 \tau-|x|$. Moreover, $\tilde{D}_{\tau}=D_{\tau} \cup\{(x, t): t=\tau,|x|<\tau\} \cup D_{\tau}^{*}$.

By using the inequality [30, p. 258] $\int_{\Omega}|v| d \Omega \leq(\operatorname{mes} \Omega)^{1-1 / p}\|v\|_{p, \Omega}, p \geq 1$, and by taking into account the relations $\|\tilde{u}\|_{L_{p}\left(\tilde{D}_{\tau}\right)}^{p}=2\|u\|_{L_{p}\left(D_{\tau}\right)}^{p}$ and $\|\tilde{u}\|_{\tilde{W}_{2}^{1}\left(\tilde{D}_{\tau}\right)}^{2}=2\|u\|_{\tilde{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)}^{2}$, from the wellknown multiplicative inequality [26, p. 78$]\|v\|_{p, \Omega} \leq \beta\left\|v_{x}\right\|_{m, \Omega}^{\tilde{\alpha}}\|v\|_{r, \Omega}^{1-\tilde{\alpha}}, v \in \dot{W}_{2}^{1}(\Omega), \Omega \subset R^{n+1}$,
$\tilde{\alpha}=(1 / r-1 / p)(1 / r-1 / \tilde{m})^{-1}, \tilde{m}=(n+1) m /(n+1-m)$, for $\Omega=\tilde{D}_{\tau} \subset R^{n+1}, v=\tilde{u}, r=1$, $m=2$, and $1<p \leq 2(n+1) /(n-1)$, where $\beta=$ const >0 is independent of v and τ, we obtain

$$
\begin{equation*}
\|u\|_{L_{p}\left(D_{\tau}\right)} \leq c_{0}\left(\operatorname{mes} D_{\tau}\right)^{1 / p+1 /(n+1)-1 / 2}\|u\|_{\dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)} \quad \forall u \in \dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right) \tag{43}
\end{equation*}
$$

where $c_{0}=$ const >0 is independent of u.
Since mes $D_{\tau}=\left(\omega_{n} /(n+1)\right) \tau^{n+1}$, where ω_{n} is the volume of the unit ball in R^{n}, it follows from (43) with $p=2 \alpha$ that

$$
\begin{equation*}
\|u\|_{L_{2 \alpha}\left(D_{\tau}\right)} \leq c_{0} \tilde{\ell}_{\alpha, n} \tau^{\delta_{n}}\|u\|_{\text {ring } W_{2}^{1}\left(D_{\tau}, S_{\tau}\right)} \quad \forall u \in \dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right) \tag{44}
\end{equation*}
$$

where $\delta_{n}=(n+1)(1 /(2 \alpha)+1 /(n+1)-1 / 2)$ and $\tilde{\ell}_{\alpha, n}=\left(\omega_{n} /(n+1)\right)^{\delta_{n} /(n+1)}$.
By virtue of (44), the number $\left\|T_{0} u\right\|_{L_{2}\left(D_{\tau}\right)}$, where $u \in \dot{\circ}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$ and T_{0} is the operator given by (40), satisfies the estimate

$$
\begin{equation*}
\left\|T_{0} u\right\|_{L_{2}\left(D_{\tau}\right)} \leq \lambda\left[\int_{D_{\tau}}|u|^{2 \alpha} d x d t\right]^{1 / 2}=\lambda\|u\|_{L_{2 \alpha}\left(D_{\tau}\right)}^{\alpha} \leq \lambda \ell_{\alpha, n} \tau^{\alpha \delta_{n}}\|u\|_{W_{2}^{1}\left(D_{\tau}, S_{\tau}\right)}^{\alpha} \tag{45}
\end{equation*}
$$

where $\ell_{\alpha, n}=\left[c_{0} \tilde{\ell}_{\alpha, n}\right]^{\alpha}$.
Now from (39) and (45), we find that the number $\|A u\|_{\dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)}$, where $A u=L^{-1} T_{0} u$, admits the estimate

$$
\begin{align*}
\|A u\|_{\dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)} & \leq\left\|L^{-1}\right\|_{L_{2}\left(D_{\tau}\right) \rightarrow \grave{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)}\left\|T_{0} u\right\|_{L_{2}\left(D_{\tau}\right)} \\
& \leq \sqrt{e} \lambda \ell_{\alpha, n} \tau^{1+\alpha \delta_{n}}\|u\|_{\dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)}^{\alpha} \quad \forall u \in \dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right) \tag{46}
\end{align*}
$$

Note that $\delta_{n}>0$ for $\alpha<(n+1) /(n-1)$.
Consider the equation

$$
\begin{equation*}
a z^{\alpha}+b=z \tag{47}
\end{equation*}
$$

for the unknown z, where

$$
\begin{equation*}
a=\sqrt{e} \lambda \ell_{\alpha, n} \tau^{1+\alpha \delta_{n}}, \quad b=\sqrt{e} \tau\|F\|_{L_{2}\left(D_{\tau}\right)} \tag{48}
\end{equation*}
$$

If $\tau>0$, then, obviously, $a>0$ and $b \geq 0$. Arguing by analogy with the case in which $\alpha=3$ $\left[29\right.$, pp. 373-374], one can show that (1) if $b=0$, then, along with the zero root $z_{1}=0$, Eq. (47) has the unique positive root $z_{2}=a^{-1 /(\alpha-1)} ;(2)$ if $b>0$, then Eq. (47) has two positive roots z_{1} and $z_{2}, 0<z_{1}<z_{2}$, for $0<b<b_{0}$, where

$$
\begin{equation*}
b_{0}=\left[\alpha^{-1 /(\alpha-1)}-\alpha^{-\alpha /(\alpha-1)}\right] a^{-1 /(\alpha-1)} \tag{49}
\end{equation*}
$$

moreover, these roots merge for $b=b_{0}$, and we obtain the single positive root $z_{1}=z_{2}=z_{0}=$ $(\alpha a)^{-1 /(\alpha-1)} ;(3)$ if $b>b_{0}$, then Eq. (47) does not have a nonnegative root.

Note that if $0<b<b_{0}$, then $z_{1}<z_{0}=(\alpha a)^{-1 /(\alpha-1)}<z_{2}$. By (48) and (49), the condition $b \leq b_{0}$ is equivalent to the condition

$$
\sqrt{e} \tau\|F\|_{L_{2}\left(D_{\tau}\right)} \leq\left[\sqrt{e} \lambda \ell_{\alpha, n} \tau^{1+\alpha \delta_{n}}\right]^{-1 /(\alpha-1)}\left[\alpha^{-1 /(\alpha-1)}-\alpha^{\alpha /(\alpha-1)}\right]
$$

or

$$
\begin{equation*}
\|F\|_{L_{2}\left(D_{\tau}\right)} \leq \gamma_{n, \lambda, \alpha} \tau^{-\alpha_{n}}, \quad \alpha_{n}>0 \tag{50}
\end{equation*}
$$

where

$$
\begin{aligned}
\gamma_{n, \lambda, \alpha} & =\left[\alpha^{-1 /(\alpha-1)}-\alpha^{\alpha /(\alpha-1)}\right]\left(\lambda \ell_{\alpha, n}\right)^{-1 /(\alpha-1)} \exp \left[-\frac{1}{2}\left(1+\frac{1}{\alpha-1}\right)\right] \\
\alpha_{n} & =1+\frac{1}{\alpha-1}\left[1+\alpha \delta_{n}\right]
\end{aligned}
$$

By virtue of the absolute continuity of the Lebesgue integral, we have $\lim _{\tau \rightarrow 0}\|F\|_{L_{2}\left(D_{\tau}\right)}=0$. At the same time, $\lim _{\tau \rightarrow 0} \tau^{-\alpha_{n}}=+\infty$. Therefore, there exists a number $\tau_{1}=\tau_{1}(F), 0<\tau_{1}<+\infty$, such that inequality (50) is valid for

$$
\begin{equation*}
0<\tau \leq \tau_{1}(F) \tag{51}
\end{equation*}
$$

Now let us show that if condition (51) is satisfied, then the operator

$$
A_{1} u=A u+u_{0}: \dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right) \rightarrow \stackrel{\circ}{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)
$$

maps the ball $B\left(0, z_{2}\right)$, where z_{2} is the maximum positive root of Eq. (47) (see Remark 9), into itself. Indeed, if $u \in B\left(0, z_{2}\right)$, then, by (46)-(48), we have

$$
\left\|A_{1} u\right\|_{\hat{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)} \leq a\|u\|_{W_{2}^{1}\left(D_{\tau}, S_{\tau}\right)}^{\alpha}+b \leq a z_{2}^{\alpha}+b=z_{2} .
$$

Therefore, by Remarks 7-9, the following assertion is valid.
Theorem 2. Let $F \in \tilde{L}_{2, \text { loc }}(D), 1<\alpha<(n+1) /(n-1)$, and let τ satisfy condition (51). Then problem (18), (33) in the domain D_{τ} has at least one strong generalized solution $u \in \dot{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$ in the sense of Definition 4, which is also a weak generalized solution of this problem in the sense of Definition 2.

Remark 10. Note that if $1<\alpha<(n+1) /(n-1)$, then the uniqueness of the solution of problem (18), (33) in the domain D_{τ} can be proved in the narrower function space

$$
\stackrel{\circ}{E}_{2}^{1}=\left\{u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right): \underset{0<\sigma \leq \tau}{\operatorname{esssup}} \int_{\Omega_{\sigma}=D \cap\{t=\sigma\}}\left[u_{t}^{2}+\sum_{i=1}^{n} u_{x_{i}}^{2}\right] d x<+\infty\right\}
$$

than ${ }_{W}^{1}{ }_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$.
Remark 11. It follows from the preceding assertions that, by virtue of the estimates (31) and (51), the number $t=T$ considered in Remark 1 lies in the interval $\left[\tau_{1}, \tau_{0}\right]$.

ACKNOWLEDGMENTS

The work was financially supported by INTAS (project no. 03-51-5007).

REFERENCES

1. Jörgens, K., Math. Zeitschr., 1961, vol. 77, pp. 295-308.
2. Levin, H.A., Trans. Amer. Math. Soc., 1974, vol. 192, pp. 1-21.
3. John, F., Manuscr. math., 1979, vol. 28, pp. 235-268.
4. John, F., Commun. Pure and Appl. Math., 1981, vol. 34, pp. 29-51.
5. John, F. and Klainerman, S., Comm. Pure Appl. Math., 1984, vol. 37, pp. 443-455.
6. Kato, T., Comm. Pure Appl. Math., 1980, vol. 33, pp. 501-505.
7. Ginibre, J., Soffer, A., and Velo, G., J. Funct. Anal., 1982, vol. 110, pp. 96-130.
8. Strauss, W.A., J. Funct. Anal., 1981, vol. 41, pp. 110-133.
9. Georgiev, V., Lindblad, H., and Sogge, C., Amer. J. Math., 1997, vol. 119, pp. 1291-1319.
10. Sideris, T.G., J. Differ. Equat., 1984, vol. 52, pp. 378-406.
11. Hörmander, L., Lectures on Nonlinear Hyperbolic Differential Equations, Berlin, 1997.
12. Lasiecka, I. and Ong, J., Comn. Partial Differ. Equat., 1999, vol. 24, pp. 2069-2107.
13. Aassila, M., Differ. Integr. Equat., 2001, vol. 14, pp. 1301-1314.
14. Mitidieri, E. and Pohozaev, S.I., A Priori Estimates and Blow-Up of Solutions to Nonlinear Partial Differential Equations and Inequalities, Moscow, 2001.
15. Belchev, E., Kepka, M., and Zhou, Z., J. Funct. Anal., 2002, vol. 190, pp. 233-254.
16. Guedda, M. and Kirane, M., Proc. of the 2002 Fez Conf. on Partial Differ. Equat., San Marcos, 2002.
17. Keel, M., Smith, H.F., and Sogge, C.D., J. Amer. Math. Soc., 2004, vol. 17, pp. 109-153.
18. Hadamard, J., Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Paris: Hermann, 1932. Translated under the title Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Moscow: Nauka, 1978.
19. Courant, R., Partial Differential Equations (Courant, R. and Hilbert, D., Methods of Mathematical Physics, vol. 2), New York, 1962. Translated under the title Uravneniya s chastnymi proizvodnymi, Moscow: Mir, 1964.
20. Cagnac, F., Ann. Mat. Pura. Appl., 1975, vol. 104, pp. 355-393.
21. Lundberg, L., Comm. Math. Phys., 1978, vol. 62, no. 2, pp. 107-118.
22. Bitsadze, A.V., Nekotorye klassy uravnenii v chastnykh proizvodnykh (Some Classes of Partial Differential Equations), Moscow, 1981.
23. Kharibegashvili, S.S., Differents. Uravn., 1981, vol. 17, no. 1, pp. 157-164.
24. Henry, D., Geometric Theory of Semilinear Parabolic Equations, Heidelberg: Springer-Verlag, 1981. Translated under the title Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Moscow, 1985.
25. Hörmander, L., Linear Partial Differential Operators, New York, 1963. Translated under the title Lineinye differentsial'nye operatory s chastnymi proizvodnymi, Moscow: Mir, 1965.
26. Ladyzhenskaya, O.A., Kraevye zadachi matematicheskoi fiziki (Boundary Value Problems of Mathematical Physics), Moscow, 1973.
27. Krasnosel'skii, M.A., Zabreiko, P.P., Pustyl'nik, E.I., and Sobolevskii, P.E., Integral'nye operatory v prostranstvakh summiruemykh funktsii (Integral Operators in Spaces of Integrable Functions), Moscow, 1966.
28. Kufner, A. and Fucik, S., Nonlinear Differential Equations, New York: Elsevier, 1980. Translated under the title Nelineinye differentsial'nye uravneniya (Nonlinear Differential Equations), Moscow: Nauka, 1988.
29. Trenogin, V.A., Funktsional'nyi analiz (Functional Analysis), Moscow, 1993.
30. Vulikh, B.Z., Kratkii kurs teorii funktsii veshchestvennoi peremennoi (Brief Course of Theory of Functions of Real Variable), Moscow, 1973.
