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ON SOME PROBLEMS WITH INTEGRAL RESTRICTIONS

FOR HYPERBOLIC SECOND ORDER EQUATIONS AND

SYSTEMS ON A PLANE

G. BOGVERADZE AND S. KHARIBEGASHVILI

Abstract. Some problems with integral restrictions to hyperbolic
second order equations and systems with two independent variables
are formulated and investigated. The conditions on the data of the
problems are found which guarantee their correctness. When these
conditions violate, we distinguish the cases in which the correspond-
ing homogeneous problem has an infinite set of linearly independent
solutions.

îâäæñéâ. éâëîâ îæàæï ÿæìâî�ëèñîæ à�êðëèâ�â�æï� á� ïæïðâ-

éâ�æï�åãæï ëîæ á�éëñçæáâ�âèæ ùãè�áæï öâéåýãâã�öæ á�ïéñèæ�

á� à�éëçãèâñèæ äëàæâîåæ �éëù�ê� æêðâàî�èñîæ öâä�ñáãâ�æå.

ê�ìëãêæ� ìæîë�â�æ �éëù�êæï éëê�ùâéâ�äâ, îëéèâ�æù ñäîñêãâèõë-

òâê é�å çëîâóðñèë��ï. �é ìæîë��å� á�î�ãâãæï�ï à�éëõëòæèæ�

öâéåýãâãâ�æ, îëáâï�ù öâï���éæï âîåàã�îëã�ê �éëù�ê�ï à��øêæ�

ûîòæã�á á�éëñçæáâ�âè �éëê�ýïêå� ñï�ïîñèë î�ëáâêë��.

The problems with integral restrictions to partial differential equations
arise in mathematical modelling of some physical processes and represent
certain class of nonlocal problems (see for e.g., [1]–[13]). Nonlocal problems,
free from integral restrictions to parabolic, elliptic and hyperbolic equations
have been studied in [14]–[29].

In the present work we formulate and investigate some problems with
integral restrictions to hyperbolic second order equations and systems with
two independent variables.

1. Statement of the Problems with Integral Restrictions to

the Equation of Forced Oscillations of a String, and Their

Investigation

10. In this section, for the equation of forced oscillations of a string

� u := utt − uxx = F (1)
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in a triangular domain D : 0 < t < T , 0 < x < t with vertices at the points
O(0, 0), A(0, T ), B(T, T ) we consider the problem which is formulated as
follows: find a regular in the domain D and continuous in D solution u(x, t)
of equation (1), satisfying both the boundary condition

u(0, t) = f1(t), 0 ≤ t ≤ T, (2)

and the integral condition of the type
∫

It

K(x, t)u(x, t)dx = f2(t), 0 ≤ t ≤ T. (3)

Here Iτ = D ∩ {t = τ}, i.e. Iτ : t = τ , 0 ≤ x ≤ τ ; F (x, t) ∈ C(D),
K(x, t) ∈ C1(D) and f1(t) ∈ C([0, T ]), f2(t) ∈ C1([0, T ]) are the given
functions, and the function f2(t) satisfies the necessary condition f2(0) = 0
of solvability of the problem (1),(2),(3).

Remark 1. Below, we will first restrict ourselves to the investigation of the
problem (1), (2), (3) in the class of generalized solutions u(x, t) of equation
(1) of the class C(D), i.e. when u ∈ C(D), and there exists a sequence of
functions un ∈ C2(D) such that un → u and �un → F as n → ∞ in the
norm of the space C2(D).

Let the point P = P (x, t) ∈ D. By Dx,t = PP1P0P2 we denote a
characteristic quadrangle of equation (1), whose vertices P0 and P2 lie on
the segment OB ∈ ∂D, while the vertex P1 lies on the segment OA ⊂ ∂D.

Obviously, P1 = P1(0, t − x), P2 = P2

(
t+x
2 ; t+x

2

)
and P0 = P0

(
t−x
2 ; t−x

2

)
.

Suppose that the function un ∈ C2(D), and we consider this function in
the characteristic quadrangle Dx,t = PP1P0P2 as a solution of the Goursat
problem

� u = Fn,

u|
P0P2

= un|P0P2
, u|

P0P1
= un|P0P1

,
(4)

where Fn = �un. Since un is a solution of the problem (4), from the
uniqueness of a solution and from the formula allowing one to solve this
problem ([30], p.172), for the function un in the closed domain Dx,t the
representation

un(P ) = un(P1)+un(P2)−un(P0)+
1

2

∫∫

Dx,t

Fndxdt, Fn = � un, P ∈ Dx,t,

or

un(x, t) = un(0, t− x) + un

( t+ x

2
,
t+ x

2

)
− un

( t− x

2
,
t− x

2

)
+

+
1

2

∫∫

Dx,t

� undxdt ∀(x, t) ∈ D (5)
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holds.

Remark 2. By Remark 1 and representation (5), it is evident that ev-
ery generalized solution u(x, t) of equation (1) of the class C(D) can be
represented in the form

u(x, t) = u(0, t− x) + u
( t+ x

2
,
t+ x

2

)
− u

( t− x

2
,
t− x

2

)
+

+
1

2

∫∫

Dx,t

Fdxdt ∀(x, t) ∈ D. (6)

Conversely, since the spaces C2(D) and C2([0, T ]) are dense respectively

in the spaces C(D) and C([0, T ]), for any f̃ , ϕ̃ ∈ C([0, T ]) and F̃ ∈ C(D)
the function u(x, t) represented by the equality

u(x, t) = f̃(t− x) + ϕ̃
( t+ x

2

)
− ϕ̃

( t− x

2

)
+

1

2

∫∫

Dx,t

F̃ dxdt, (x, t) ∈ D,

is a generalized solution of equation (1) of the class C(D).
With the notation ϕ(t) = u(t, t), by means of the boundary condition

(2), the representation (6) for the generalized solution of the problem (1),
(2), (3) of the class C(D) can be rewritten in the form

u(x, t) = ϕ
( t+ x

2

)
− ϕ

( t− x

2

)
+ f1(t− x) + g0(x, t) ∀(x, t) ∈ D. (7)

Here, the function g0(x, t) = 1
2

∫∫
Dx,t

Fdξdτ ∈ C(D). Therefore, taking is

equal to into account that the area of the rectangle Dx,t = PP1P0P2 is
equal to x(t− x), the estimate

|g0(x, t)| ≤
1

2
x(t− x)‖F‖

C(D)
, (x, t) ∈ D, (8)

is valid.
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It is easy to see that
∫

It

K(x, t)ϕ
( t+ x

2

)
dx =

=

t∫

0

K(x, t)ϕ
( t+ x

2

)
dx = 2

t∫

1
2 t

K(2ξ − t, t)ϕ(ξ)dξ,

∫

It

K(x, t)ϕ
( t− x

2

)
dx =

(9)

=

t∫

0

K(x, t)ϕ
( t− x

2

)
dx = 2

1
2 t∫

0

K(t− 2ξ, t)ϕ(ξ)dξ.

Substituting the representation (7) for the solution u(x, t) of equation (1)
into the integral condition (3) and taking into account equalities (9), with
respect to the unknown function ϕ(t) we obtain the following equation:

t∫

1
2 t

K(2ξ − t, t)ϕ(ξ)dξ −

1
2 t∫

0

K(t− 2ξ, t)ϕ(ξ)dξ = g1(t), 0 ≤ t ≤ T. (10)

Here,

g1(t) =
1

2
f2(t) −

1

2

t∫

0

K(x, t)[f1(t− x) + g0(x, t)]dx =

=
1

2
f2(t) −

1

2

t∫

0

K(t− ξ, t)f1(ξ)dξ −
1

2

t∫

0

K(x, t)g0(x, t)dx. (11)

By (11) and the above assumptions, both parts of equation (10) are the
continuously differentiable functions. Therefore, differentiating both parts
of equation (10) with respect to the variable t, we obtain

K(t, t)ϕ(t) −K(0, t)ϕ
(1

2
t
)

+

t∫

0

K1(ξ, t)ϕ(ξ)dξ = g2(t), 0 ≤ t ≤ T. (12)

Here g2(t) = g
(1)
1 (t) and

K1(ξ, t) =

{
−Kx(t− 2ξ, t) −Kt(t− 2ξ, t), 0 ≤ ξ ≤ 1

2 t,

−Kx(2ξ − t, t) +Kt(2ξ − t, t), 1
2 t ≤ ξ ≤ t.

(13)

Obviously, the continuity of the function K1(ξ, t) from (13) in the domain
of its definition is equivalent to the condition K|

OA
= const.
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Let the condition

K|
OB

6= 0, i.e. K(t, t) 6=, 0 ≤ t ≤ T, (14)

be fulfilled.
Then equation (12) can be rewritten as

ϕ(t) − a(t)ϕ
(1

2
t
)

+

t∫

0

K2(ξ, t)ϕ(ξ)dξ = g3(t), 0 ≤ t ≤ T, (15)

where

K2(ξ, t) = K−1(t, t)K1(ξ, t), g3(t) = K−1(t, t)g2(t), (16)

a(t) = K−1(t, t)K(0, t) ∈ C1([0, T ]). (17)

By (17), it is obvious that
a(0) = 1. (18)

First, we will restrict ourselves to the consideration only of the functional
part of equation (15), i.e. of the equation

Lψ(t) := ψ(t) − a(t)ψ
(1

2
t
)

= g(t), 0 ≤ t ≤ T, (19)

in the class C([0, T ]).

Lemma 1. The infinite product

ψ0(t) =

∞∏

i=0

a
( 1

2i
t
)
, 0 ≤ t ≤ T, (20)

converging uniformly on the segment [0, T ], is by itself a continuous function
on [0, T ] and a solution of the homogeneous equation

ψ(t) − a(t)ψ
(1

2
t
)

= 0, 0 ≤ t ≤ T, (21)

corresponding to (19).

Every solution of the homogeneous equation (21) in the class C([0, T ]) is
representable in the form

ψ(t) = ψ(0)ψ0(t). (22)

Proof. Since a(t) ∈ C1([0, T ]), by virtue of (18) we have

a(t) = 1 + tλ(t), λ(t) =

t∫

0

a(1)(tξ)dξ ∈ C([0, 1]). (23)

By (23) and the continuity of the function λ(t), there exists a positive
number t0 ∈ (0, T ) such that

|tλ(t)| < 1 and a(t) > 0 for 0 ≤ t ≤ t0. (24)
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Since for i ≥ i0 =
[ logT t−1

0

log 2

]
the inequality

1

2i
t ≤ t holds for 0 ≤ t ≤ T ,

where [α] denotes the integral part of number α, therefore by (24)

a
( 1

2i
t
)
> 0, 0 ≤ t ≤ T, i ≥ i0. (25)

The uniform convergence of the infinite product (20) on the segment [0, T ]
is equivalent to that of the residual infinite product

∞∏

i=i0

a
( 1

2i
t
)

=
∞∏

i=i0

(
1 +

1

2i
tλ

( 1

2i
t
))
, (26)

whose terms are positive by virtue of (25).
In turn, the series

∞∑

i=i0

1

2i
tλ

( 1

2i
t
)

is uniformly and absolutely convergent on the segment [0, T ]. Therefore by
the well-known result from the theory of an infinite product ([31], p. 356),
the product (26), and hence the product (20), is uniformly converging on
the segment [0, T ] to some continuous function ψ0(t) which is, as is easily
seen, positive for 0 ≤ t ≤ t0.

The fact that the function ψ0(t) from (20) is the solution of the homoge-
neous equation (21), can be easily verified. Thus we have proved the first
part of Lemma 1.

Let now ψ(t) ∈ C([0, T ]) be a solution of the homogeneous equation (21).
Then, as is seen, for any natural n the equality

ψ(t) =

[ n−1∏

i=0

a

(
1

2i
t

)]
ψ

( 1

2n
t
)
, 0 ≤ t ≤ T, (27)

is valid. Since lim
n→∞

n−1∏
i=0

a
(

1
2i t

)
= ψ0(t) and lim

n→∞
ψ

(
1
2n t

)
= ψ(0), passing

in (27) to the limit as n→ ∞, we obtain (22). This proves the second part
of Lemma 1. �

Remark 3. By (18), it is not difficult to see that the necessary condition
for the solvability of equation (19) in the class C([0, T ]) is the fulfilment of
the equality

g(0) = 0. (28)

Lemma 2. Let g(t) ∈ C([0, T ]), and let the necessary condition (28) for
the solvability of equation (19) in the class C([0, T ]) be fulfilled. Denote by
L0 : C([0, T ]) → C([0, T ]) the operator acting by the formula

L0 g(t) = a(t)g
(1

2
t
)
, 0 ≤ t ≤ T. (29)
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Then the necessary and sufficient condition for the solvability of equation
(19) in the class C([0, T ]) is the uniform convergence on the segment [0, T ]
of the following functional series:

ψ1(t) =

[ ∞∑

i=0

Li
0

]
g(t), 0 ≤ t ≤ T. (30)

In case the series (30) is uniformly convergent on [0, T ], for any constant
number c there exists the unique solution ψ(t) ∈ C([0, T ]) of equation (19)
satisfying the condition

ψ(0) = C (31)

and this solution is representable in the form

ψ(t) = cψ0(t) + ψ1(t), 0 ≤ t ≤ T, (32)

where the functions ψ0(t) and ψ1(t) are given by equalities (20) and (30).The
uniform convergence of the series (30) will be automatically fulfilled if the
function g(t) for any arbitrarily small positive α satisfies the following sup-
plementary condition:

g(t) ∈ Cα((0, T ]) := {f(t) ∈ C([0, T ]) : ‖f‖
Cα((0,T ])

=

= sup
0<t≤T

|t−αf(t)| < +∞}. (33)

In this case the estimate

|ψ1(t)| = |ψ(t) − cψ0(t)| ≤ c1t
α‖g‖

Cα((0,T ])
, 0 < t ≤ T, (34)

with the positive constant c1, independent of g(t), is valid.

Proof. If ψ(t) ∈ C([0, T ]) is the solution of equation (19), then taking into
account (30), from equality (19) for any natural number n we immediately
find that

ψ(t) −
[ n−1∏

i=0

a
( 1

2i
t
)]
ψ

( 1

2n
t
)

=

n−1∑

i=0

Li
0g(t), 0 ≤ t ≤ T. (35)

By Lemma 1, we have

ψ0(t) = lim
n→∞

[ n−1∏

i=0

a
( 1

2i
t
)]
, 0 ≤ t ≤ T, (36)

and

ψ(0) = lim
n→∞

ψ
( 1

2n
t
)
, 0 ≤ t ≤ T. (37)

Taking into account the fact that the convergence in (30) and (37) is uni-
form on the segment [0, T ], from equality (35), as n → ∞, follows uniform
convergence of the series (36) on [0, T ]. Therefore passing in (35) to the
limit, as n → ∞, by virtue of (20), (30) and (31) we obtain (32). That
in case of uniform convergence of the series (30) on the segment [0, T ] the
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function ψ(t) ∈ C([0, T ]) from (32) is the solution of equation (19), can be
easily verified.

It remains only to show that if the condition (33) is fulfilled, then the
series (30) converges uniformly on the segment [0, T ], and for the function
ψ(t) from (30) and (32) the estimate (34) is valid. Indeed, it follows from
(33) that

g(t) = tαg̃(t), |g̃(t)| ≤ ‖g‖Cα((0,t]), 0 < t ≤ T. (38)

By (29) and (38) we have

|Li
0g(t)| =

∣∣∣∣
i−1∏

j=0

a
( 1

2j
t
)∣∣∣∣

∣∣∣g
( 1

2i
t
)∣∣∣ ≤M

( 1

2α

)i

tα‖g‖Cα((0,t]), i > 0,

|Li
0g(t)| = |g(t)| ≤ tα|g̃(t)| ≤ tα‖g‖Cα((0,t]) for i = 0,

where by Lemma 1 we use the fact that

sup
i>0

max
0≤t≤T

∣∣∣∣
i−1∏

j=0

a
( 1

2j
t
)∣∣∣∣ = M < +∞.

This implies that the series (30) is uniformly convergent on the segment
[0, T ], and by (30) the estimate

|ψ1(t)| ≤ tα‖g‖
Cα((0,T ])

+M‖g‖
Cα((0,T ])

tα
∞∑

i=1

( 1

2α

)i

=

=
(
1 +M

1
2α

1 − 1
2α

)
tα‖g‖

Cα((0,t])

as well.
Thus we have proved the estimate (34) in which c1 = 1 + M

1
2α

1− 1
2α

<

+∞. �

Remark 4. Since ϕ(t) = u(t, t), therefore by (2) the equality

ϕ(0) = f1(0) (39)

holds.

The necessary condition for the solvability of (28) applied to equation
(15) takes by virtue of (11), (13) and (16) the form

f
(1)
2 (0) −K(0, 0)f1(0) = 0. (40)

The condition (40) can likewise be obtained directly by differentiating (2)
with respect to t and then putting t = 0.
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Remark 5. Taking into account (40) and the requirements for the smooth-
ness of the functions K(x, t) and fi(t), i = 1, 2, by virtue of (16) the condi-
tion g3(t) ∈ Cα((0, T ]), for which α ∈ (0, 1), will be fulfilled if

f1(t) − f1(0)∈Cα((0, T ]), f
(1)
2 (t) − f

(1)
2 (0)∈Cα((0, T ]), 0 < α < 1. (41)

Lemma 3. Let the necessary condition (40) for the solvability of equation
(15) in the class C([0, T ]) be fulfilled. Then if the functions f1(t), f2(t)
satisfy additionally the condition (41) for some arbitrarily small positive
α ∈ (0, 1), then equation (15) has the unique solution ϕ(t) ∈ C([0, T ])
satisfying the initial condition (39). For this solution the estimate

|ϕ(t) − f1(0)ψ0(t)| ≤ c2t
α(‖g3‖Cα((0,t])

+ |f1(0)|, 0 < t ≤ T, (42)

with the positive constant c2, independent of g3(t), is valid, and the function
ψ0(t) is given by equality (20).

Proof. We solve equation (15) in the class C([0, T ]) by the method of suc-
cessive approximations using the following scheme:

ϕ0(t) = f1(0)ψ0(t), 0 ≤ t ≤ T, (43)

ϕn(t) − a(t)ϕn

(1

2
t
)

= −
t∫

0

K2(ξ, t)ϕn−1(ξ)dξ + g3(t), (44)

0 ≤ t ≤ T, n ≥ 1,

ϕn(0) = f1(0). (45)

If approximation ϕn−1(t) is known, then the approximation ϕn(t) is defined
by Lemma 2, as a solution of functional equation (44) with respect to the
function ϕn(t), satisfying the initial condition (45).

By (43), (44), (45) and Lemma 1, using the notation from (19), we have

L(ϕ1(t) − ϕ0(t)) = −
t∫

0

K2(ξ, t)ϕ0(ξ)dξ + g3(t), ϕ1(0) − ϕ0(0) = 0,

whence, according to Remark 5 and estimate (34) from Lemma 2, we have

|ϕ1(t) − ϕ0(t)| ≤ c1t
α‖ −

τ∫

0

K2(ξ, τ)ϕ0(ξ)dξ + g3(τ)‖Cα((0,t])
≤

≤ c1t
α‖g3‖Cα((0,t])

+c1t
α sup

0<τ≤t

|τ−α

τ∫

0

K2(ξ, τ)ϕ0(ξ)dξ|≤c1tα‖g3‖Cα((0,t])
+

+c1t
α sup

0<τ≤t

|τ−α

τ∫

0

K3|f1(0)|Mdτ | ≤
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≤ c1t
α
[
‖g3‖Cα((0,t])

+ t1−αK3M |f1(0)|
]
, (46)

where K3 = ‖K2‖C(D)
, and M = sup

i>0
max

0≤t≤T

∣∣∣∣
∏i−1

j=0 a
(

1
2j t

)∣∣∣∣ ≤ +∞ is the

number used when proving Lemma 2, 0 < α < 1, 0 < t ≤ T .
Note that if f1(0) = 0, then the estimate (46) takes the form

|ϕ1(t)| ≤ c1t
α‖g3‖Cα((0,t])

, (47)

which is valid for any positive α, where g3 ∈ C((0, T ]).
Reasoning analogously, we obtain

L(ϕ2(t) − ϕ1(t)) = −
t∫

0

K2(ξ, t)[ϕ1(ξ) − ϕ0(ξ)]dξ, ϕ2(0) − ϕ1(0) = 0,

and hence with regard for (45), we have

|ϕ2(t) − ϕ1(t)| ≤ c1t
α‖ −

τ∫

0

K2(ξ, τ)[ϕ1(ξ) − ϕ0(ξ)]dξ‖Cα((0,t])
≤

≤ c1t
α sup

0<τ≤t

|t−α

τ∫

0

K2(ξ, τ)[ϕ1(ξ) − ϕ0(ξ)]dξ| ≤

≤ c1t
α sup

0<τ≤t

τ−α

τ∫

0

K3c1ξ
α[‖g3‖C((0,T ])

+

+t1−αK3M |f1(0)|]dξ ≤ c21K3M1
tα+1

α+ 1
. (48)

Here,
M1 = [‖g3‖C((0,t])

+ t1−αK3M |f1(0)|]. (49)

Continuing this process, we obtain

|ϕn(t) − ϕn−1(t)| ≤

≤M1c
n
1K

n−1
3

tα+n−1

(α + 1)(α+ 2) · · · (α+ n− 1)
, 0 < t ≤ T, (50)

whose particular cases for n = 1 and n = 2 are, respectively inequalities
(46) and (48), where M1 is given by equality (49).

From (50) follows uniform convergence on the segment [0, T ] of the series

ϕ(t) = ϕ0(t) +

∞∑

n=1

(ϕn(t) − ϕn−1(t)),

whose sum ϕ(t) ∈ C([0, T ]) is, as it can be easily verified, a solution of
equation (15), satisfying both the initial condition (39) and the estimate
(42).
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Reasoning just as when deducing inequality (50), we can prove the unique-
ness of the solution ϕ(t) ∈ C([0, T ]) of equation (15), satisfying the initial
condition (39). �

Remark 6. Analogously to inequality (47), the estimate (42) for f1(0) = 0
takes the form

|ϕ(t)| ≤ c2t
α‖g3‖C((0,t])

, (51)

which is valid for any positive α, where g3(t) ∈ C((0, T ]).

Under our assumptions regarding the smoothness of the data of the prob-
lem (1), (2), (3), and if the conditions (14) and (40) are fulfilled, this problem
in the class C(D) will be equivalent to the integro-functional equation (15).
Therefore taking into account representation (7) and estimates (8) and (42),
from Lemma 3 we arrive at

Theorem 1. Let F ∈ C(D), fi ∈ Ci−1([0, T ]), i = 1, 2, and let the
condition (14) be fulfilled. Then, if the necessary conditions of solvability
f2(0) = 0 and (40) of the problem (1), (2), (3) in the class C(D) and the
supplementary condition (41) imposed on the function f2 are fulfilled, then
the problem (1), (2), (3) has the unique solution u ∈ C(D) for which the
estimate

‖u‖
C(D)

≤ c[‖f1‖C([0,T ])
] + ‖f1(t) − f1(0)‖

Cα((0,T ])
+ ‖f2‖C1([0,T ])

+

+‖f (1)
2 (t) − f

(1)
2 (0)‖

Cα((0,T ])
+ ‖F‖

C(D)
(52)

with the positive constant c, independent of f1, f2 and F , where 0 < α < 1,
is valid.

Remark 7. Let P = P (x, t) ∈ D, and let Dx,t be the characteristic
rectangle PP1P0P2 appearing in the statement of the Goursat problem (4).
Then under the conditions of Theorem 1, by virtue of the representation
(7) and inequality (42), for the solution u ∈ C(D) of the problem (1), (2),
(3) there takes place along with (52) the following improved estimate:

|u(x, t)| ≤ c
[
‖f1‖C([0,t−x])

+ ‖f1(t) − f1(0)‖
Cα((0,t−x])

+

+‖f2‖
C1([0, t+x

2 ]) + ‖f (1)
2 (t) − f

(1)
2 (0)‖

Cα((0,
t+x
2

])
+ ‖F‖

C(Dx,t)

]
∀(x, t) ∈ D,

with the positive constant c, independent both of the point (x, t) ∈ D and
of the functions f1, f2 and F .

Lemma 4. Let fi = 0, i = 1, 2. Then the function g3(t) = K−1(t, t)g
(1)
1 (t)

from (15), where g1(t) is given by equality (11), is representable in the form

g3(t) = −1

2
K−1(t, t)

[ t∫

0

Kt(x, t)g0(x, t)dx

]
+
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+
1

2
√

2

t∫

0

K(x, t)

[ ∫

P2P

Fds−
∫

P0P1

Fds+

∫

P1P

F

]
dx. (53)

Here g0(x, t) = 1
2

∫∫
Dx,t

Fdξdτ , andDx,t is the characteristic rectangle PP1P0P2

with vertices at the points P = P (x, t), P1 = P1(0, t−x), P0 = P0

(
t−x
2 , t−x

2

)
,

P2 = P2

(
t+x
2 , t+x

2

)
, (x, t) ∈ D.

Proof. As a result of the linear orthogonal transformation ξ = 1√
2
(t + x),

η = 1√
2
(t − x) the rectangle PP1P0P2 transforms into the rectangle with

vertices p̃
(

1√
2
(t+x), 1√

2
(t−x)

)
, P̃1

(
1√
2
(t−x), 1√

2
(t−x)

)
, P̃0

(
1√
2
(t−x), 0

)

and P̃2

(
1√
2
(t+ x), 0

)
. Therefore we have

g0(x, t) =
1

2

∫∫

PP1P0P2

Fdxdt =

=
1

2

∫∫

P̃ P̃1P̃0P̃2

F̃ dξdη =
1

2

1√
2
(t+x)∫

1√
2
(t−x)

dξ

1√
2
(t−x)∫

0

F̃ (ξ, η)dη, (54)

where F̃ (ξ, η) = F (x, t), x = 1√
2
(ξ − η), y = 1√

2
(ξ + η). By (54), it can be

easily verified that

∂

∂t
g0(x, t) =

1

2
√

2

1√
2
(t−x)∫

0

F̃
( 1√

2
(t+ x), η

)
dη−

− 1

2
√

2

1√
2
(t−x)∫

0

F̃
( 1√

2
(t− x), η

)
dη+

+
1

2
√

2

1√
2
(t+x)∫

1√
2
(t−x)

F̃ (ξ,
1√
2
(t− x))dξ =

=
1

2
√

2

∫∫

P2P

Fds− 1

2
√

2

∫

P0P1

Fds+
1

2
√

2

∫

P1P

Fds. (55)
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From (11) for fi = 0, i = 1, 2, with regard for (55) and the fact that
g0(t, t) = 0, we obtain

g
(1)
1 (t) = −1

2

d

dt

[ t∫

0

K(x, t)g0(x, t)dx

]
= −1

2
K(t, t)g0(t, t)−

−1

2

t∫

0

Kt(x, t)g0(x, t)dx−
1

2

t∫

0

K(x, t)
∂

∂t
g0(x, t)dx=−1

2

t∫

0

Kt(x, t)g0(x, t)dx−

− 1

4
√

2

t∫

0

K(x, t)

[ ∫

P2P

Fds−
∫

P0P1

Fds+

∫

P1P

Fds

]
dx. (56)

Owing to (56), from the equality g3(t) = K−1(t, t)g
(1)
1 (t) it follows that the

representation (53) is valid. �

Lemma 5. Let F ∈ C(D), fi = 0, i = 1, 2, and let the condition (14) be
fulfilled. Then if for (x, t) ∈ D

|F (x, t)| ≤M
F
tα, M

F
= const ≥ 0, α = const ≥ 0, (57)

then the problem (1), (2), (3) has a unique solution u ∈ C(D) for which the
estimate

|u(x, t)| ≤ c3MF

tα+2

α+ 2
∀(x, t) ∈ D, (58)

with the positive constant c3, independent of F , M
F

and α, is valid.

Proof. First of all it should be noted that by virtue of (57),

|g0(x, t)| ≤
1

2
M

F

tα+2

α+ 2
;

max

(∣∣∣∣
∫

P2P

Fds

∣∣∣∣,
∣∣∣∣

∫

P0P1

Fds

∣∣∣∣,
∣∣∣∣

∫

P1P

Fds

∣∣∣∣
)

≤
√

2M
F

tα+1

α+ 1
.

(59)

Therefore, from (56) by virtue of (59) we have

|g3(t)| = |K−1(t, t)g
(1)
1 (t)| ≤ c̃M

F

tα+2

α+ 2
∀t ∈ [0, T ], (60)

with the positive constant c̃, independent of F , M
F

and α.
Now, from (60), by Lemma 3, estimate (51) and representation (7) it

follows that the unique solution u ∈ C(D) of the problem (1), (2), (3) exists
for which the estimate (58) is valid. �

Remark 8. Investigation of the integro-functional equation (15) shows that
if the necessary conditions are fulfilled at the point O(0, 0), then the rise of
smoothness of the data of the problem (1), (2), (3) implies the corresponding
rise of smoothness of a solution of that problem.
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20. In this section, for a more general than (1) inhomogeneous equation
with the lowest term

utt − uxx + λu = F (61)

we consider in the domain D : 0 < t < T , 0 < x < t the problem of finding
a solution u(x, t) ∈ C(D) of equation (61), satisfying the homogeneous,
corresponding to (2) and (3), conditions

u(0, t) = 0, 0 ≤ t ≤ T, (62)
∫

It

K(x, t)u(x, t)dx = 0, 0 ≤ t ≤ T, (63)

where inD the coefficient λ in equation (61) is the given continuous function,
F ∈ C(D).

If the condition (14) is fulfilled, the problem (61), (62), (63) is solved by
the method of successive approximations by the following scheme:

u0 = 0, � un = −λun−1 + F, n ≥ 1, (64)

un(0, t) = 0, 0 ≤ t ≤ T, (65)
∫

It

K(x, t)un(x, t)dx = 0, 0 ≤ t ≤ T. (66)

By Theorem 1, the solution un ∈ C(D) of the problem (64), (65), (66) exists
and is unique. Now, using the method of mathematical induction, we can
show that the estimate

|un(x, t) − un−1(x, t)| ≤Mcn3λ
n−1
0

t2n

2nn!
, n ≥ 1, (x, t) ∈ D, (67)

with the positive constant c3 from (58), independent of F and n, where
M = ‖F‖

C(D)
, and λ0 = ‖λ‖

C(D)
, is valid.

Indeed, by virtue of (64), the validity of the estimate (67) for n = 1
follows from the estimate (58) of Lemma 5 for α = 0. Suppose now that
the estimate (67) is valid for n = m, and let us prove that it is valid for
n = m+ 1. By (64), (65), (66) we have

� (um+1 − um) = −λ(um − um−1),

(um+1 − um)(0, t) = 0, 0 ≤ y ≤ T,
∫

It

K(x, t)(um+1 − um)(x, t)dx = 0, 0 ≤ y ≤ T,

whence for the difference (um+1 − um) by the estimate (67) for n = m and
inequality (58) we obtain

|um+1(x, t) − um(x, t)| ≤
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≤ c3λ0Mcm3 λ
m−1
0

t2m+2

2mm! (2m+ 2)
= Mcm+1

3 λm
0

t2(m+1)

2m+1(m+ 1)!
.

Thus we have proved the estimate (67) for any n ≥ 1.
From (67) follows uniform convergence in D of the following functional

series:

u(x, t) = u0(x, t) +
∞∑

n=1

(un(x, t) − un−1(x, t)),

whose sum u(x, t) is, as it easily seen, a generalized solution of equation
(61) of the class C(D), satisfying the conditions (62) and (63).

The uniqueness of the generalized solution of the problem (61), (62), (63)
of the class C(D) is proved analogously.

Thus the following theorem is valid.

Theorem 2. Let the condition (14) be fulfilled. Then for any F ∈ C(D)
the problem (61), (62), (63) has the unique generalized solution of the class
C(D) for which the estimate

|u(x, t)| ≤ c‖F‖
C(Dx,t)

∀(x, t) ∈ D

is valid.

In the case of equation with the lowest terms of the type

utt − uxx + λ1ut + λ2ux + λu = F (68)

when considering the problem (68), (2), (3) in the domain D : 0 < t < T ,
0 < x < t it is required that the functions K(x, t), f1(t) and f2(t) should
have additional smoothness, namely

K(x, t) ∈ C2(D), fi(t) ∈ Ci([0, T ]), i = 1, 2. (69)

Here λ1, λ2 and λ3 are the given continuous functions, F ∈ C(D).
We present a brief scheme of investigation of the problem (68), (2), (3)

which is based on the method of successive approximations. This method
in turn requires investigation of integro-functional equation (15) in the class
C1([0, T ]). In this case, taking into account (39) and the equality ϕ(t) =

f1(0)+
t∫
0

ψ(τ)dτ , where ψ(τ) = ϕ(1)(τ), equation (15) in the class C1([0, T ])

is equivalent to the equation

ψ(t) − 1

2
a(t)ψ

(1

2

)
− a(1)(t)

1
2 t∫

0

ψ(τ)dτ +K2(t, t)

t∫

0

ψ(τ)dτ+

+

t∫

0

K2t(ξ, t)

[ ξ∫

0

ψ(τ)dτ

]
dξ = g4(t), 0 ≤ t ≤ T, (70)
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with respect to the unknown function ψ in the class C([0, T ]), where g4(t) =

g
(1)
3 (t) + (a(1)(t) −K2(t, t))f1(0). Note that the one-to-one correspondence

between ϕ ∈ C1([0, T ]) and ψ ∈ C([0, T ]) is given by the equality ϕ(t) =

f1(0) +
t∫
0

ψ(τ)dτ .

Since by (69), (56) and g3(t) = K−1(t, t)g
(1)
1 (t) we have g4(t) ∈ C([0, T ])

and
∣∣∣
1

2
a(0)

∣∣∣ < 1, the integro-functional equation (70) is, as is known [32],

uniquely solvable in the class C([0, T ]) for the solution ψ of which the esti-
mate

|ψ(t)| ≤ c4‖g4‖C([0,t])
, 0 ≤ t ≤ T, (71)

with the positive constant c4, independent of g4(t), is valid.
By the estimate (71), under the conditions of Lemma 5, we prove anal-

ogously that a solution u of the problem (1), (2), (3) belongs to the class
C1(D) and together with the estimate (58) satisfies likewise the estimates

|ut(x, t)| ≤ c̃3MF

tα+1

α+ 1
, |ux(x, t)| ≤ c̃3MF

tα+1

α+ 1
∀(x, t) ∈ D, (72)

with the positive constant c̃3, independent of F , M
F

and α.
We solve the problem (68), (2), (3) by using the method of successive

approximations by the scheme:

u0 = 0, � un = −λ1
∂

∂t
un−1 − λ2

∂

∂x
un−1 − λun−1 + F, n ≥ 1, (73)

un(0, t) = f1(t), 0 ≤ t ≤ T, (74)
∫

It

K(x, t)un(x, t)dx = f2(t), 0 ≤ t ≤ T. (75)

In a similar way, just as in obtaining inequality (67), using the estimates
(72), we prove that the successive approximations from (73), (74), (75)
satisfy the inequalities

|∂i,jun(x, t) − ∂i,jun−1(x, t)| ≤M1M
n
2

tn

n!
,

n ≥ 1, ∂i,j =
∂i+j

∂xi∂tj
, 0 ≤ i+ j ≤ 1, ∀(x, t) ∈ D, (76)

with the positive constants M1 = M1(F, f1, f2) and M2 = M2(λ1, λ2, λ,K),
independent of n.

From (76) it follows that the functional series

u(x, t) = u0(x, t) +

∞∑

n=1

(un(x, t) − un−1(x, t))
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converges in the space C1(D), and its sum u(x, t) is a generalized solution of
equation (68) of the class C1(D) which satisfies the conditions (2) and (3).
The uniqueness of that solution is proved analogously. Thus the following
theorem is valid.

Theorem 3. Let K ∈ C2(D); λ1; λ2; λ ∈ C(D); fi ∈ Ci([0, T ]),
i = 1, 2, F ∈ C(D). If the condition (14) and the necessary conditions of
solvability f2(0) = 0 and (40) of the problem (68), (2), (3) are fulfilled, then
this problem has the unique generalized solution u of the class C1(D) for
which the estimate

‖u‖
C1(D)

≤ c
[
‖f1‖C1([0,T ])

+ ‖f2‖C2([0,T ])
+ ‖F‖

C(D)

]
(77)

with the positive constant c, independent of f1, f2 and F , is valid.

Analogously to what is said in Remark 7, along with (77), for the solution
u ∈ C1(D) of the problem (68), (2), (3) the following improved estimate

|u(x, t)| ≤ c
[
‖f1‖

C1([0,t−x])
+ ‖f2‖

C2([0,
t+x
2

])
+ ‖F‖

C(Dx,t)

]
∀(x, t) ∈ D

is valid.
30. Consider now the case in which the boundary condition (2) in the

problem (1), (2), (3) is replaced by the condition

u(t, t) = f1(t), 0 ≤ t ≤ T, (78)

where f1 is the given continuous function on the segment [0, T ].
The representation (6) given in terms of ψ(t) = u(0, t) takes by virtue of

(78) the form

u(x, t) = ψ(t− x) + f1

( t+ x

2

)
−

−f1
( t− x

2

)
+

1

2

∫∫

Dx,t

Fdxdxt ∀(x, t) ∈ D. (79)

Substituting the representation (79) for u(x, t) into (3) and taking into
account the equality

∫

It

K(x, t)ψ(t− x)dx =

t∫

0

K(x, t)ψ(t − x)dx =

t∫

0

K(t− ξ, t)ψ(ξ)dξ,

we obtain
t∫

0

K(t− ξ, t)ψ(ξ)dξ = f̃(t), 0 ≤ t ≤ T. (80)
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With regard for equations of the type (9) we have

f̃(t) = f2(t) −
∫

It

K(x, t)
[
f1

( t+ x

2

)
− f1

( t− x

2

)
+

1

2

∫

Dx,t

Fdxdt
]
dx =

= f2(t) − 2

t∫

1
2 t

K(2ξ − t, t)f1(ξ)dξ+

+2

1
2 t∫

0

K(t− 2ξ, t)f1(ξ)dξ −
1

2

t∫

0

K(x, t)g0(x, t)dx, (81)

where g0(x, t) = 1
2

∫∫
Dx,t

Fdξdτ . By (81) it is clear that f̃(t) ∈ C1([0, T ]).

Differentiation of equality (80) with respect to t yields

K(0, t)ψ(t) +

t∫

0

K0(ξ, t)ψ(ξ)dξ = f(t), 0 ≤ t ≤ T, (82)

where K0(ξ, t) = Kx(t− ξ, t) +Kt(t− ξ, t), f(t) = f̃ (1)(t).
If K(0, t) 6= 0, 0 ≤ t ≤ T , then dividing the both parts of (82) by K(0, t),

we obtain the linear integral second kind Volterra equation which is, as
is known, solvable in the class C([0, T ]). In this connection, the following
theorem holds.

Theorem 4. Let K ∈ C1(D), K
∣∣∣
OA

6= 0, i.e. K(0, t) 6= 0, 0 ≤ t ≤ T ,

and F ∈ C(D), fi ∈ Ci−1([0, T ]), i = 1, 2. Then if the necessary conditions
of solvability f0(0) = 0 and (40) of the problem (1), (78), (3) are fulfilled
in the class C(D), then this problem has the unique solution u ∈ C(D) for
which the estimate

|u(x, t)| ≤ c
[
‖f1‖C([0,t−x])

+ ‖f2‖
C1([0,

t+x
2

])
+ ‖F‖

C(Dx,t)

]
∀(x, t) ∈ D,

with the positive constant c, independent of f1, f2 and F , is valid.

40. In this section we consider the case in which instead of (3) we take
the integral condition of the type

∫

It

[K1(x, t)ut(x, t) +K2(x, t)ux(x, t) +K0(x, t)u(x, t)]dx = f2(t), (83)

0 ≤ t ≤ T,

where Ki(x, t) ∈ C1(D), i = 0, 1, 2, and f2 ∈ C1([0, T ]) are the given
functions, and K2

1 (x, t) +K2
2 (x, t) 6= 0, (x, t) ∈ D and f2(0) = 0.
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Substituting the representation (7) for u(x, t) into (83) and taking into
account equalities of the type (9), for the unknown function ϕ(t) = u(t, t)
we obtain the equality:

t∫

1
2 t

K1(2ξ − t, t)ϕ(1)(ξ)dξ−

−

1
2 t∫

0

K1(t− 2ξ, t)ϕ(1)(ξ)dξ +

t∫

1
2 t

K2(2ξ − t, t)ϕ(1)(ξ)dξ+

+

1
2 t∫

0

K2(t− 2ξ, t)ϕ(1)(ξ)dξ + 2

t∫

1
2 t

K0(2ξ − t, t)ϕ(ξ)dξ−

−2

1
2 t∫

0

K0(t− 2ξ, t)ϕ(ξ)dξ =

= g̃(t), 0 ≤ t ≤ T. (84)

Here,

g̃(t)=f2(t)−
t∫

0

[K1(x, t)f
(1)
1 (t−x)−K2(x, t)f

(1)
1 (t−x)+K0(x, t)f1(t−x)]dx−

−
1∫

0

[K1(x, t)g0t(x, t) +K2(x, t)g0x(x, t) +K0(x, t)g0(x, t)]dx =

= f2(t) + (K1(t, t) +K2(t, t))f1(0) − (K1(0, t) +K2(0, t))f1(t)+

+

t∫

0

[ ∂
∂t

(K1(t− ξ, t) +K2(t− ξ, t)) −K0(t− ξ, t)
]
f1(ξ)dξ−

−
t∫

0

[K1(x, t)g0t(x, t) +K2(x, t)g0x(x, t) +K0(x, t)g0(x, t)]dx. (85)

Integrating by parts the summands in the left-hand side of equality (84),
we obtain

K1(t, t)ϕ(t)−K1(0, t)ϕ
(1

2
t
)
−

t∫

1
2 t

[ ∂
∂t
K1(2ξ − t, t)

]
ϕ(ξ)dξ −K1(0, t)ϕ

(1

2
t
)
+
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+K1(t, t)ϕ(0) +

1
2 t∫

0

[ ∂
∂t
K1(t− 2ξ, t)

]
ϕ(ξ)dξ +K2(t, t)ϕ(t) −K2(0, t)ϕ

(1

2
t
)
−

−
t∫

1
2 t

[ ∂
∂t
K2(2ξ − t, t)

]
ϕ(ξ)dξ +K2(0, t)ϕ

(1

2
t
)
−K2(t, t)ϕ(0)−

−

1
2 t∫

0

[ ∂
∂t
K2(t− 2ξ, t)

]
ϕ(ξ)dξ + 2

t∫

1
2 t

K0(2ξ − t, t)ϕ(ξ)dξ−

−2

1
2 t∫

0

K0(t− 2ξ, t)ϕ(ξ)dξ = g̃(t), 0 ≤ t ≤ T. (86)

Since by (2) there takes place the equality ϕ(0) = u(0, 0) = f1(0), equation
(86) takes the form

(K1(t, t) +K2(t, t))ϕ(t) − 2K1(0, t)ϕ
(1

2
t
)

+

t∫

0

K3(ξ, t)ϕ(ξ)dξ =

= g̃(t) + (K2(t, t) −K1(t, t))f1(0), 0 ≤ t ≤ T, (87)

where K3(ξ, t) is the completely definite, piecewise continuously differen-
tiable function of its arguments.

Under the assumption that

K1(t, t) +K2(t, t) 6= 0, 0 ≤ t ≤ T, (88)

we can rewrite equation (87) as follows:

ϕ(t) − a0(t)ϕ
(1

2
t
)

+

t∫

0

K4(ξ, t)ϕ(ξ)dξ = g(t), 0 ≤ t ≤ T. (89)

Here,

a0(t) =
2K1(0, t)

K1(t, t) +K2(t, t)
, (90)

and the functions K4(ξ, t) and g(t) are defined from (87).

Remark 9. By the representation (7), equality (85) and the expression
for ∂

∂x
g0(x, t) which, just as the expression (55) for ∂

∂x
g0(x, t), does not

contain derivatives of the functions F , the condition (83) is rewritten in
the form (89), where the derivatives of the functions ϕ, f1, f2 and F are
omitted. Therefore the problem (1), (2), (83) in the class C(D) is, by virtue
of Remarks 1 and 2, equivalent to the integro-functional equation (89) in
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the class C([0, T ]), and hence by equality (85) it is sufficient to require that
the functions f1 and f2 be only continuous on the segment [0, T ].

Remark 10. According to the results presented in [29], if the condition

|a0(0)| < 1, i.e. 2|K1(0, 0)| < |K1(0, 0) +K2(0, 0)| (91)

is fulfilled, then equation (89) for any continuous function g(t) has a unique
continuous solution ϕ(t) for which the estimate

|ϕ(t)| ≤ c‖g‖
C([0,t])

, 0 ≤ t ≤ T, (92)

with the positive constant c, independent of g(t), is valid. However, if

|a0(0)| > 1, i.e. 2|K1(0, 0)| > |K1(0, 0) +K2(0, 0)|, (93)

then equation (89) is normally Hausdorff solvable in the class C([0, T ]), and
the homogeneous problem, corresponding to (89), has in C([0, T ] an infinite
set of linearly independent solutions. In case

a0(0) = 1, i.e. K1(0, 0) = K2(0, 0), (94)

by virtue of f2(0) = 0 and (85) the necessary condition g(0) = 0 of solvabil-
ity of the equation will be fulfilled, and by Lemma 3, if the supplementary
conditions

fi(t) − fi(0) ∈ Cα((0, T ]), i = 1, 2; 0 < α < 1, (95)

are also fulfilled, then equation (89) has the unique solution ϕ(t) ∈ C([0, T ]),
satisfying the initial condition (39). If, however,

a0(0) = −1, i.e. 3K1(0, 0) +K2(0, 0) = 0, (96)

then similarly to the proof of Lemma 3, if the conditions (95) are fulfilled,
then equation (89) has the unique continuous solution on the segment [0, T ].

In accordance with Remarks 9 and 10, as well as owing to the represen-
tation (7), for the problem (1), (2), (83) in the class C(D) the following
theorem is valid.

Theorem 5. Let Ki ∈ C1(D), i = 1, 2; fi ∈ C([0, T ]), i = 1, 2, f2(0) = 0;
F ∈ C(D) and let the condition (88) be fulfilled. Then:

(i) if inequality (91) is fulfilled, the problem (1), (2), (83) has the unique
solution u ∈ C(D) for which the estimate

|u(x, t)| ≤ c
[
‖f1‖C([0,t−x])

+ ‖f2‖
C([0,

t+x
2

])
+ ‖F‖

C(Dx,t)

]
∀(x, t) ∈ D,

with the positive constant c, independent of f1, f2 and F , is valid;
(ii) if inequality (93) is fulfilled, the problem (1), (2), (83) is normally

Hausdorff solvable in the class C(D), and the homogeneous problem, corre-
sponding to (1), (2), (3), has in C(D) an infinite set of linearly independent
solutions;
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(iii) in fulfilling equality (94), or (96), if of the functions f1 and f2 it is
required that the supplementary conditions (95) be fulfilled, then the problem
(1), (2), (83) has the unique solution u ∈ C(D) for which the estimate

|u(x, t)| ≤ c
[
‖f1‖C([0,t−x])

+ ‖f1(t) − f1(0)‖
Cα((0,t−x])

+ ‖f2‖
C([0,

t+x
2

])
+

+‖f2(t) − f2(0)‖
Cα((0,

t+x
2

])
+ ‖F‖

C(Dx,t)

]
, 0 < α < 1,

with the positive constant c, independent of f1, f2 and F , is valid.

Consider now the question on the solvability of the problem (1), (2),
(83) in the class C1(D) which is, by the representation (7), equivalent
to the solvability of equation (84) with respect to the unknown function
µ(t) = ϕ(1)(t) ∈ C([0, T ]) connection of the latter with the function ϕ(t) ∈
C1([0, T ]) by virtue of ϕ(t) = u(t, t) and the equality ϕ(0) = f1(0) from (2)

is given by the relation ϕ(t) = f1(0) +
∫ t

0 µ(τ)dτ .

Below it will be assumed that Ki ∈ C2(D), i = 1, 2; fi ∈ C1([0, T ]),
i = 1, 2, f2(0) = 0; F ∈ C1(D) and the condition (88) is fulfilled. Under
these requirements, the function g̃(t) from (84) belongs by virtue of (85)
to the class C1([0, T ]). Therefore differentiating both parts of equation
(84) with respect to the variable t and taking into account the notation

µ(t) = ϕ(1)(t) and the equality ϕ(t) = f1(0) +
∫ t

0
µ(τ)dτ , we obtain

(K1(t, t) +K2(t, t))µ(t) −K1(0, t)µ
(1

2
t
)

+

t∫

0

K5(ξ, t)µ(ξ)dξ = g̃(1), (97)

0 ≤ t ≤ T,

where K5(ξ, t) is the completely definite piecewise continuous function of
its arguments.

In the assumption that the condition (88) is fulfilled, we can rewrite
equation (97) in the form

µ(t) − 1

2
a0(t)µ

(1

2
t
)

+

t∫

0

K5(ξ, t)µ(ξ)dξ = g̃(1)(t), 0 ≤ t ≤ T, (98)

where the function a0(t) is defined by equality (90).
Applying Remark 10 to equation (98), we arrive at the following

Theorem 6. Let Ki ∈ C2(D), i = 1, 2; fi ∈ C1([0, T ]), i = 1, 2;
f2(0) = 0; F ∈ C1(D) and let the condition (88) be fulfilled. Then:

(i) if the inequality
∣∣∣1
2a0(0)

∣∣∣ < 1, i.e. |K1(0, 0)| < |K1(0, 0)+K2(0, 0)|, is

fulfilled, then the problem (1), (2), (83) has the unique solution u ∈ C1(D)
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for which the estimate

‖u‖
C1(Dx,t)

≤ c‖f1‖
C1([0,t−x])

+ ‖f2‖
C1([0,

t+x
2

])
+ ‖F‖

C1(Dx,t)

]
∀(x, t) ∈ D,

with the positive constant c, independent of f1, f2 and F , is valid;

(ii) if the inequality
∣∣∣ 1
2a0(0)

∣∣∣ > 1, i.e. |K1(0, 0)| > |K1(0, 0) +K2(0, 0)|
is fulfilled, then the problem (1), (2), (83) is normally Hausdorff solvable in
the class C1(D), and the homogeneous problem, corresponding to (1), (2),
(83), has in the class C1(D) an infinite set of linearly independent solutions;

(iii) in fulfilling the equality 1
2a0(0) = 1, i.e. K2(0, 0) = 0, if the necessary

condition of solvability of equation (98),

g̃(1)(0) = f
(1)
2 (0) + 2

2∑

i=1

(Kix(0, 0) +Kit(0, 0))f1(0)−

−(K1t(0, 0) +K2t(0, 0))f1(0) −K1(0, 0)f
(1)
2 (0) +K0(0, 0)f1(0) = 0,

is fulfilled, and of the functions f1 and f2 it is required that the supplemen-
tary conditions

f
(1)
i (t) − f

(1)
i (0) ∈ Cα((0, T ]), i = 1, 2; 0 < α < 1, (99)

be fulfilled, then the problem (1), (2), (83) has the unique solution u ∈ C1(D)
for which the estimate

‖u‖
C1(Dx,t)

≤c
[
‖f1‖C1([0,t−x])

+‖f (1)
1 (t) − f

(1)
1 (0)‖

Cα((0,t−x])
+‖f2‖

C1((0,
t+x
2

])
+

+‖f (1)
2 (t) − f

(1)
2 (0)‖

Cα((0,
t+x
2

])
+ ‖F‖

C1(Dx,t)

]
∀(x, t) ∈ D, (100)

with the positive constant c, independent of f1, f2 and F , is valid;
(iiii) if the equality 1

2a0(0) = −1, i.e. 2K1(0, 0)+K2(0, 0) = 0, is fulfilled
and the functions f1 and f2 satisfy the supplementary conditions (99), then
the problem (1), (2), (83) has the unique solution u ∈ C1(D) for which the
estimate (100) is valid.

According to Remark 9 applied to the problem (1), (2), (83), the following
theorem is valid.

Theorem 7. Let Ki ∈ Ck+1(D), i = 1, 2; fi ∈ Ck([0, T ]), i = 1, 2;
f2(0) = 0; F ∈ Ck(D), k ≥ 2; 1

2i a0(0) 6= 1, i = 1, . . . , k − 1, and let the
condition (88) be fulfilled. Then:

(i) if the inequality
∣∣∣ 1
2k a0(0)

∣∣∣ < 1 is fulfilled, the problem (1), (2), (83)

has the unique solution u ∈ Ck(D) for which the estimate

‖u‖
Ck(D)

≤ c
[
‖f1‖

Ck([0,t−x])
+ ‖f2‖

Ck([0,
t+x
2

])
+ ‖F‖

Ck(Dx,t)

]
(x, t) ∈ D,

with the positive constant c, independent of f1, f2 and F , is valid;
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(ii) if the equality
∣∣∣ 1
2k a0(0)

∣∣∣ > 1 is fulfilled, then the problem (1), (2), (83)

is normally Hausdorff solvable in the class Ck(D), and the homogeneous
problem, corresponding to (1), (2), (83), has in the class Ck(D) an infinite
set of linearly independent solutions;

(iii) in fulfilling the equality 1
2k a0(0) = 1, if the necessary condition of

solvability g̃(k−1)(0) = 0 of equation (98) in the class Ck([0, T ]) is fulfilled,
and of the functions f1 and f2 it is required that the supplementary condi-
tions

f
(k)
i (t) − f

(k)
i (0) ∈ Cα((0, T ]), i = 1, 2; 0 < α < 1, (101)

be fulfilled, then the problem (1), (2), (83) has the unique solution u ∈ Ck(D)
for which the estimate

‖u‖
Ck(Dx,t)

≤ c
[
‖f1‖

Ck([0,t−x])
+ ‖f (k)

1 (t) − f
(k)
1 (0)‖

Cα((0,t−x])
+ (102)

+‖f2‖
Ck([0,

t+x
2

])
+ ‖f (k)

2 (t) − f
(k)
2 (0)‖

Cα([0,
t+x
2

])
+ ‖F‖

Ck(Dx,t)

]
∀(x, t) ∈ D,

with the positive constant c, independent of f1, f2, and F , is valid;
(iiii) if the equality 1

2k a0(0) = −1 is fulfilled, and the functions f1 and f2
satisfy the supplementary conditions (101), then the problem (1), (2), (83)
has the unique solution u ∈ Ck(D) for which the estimate (102) is valid.

2. Problems with Integral Restrictions for Some Classes of

Hyperbolic Systems of Second Order

10. In this section it will be assumed that (1), (61) and (68) are the
systems of equations with respect to an unknown vector function u =
(u1, . . . , un), n ≥ 2; K, Ki, λ, λj (i = 0, 1, 2; j = 1, 2) are the given
square (n× n)-matrices appearing in the boundary conditions (3) and (83)
as well as in equations (61) and (68); F = (F1, . . . , Fn), fi = (fi1, . . . , fin),
i = 1, 2, are the given n-dimensional vectors. In this case, the above-proven
theorems remain valid if one makes some changes in the conditions of these
theorems. For example: 1) in the conditions of Theorems 1-3, instead of
inequality (14) it is required that detK(t, t) 6= 0, 0 ≤ t ≤ T ; 2) in Theo-
rem 4, instead of the condition K(0, t) 6= 0, 0 ≤ t ≤ T , it is required that
detK(0, t) 6= 0; 0 ≤ t ≤ T 3) in Theorem 5, instead of the condition (88) it
is required that

det[K1(t, t) +K2(t, t)] 6= 0, 0 ≤ t ≤ T, (103)

and in item (i) of that theorem instead of (91) it is required that the eigen
values of the matrix A0 = 2K1(0, 0)[K1(0, 0)+K2(0, 0)]−1 be less than unity
in modulo; in item (ii) of the above-mentioned theorem instead of (93) it is
required that σi 6= 1, i = 1, . . . , n, and max

1≤i≤n
|σi| > 1, where σi, i = 1, . . . , n,

are eigen values with regard for the multiplicity of the (n×n)-matrix A0; in
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item (iii) of Theorem 5 instead of equalities (94), or (96) it is required that
max1≤i≤n |σi| = 1; (4) in Theorem 7, whose particular case is Theorem 6 for
k = 1, instead of the condition 1

2i a0(0) 6= 1, i = 1, . . . , k − 1, it is required

that det
[

1
2iA0 − E

]
6= 0, i = 1, . . . , k − 1, where E is the unit (n × n)-

matrix; in item (i) of that theorem instead of the inequality 1
2k a0(0) 6= 1

it is required that max1≤i≤n |σi| < 2k; in item (ii) of Theorem 7 instead

of the inequality
∣∣∣ 1
2k a0(0)

∣∣∣ > 1 it is required that the inequalities σi 6= 2k,

i = 1, . . . , n, and max1≤i≤n |σi| > 1 be fulfilled; in items (iii) and (iiii)
of the theorem instead of the equalities 1

2k a0(0) = ±1 it is required that

max1≤i≤n |σi| = 2k, and in case max1≤i≤n |σi| = σi0 = 2k for some index i0,

1 ≤ i0 ≤ n, instead of g̃(k−1)(0) = 0 we have to consider the corresponding
condition of solvability of that problem.

20. In this section we consider the linear system of differential second
order equations of the type

Auxx + 2Buxt + Cutt = 0, (104)

where A, B and C are the given real constants (n × n)-matrices, u =
(u1, . . . , un) is the unknown n-dimensional real vector, n ≥ 2.

Below, it will be assumed that detC 6= 0 and the system (104) is strictly
hyperbolic, i.e. the characteristic polynomial

p(λ) = det(A+ 2Bλ+ Cλ2)

of the system (104) has exactly 2n real simple roots λ1, λ2, . . . , λ2n.
Since the roots of the polynomial p(λ) are simple, Ker(A+2Bλi+Cλ

2
i ) =

1, i = 1, . . . , 2n [32], and if νi ∈ Rn, νi ∈ Ker(A+2Bλi +Cλ2
i ), ‖νi‖Rn 6= 0,

i = 1, . . . , 2n, then a general solution of the system (104) of the class Ck(D)
where D : 0 < t < T , 0 < x < t; k ≥ 0, is given by the equality [33]

u(x, t) = u(0, 0) +
2n∑

i=1

νiϕi(x+ λit) ∀(x, t) ∈ D. (105)

Here, ϕi is an arbitrary function of the class Ck([αi, βi]), αi = min
(x,t)∈D

(x +

λit), βi = max
(x,t)∈D

(x+ λit) satisfying the normalizing condition

ϕi(0) = 0, i = 1, . . . , 2n, (106)

and between the solutions u(x, t) ∈ Ck(D), k ≥ 0, of the system (104) and
the functions ϕi ∈ Ck([αi, βi]), satisfying equalities (106), there takes place
the one-to-one correspondence.

Below, it will be assumed that the closed domain D : 0 ≤ t ≤ T , 0 ≤
x ≤ t, does not contain the characteristic straight lines li : x + λit = 0,
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i = 1, . . . , 2n, of the system (104) passing through the origin, i.e. li ∩D =
{(0, 0)}. This is, in turn, equivalent to the condition

λi 6∈ [−1, 0], i = 1, . . . , 2n. (107)

By (107), one of the numbers αi and βi appearing in the domain of definition
[αi, βi] of the function ϕi is equal to zero.

Taking into account (107), without restriction of generality, we assume
that the roots λ1, . . . , λ2n of the characteristic polynomial p(λ) are enumer-
ated in such a way that

λ1 < λ2 < · · · < λ
S0
< −1, 0 < λ

s0+1
< · · · < λ2n, (108)

where it is assumed that 0 < s0 < 2n.
In accordance with (108), if from the function ϕi(ξ) appearing in (105)

with the domain of definition [αi, βi] we pass to the function ψi(η) using

the rule ψi

( η

λi

)
= ϕ(η) for 1 ≤ i ≤ s0 and to the function ψi(η) using the

equality ψi

( η

1 + λi

)
= ϕi(η) for s0 < i ≤ 2n, then the domain of definition

for the function ψi(η) is the segment [0, T ], and the representation (105)
takes the form

u(x, t) = u(0, 0) +

s0∑

i=1

νiψi

(x+ λit

λi

)
+

+
2n∑

i=s0+1

νiψi

(x+ λit

1 + λi

)
∀(x, t) ∈ D, (109)

where ψi ∈ Ck([0, T ]), and

ψi(0) = 0, i = 1, . . . , 2n. (110)

For the system (104) in the domain D we consider the problem which
is formulated as follows: find in D a solution u(x, t) of the system (104),
satisfying both the boundary condition

N(t)u(0, t) = f1(t), 0 ≤ t ≤ T, (111)

and the integral condition of the type

∫

It

K(x, t)u(x, t)dx :=

t∫

0

K(x, t)u(x, t)dx = f2(t), 0 ≤ t ≤ T, (112)

where Iτ : t = τ ; 0 ≤ x ≤ τ ; N(t) ∈ C([0, T ]) and K(x, t) ∈ C1(D) are the
given matrices of order s0×n and (2n−s0)×n, respectively; f1(t) ∈ C([0, T ])
is the given s0-dimensional vector function, and f2(t) ∈ C1([0, T ]) is the
given (2n− s0)-dimensional vector function, where f2(0) = 0.
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It can be easily verified that

t∫

0

K(x, t)νiψi

(x+ λit

λi

)
dx = (113)

= −λi

t∫

1+λi
λi

t

K(λi(ξ − t), t)νiψi(ξ)dξ, 1 ≤ i ≤ s0,

t∫

0

K(x, t)νiψi

(x+ λit

1 + λi

)
dx = (114)

= (1 + λi)

t∫

λi
1+λi

t

K((1 + λi)ξ − λit, t)νiψi(ξ)dξ, s0 + 1 ≤ i ≤ 2n.

By (108) we have

0 < τi =
1 + λi

λi

< 1, i = 1, . . . , s0;

0 < τj =
λi

1 + λj

< 1, j = s0 + 1, . . . , 2n. (115)

Substituting the representation (109) for the solution u(x, t) of the system
(104) into the integral condition (112) and taking into account (113), (114)
and (115), we obtain

t∫

0

K(x, t)u(0, 0)dx−
s0∑

i=1

λi

t∫

τit

K(λi(ξ − t), t)νiψi(ξ)dξ+

+

2n∑

i=s0+1

(1 + λi)

t∫

τit

K((1 + λi)ξ − λit, t)νiψi(ξ)dξ=f2(t), 0≤ t≤T. (116)

Differentiation of both parts of equality (116) with respect to the variable
t yields

K(t, t)u(0, 0)−
s0∑

i=1

λiK(0, t)νiψi(t) +

s0∑

i=1

λiτiK(λi(τi − 1)t, t)νiψi(τit)+

+

2n∑

i=s0+1

(1 + λi)K(t, t)νiψi(t)−
2n∑

i=s0+1

(1 + λi)τiK([(1 + λi)τi − λi]t, t)νiψi(τit)−
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−
s0∑

i=1

λi

t∫

τit

∂

∂t
[K(λi(ξ − t), t)]νiψi(ξ)dξ+

+

2n∑

i=s0+1

(1 + λi)

t∫

τit

∂

∂t
[K((1 + λi)ξ − λit, t)]νiψi(ξ)dξ =

= f
(1)
2 (t), 0 ≤ t ≤ T. (117)

Regarding (109) and (110), from equalities (111) and (117) we obtain
the following overdetermined linear system of 2n equations with respect to
u1(0, 0), . . . , un(0, 0) unknowns:

(
N(0)

K(0, 0)

)
u(0, 0) =

(
f1(0)

f
(1)
2 (0)

)
, u(0, 0) = (u1(0, 0), . . . , un(0, 0)). (118)

As is known, for the unique solvability of the overdetermined system
(118) it is necessary and sufficient that the following two conditions

rank

(
N(0)

K(0, 0)

)
= n, (119)

and

rank

(
N(0) f1(0)

K(0, 0) f
(1)
2 (0)

)
= rank

(
N(0)

K(0, 0)

)
. (120)

be fulfilled. In addition, we can consider condition (120) as the necessary
condition of solvability of the problem (104), (111), (112) in the class C(D).

With regard for the representation (109) and notation of (115), we can
rewtite the boundary condition (111) in the form

s0∑

i=1

N(t)νiψi(t) +

2n∑

i=s0+1

N(t)νiψi(τit) =

= f1(t) −N(t)u(0, 0), 0 ≤ t ≤ T. (121)

Introduce now into consideration the matrices Λ1, Λ2, Λ3 and K0 of
orders n× s0, n× (2n− s0), n× s0 and 2n× 2n, respectively, as follows:

Λ1 = (ν1, . . . , νs0), Λ2 = ((1 + λs0+1)νs0+1, . . . , (1 + λ2n)ν2n),

Λ3 = (λ1ν1, , λs0νs0), K0(t) =

(
N(t)Λ1 0

−K(0, t)Λ3 K(t, t)Λ2

)
, (122)

where, for example, the columns in the matrix Λ1 are the vectors ν1, ν2, . . . ,
νs0 .

Taking into account (122), we can write the system of integro-functional
equations (117), (121) with respect to the unknown vector function ψ(t) =
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(ψ1(t), ψ2n(t)) in the form

K0(t)ψ(t) +

2n∑

i=1

Ki(t)ψi(τit)+

+

2n∑

i=1

t∫

τit

Li(ξ, t)ψ(ξ)dξ = f(t), 0 ≤ t ≤ T. (123)

Here, Ki(t) and Li(ξ, t) are completely definite continuous 2n×2n matrices
of their arguments, and the right-hand side of the system (123) defined by
the equality

f(t) =

(
f1(t)

f
(1)
2 (t)

)
−

(
N(t)

K(t, t)

)
u(0, 0)

can likewise be assumed as given, if the conditions (119) and (120) are
fulfilled. In this case, owing to (110) and (118), the necessary condition

f(0) = 0 (124)

of solvability of the system (123) in the class C([0, T ]) is fulfilled automati-
cally.

Remark 11. By (122), it is easy to see that the condition detK0(t) 6= 0,
0 ≤ t ≤ T , is equivalent to the fulfilment of the following two conditions:

detN(t)Λ1 6= 0, detK(t, t)Λ2 6= 0, 0 ≤ t ≤ T. (125)

If the conditions (125) are fulfilled, and if in addition, the inequality

2n∑

i=1

‖K−1
0 (0)Ki(0)‖

R2n→R2n
< 1, (126)

is fulfilled, then, as is known, the system (123) has the unique solution in
the class C([0, T ]) for which the estimate [33]

‖ψ(t)‖
Rn ≤ c

(
‖f1‖C([0,t])

+ ‖f2‖
C1([0,t])

)
, 0 ≤ t ≤ T,

with the positive constant c, independent of f1 and f2, is valid. Moreover,
by (124), the conditions (110) will likewise be fulfilled, i.e. ψ(0) = 0.

Remark 12. In fulfilling the conditions (119) and (120), since the problem
(104), (111), (112) in the class C([0, T ]) is equivalently reduced to the system
(123) in the class C([0, T ]), according to Remark 11, the following theorem
is valid.

Theorem 8. Let N(t) ∈ C([0, T ]), K(x, t) ∈ C1(D), f1(t) ∈ C([0, T ]),
f2(t) ∈ C1([0, T ]), f2(0) = 0 and let the conditions (108), (119), (120),
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(125) and (126) be fulfilled. Then the problem (104), (111), (112) has the
unique solution u(x, t) in the class C(D) for which the estimate

‖u(x, t)‖
Rn ≤ c

[
‖f1‖

C[0,
x+λ1t

λ1
]
+ ‖f2‖

C[0,
x+λ2nt

1+λ2n
]

]
∀(x, t) ∈ D,

with the positive constant c, independent of f1 and f2, is valid.

Note that if the condition (125), or (126) is violated, then the homoge-
neous system of integro-functional equations, corresponding to (123), may
have an infinite set of linearly independent solutions ([32]), and hence the
homogeneous problem, corresponding to (104), (111), (112) will have the
same property.
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