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1. STATEMENT OF THE PROBLEM

Consider the nonlinear wave equation of the form

Lu :=
∂2u

∂t2
−∆u + mu = f(u) + F, (1)

where f and F are given real functions, f is nonlinear, and u is the unknown real function;
m = const ≥ 0, ∆ =

∑n

i=1 ∂
2/∂x2

i , and n ≥ 2.
Let D be a conical domain in the space Rn+1 of the variables x = (x1, . . . , xn) and t; i.e., if D

contains a point (x, t), then it contains the entire ray � : (τx, τt), 0 < τ < ∞. By S we denote the
cone ∂D. We assume that the domain D is homeomorphic to the conical domain ω: t > |x| and
S\O is a connected n-dimensional manifold of the class C∞, where O = (0, . . . , 0, 0) is the vertex
of the cone S. We also assume that the domain D lies in the half-space t > 0 and set

DT = {(x, t) ∈ D : t < T}, ST = {(x, t) ∈ S : t ≤ T}, T > 0.

If T = ∞, then, obviously, D∞ = D and S∞ = S.
Consider the following problem: find a solution u(x, t) of Eq. (1) in the domain DT with the

boundary condition
u|ST

= g, (2)

where g is a given real-valued function on ST .
If the cone S = ∂D is timelike and is the graph of a function of the variables x1, . . . , xn, i.e., if(

ν2
0 −

n∑
i=1

ν2
i

)∣∣∣∣∣
S

< 0, ν0|S < 0, (3)

where ν = (ν1, . . . , νn, ν0) is the unit outward normal to S\0, then problem (1), (2) is a multidi-
mensional version of the second Darboux problem [1, pp. 228, 233] for the nonlinear equation (1).

In what follows, we assume that condition (3) is satisfied.
The existence or absence of a global solution of the Cauchy problem for semilinear equations

of the form (1) with initial conditions u|t=0 = u0 and ∂u/∂t|t=0 = u1 was studied in [2–7]. As to
multidimensional variants of the second Darboux problem for linear equations of order ≥ 2, they
are well-posed and globally solvable in appropriate function spaces [18–20].

In the present paper, we single out special cases of the nonlinear function f = f(u); problem (1),
(2) is globally solvable in some of these cases and is not globally solvable in the other cases.
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2 KHARIBEGASHVILI

2. GLOBAL SOLVABILITY OF THE PROBLEM

Consider the case in which f(u) = −λ|u|pu, where λ 
= 0 and p > 0 are given real numbers.
Then Eq. (1) acquires the form

Lu :=
∂2u

∂t2
−∆u + mu = −λ|u|pu + F. (4)

This equation arises in relativistic quantum mechanics [21–24].
Let us restrict our considerations to the case in which condition (2) is homogeneous, i.e.,

u|ST
= 0. (5)

We set W̊ 1
2 (DT , ST ) := {u ∈ W 1

2 (DT ) : u|ST
= 0}, where W 1

2 (DT ) is the well-known Sobolev
space [25, p. 56].

Remark 1. The embedding I : W̊ 1
2 (DT , ST ) → Lq (DT ) is a linear continuous compact operator

for 1 < q < 2(n + 1)/(n − 1) provided that n > 1 [25, p. 81]. At the same time, the Nemytskii
operator K : Lq (DT ) → L2 (DT ) acting by the formula Ku := −λ|u|pu is continuous and bounded
if q ≥ 2(p+1) [26, p. 349; 27, pp. 66–67 of the Russian translation]. Therefore, if p < 2/(n−1), i.e.,
2(p+1) < 2(n+1)/(n−1), then there exists a number q such that 1 < 2(p+1) ≤ q < 2(n+1)/(n−1)
and hence the operator

K0 = KI : W̊ 1
2 (DT , ST ) → L2 (DT ) (6)

is continuous and compact. The inclusion u ∈ W̊ 1
2 (DT , ST ) implies that so much the more u ∈

Lp+1 (DT ). As was mentioned above, we everywhere assume that p > 0.

Definition 1. Let F ∈ L2 (DT ) and 0 < p < 2/(n − 1). A function u ∈ W̊ 1
2 (DT , ST ) is

called a strong generalized solution of the nonlinear problem (4), (5) in the domain DT if there
exists a sequence uk ∈ C̊2

(
D̄T , ST

)
:=

{
u ∈ C2

(
D̄T

)
: u|ST

= 0
}

of functions such that uk → u in
the space W̊ 1

2 (DT , ST ) and [Luk + λ |uk|p uk] → F in the space L2 (DT ). The convergence of the
sequence {λ |uk|p uk} to the function λ|u|pu in the space L2 (DT ) under the condition that uk → u

in the space W̊ 1
2 (DT , ST ) follows from Remark 1. Note that since |u|p+1 ∈ L2 (DT ) and the domain

DT is bounded, we so much the more have u ∈ Lp+1 (DT ).

Definition 2. Let 0 < p < 2/(n− 1), F ∈ L2,loc(D), and F ∈ L2 (DT ) for every T > 0. We say
that problem (4), (5) is globally solvable if for each T > 0 it has a strong generalized solution in
the domain DT in the space W̊ 1

2 (DT , ST ).

Lemma 1. Let λ > 0, 0 < p < 2/(n − 1), and F ∈ L2 (DT ). Then each strong generalized
solution u ∈ W̊ 1

2 (DT , ST ) of problem (4), (5) in the domain DT admits the a priori estimate

‖u‖W̊ 1
2 (DT ,ST ) ≤

√
e/2 T‖F‖L2(DT ). (7)

Proof. Let u ∈ W̊ 1
2 (DT , ST ) be a strong generalized solution of problem (4), (5). By Definition 1,

there exists a sequence uk ∈ C̊2
(
D̄T , ST

)
of functions such that

lim
k→∞

‖uk − u‖W̊ 1
2 (DT ,ST ) = 0, lim

k→∞
‖Luk + λ |uk|p uk − F‖L2(DT ) = 0. (8)

Consider the function uk ∈ C̊2
(
D̄T , ST

)
defined as the solution of the problem

Luk + λ |uk|p uk = Fk, (9)
uk|ST

= 0;(10)
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ON THE EXISTENCE OR ABSENCE OF GLOBAL SOLUTIONS 3

here
Fk = Luk + λ |uk|p uk. (11)

By multiplying both sides of Eq. (9) by ∂uk/∂t and by integrating over the domain

Dτ = {(x, t) ∈ D : t < τ}, 0 < τ ≤ T,

we obtain

1
2

∫
Dτ

∂

∂t

(
∂uk

∂t

)2

dx dt −
∫
Dτ

∆uk

∂uk

∂t
dx dt

+
m

2

∫
Dτ

∂

∂t
u2
kdx dt +

λ

p + 2

∫
Dτ

∂

∂t
|uk|p+2

dx dt =
∫
Dτ

Fk

∂uk

∂t
dx dt. (12)

We set Ωτ := D∩{t = τ}. Obviously, Ωτ = Dτ ∩{t = τ} for 0 < τ < T . Then, by using (10) and
the argument in [25, pp. 202–203] and by integrating the left-hand side of (12) by parts, we obtain

∫
Dτ

Fk

∂uk

∂t
dx dt =

∫
Sτ

1
2ν0

[
n∑

i=1

(
∂uk

∂xi

ν0 −
∂uk

∂t
νi

)2

+
(
∂uk

∂t

)2
(
ν2

0 −
n∑

j=1

ν2
j

)]
ds

+
1
2

∫
Ωτ

[
mu2

k +
(
∂uk

∂t

)2

+
n∑

i=1

(
∂uk

∂xi

)2
]
dx +

λ

p + 2

∫
Ωτ

|uk|p+2
dx, (13)

where ν = (ν1, . . . , νn, ν0) is the unit outward normal on ∂Dτ .

Since
(
ν0

∂

∂xi

− νi
∂

∂t

)
, i = 1, . . . , n, is an intrinsic differential operator on ST , it follows

from (10) that (
∂uk

∂xi

ν0 −
∂uk

∂t
νi

)∣∣∣∣
Sτ

= 0, i = 1, . . . , n. (14)

By using (3) and (14), from (13), we obtain the inequality

∫
Ωτ

[
mu2

k +
(
∂uk

∂t

)2

+
n∑

i=1

(
∂uk

∂xi

)2
]
dx ≤ 2

∫
Dτ

Fk

∂uk

∂t
dx dt. (15)

By using the notation

w(δ) =
∫
Ωδ

[
mu2

k + (∂uk/∂t)
2 +

n∑
i=1

(∂uk/∂xi)
2

]
dx

and by taking into account the inequality

2Fk

∂uk

∂t
≤ ε

(
∂uk

∂t

)2

+
1
ε
F 2
k ,

which is valid for every ε = const > 0, from (15), we obtain the inequality

w(δ) ≤ ε

δ∫
0

w(σ)dσ +
1
ε
‖Fk‖2

L2(Dδ) , 0 < δ ≤ T. (16)
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4 KHARIBEGASHVILI

Since the quantity ‖Fk‖2

L2(Dδ) is a nondecreasing function of δ, it follows from (16) and the Gronwall
lemma [28, p. 13 of the Russian translation] that

w(δ) ≤ 1
ε
‖Fk‖2

L2(Dδ) exp δε.

This, together with the relation infε>0

exp δε

ε
= eδ attained for ε = 1/δ, implies the inequality

w(δ) ≤ eδ ‖Fk‖2

L2(Dδ) , 0 < δ ≤ T. (17)

In turn, it follows from (17) that

‖uk‖2

W̊ 1
2 (DT ,ST ) =

∫
DT

[
mu2

k +
(
∂uk

∂t

)2

+
n∑

i=1

(
∂uk

∂xi

)2
]
dx dt =

T∫
0

w(δ)dδ ≤ e

2
T 2 ‖Fk‖2

L2(DT ) . (18)

Here we have used the fact that one of the equivalent norms in the space W̊ 1
2 (DT , ST ) is given by

the expression 


∫
DT

[
mu2 + (∂u/∂t)2 +

n∑
i=1

(∂u/∂xi)
2

]
dx dt




1/2

regardless of whether m = 0 or m > 0. Indeed, it follows by a standard argument from the relations
u|ST

= 0 and

u(x, t) =

t∫
ϕ(x)

∂u(x, τ)
∂t

dτ, (x, t) ∈ D̄T ,

where t− ϕ(x) = 0 is the equation of the cone S, that the following inequality holds [25, p. 63] :

∫
Dτ

u2(x, t)dx dt ≤ T 2

∫
Dτ

(
∂u

∂t

)2

dx dt.

By using (8) and (11) and by passing to the limit as k → ∞ in (8), we obtain the estimate (7),
which completes the proof of the lemma.

Theorem 1. Let λ > 0, 0 < p < 2/(n − 1), F ∈ L2,loc(D), and F ∈ L2 (DT ) for each T > 0.
Then problem (4), (5) is globally solvable; i.e., for each T > 0, this problem has a strong generalized
solution u ∈ W̊ 1

2 (DT , ST ) in the domain DT .

Proof. First, in the form needed by us, we study the solvability of the linear problem corre-
sponding to (4), (5) for the case in which λ = 0 in (4), i.e., for the problem

Lu(x, t) = F (x, t), (x, t) ∈ DT , u(x, t) = 0, (x, t) ∈ ST . (19)

In this case, if F ∈ L2 (DT ), then, in a similar way, one can introduce the notion of a strong
generalized solution u ∈ W̊ 1

2 (DT , ST ) of problem (19) for which there exists a sequence uk ∈
C̊2

(
D̄T , ST

)
of functions such that

lim
k→∞

‖uk − u‖W̊ 1
2 (DT ,ST ) = 0, lim

k→∞
‖Luk − F‖L2(DT ) = 0.

It follows from the proof of Lemma 1 that the a priori estimate (7) is also valid for a strong
generalized solution of problem (19).
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ON THE EXISTENCE OR ABSENCE OF GLOBAL SOLUTIONS 5

We introduce the weighted Sobolev space W k
2,α(D), 0 < α < ∞, k = 1, 2, . . . , of functions of the

class W k
2,loc(D) with finite norm

‖u‖2
Wk

2,α(D) =
k∑

i=0

∫
D

r−2α−2(k−i)

∣∣∣∣ ∂iu

∂xi′∂ti0

∣∣∣∣
2

dx dt,

where

r =

(
n∑

j=1

x2
j + t2

)1/2

,
∂iu

∂xi′∂ti0
=

∂iu

∂xi1
1 · · · ∂xin

n ∂ti0
, i = i1 + · · · + in + i0.

We set W̊ k
2,α(D,S) =

{
u ∈ W k

2,α(D) : u|S = 0
}
. Along with problem (19) in the domain DT ,

we consider a similar problem in the infinite cone D in the following setting:

L̃u(x, t) = F (x, t), (x, t) ∈ D, u(x, t) = 0, (x, t) ∈ S. (20)

Here L̃u := ∂2u/∂t2 − ∆u + m̃u, and the coefficient m̃ = m̃(x, t) has the properties

m̃ ∈ C∞ (
D̄
)
, m̃|DT

= m, diam supp m̃ < +∞. (21)

The existence of a function m̃ with the above-mentioned properties is obvious. If m = 0, then,
obviously, we set m̃ ≡ 0.

By virtue of inequality (3), which, by [20, p. 114], is valid for the equation L̃u = F , there
exists a constant α0 = α0(k) > 1 such that if α ≥ α0, then problem (20) has a unique solution
u ∈ W̊ k

2,α(D,S) for each function F ∈ W k−1
α−1(D).

Since the space C∞
0 (DT ) of compactly supported and infinitely differentiable functions in DT

is dense in L2 (DT ), it follows that for a given function F ∈ L2 (DT ) there exists a sequence of
functions F� ∈ C∞

0 (DT ) such that lim�→∞ ‖F� − F‖L2(DT ) = 0. We fix �, continue the function
F� by zero outside DT , and keep the same notation for the resulting function; then F� ∈ C∞

0 (D).
Obviously, F� ∈ W k−1

α−1(D) for any k ≥ 1 and α > 1 and hence for α ≥ α0 = α0(k). By virtue
of preceding considerations, there exists a solution ũ� ∈ W̊ k

2,α(D,S) of problem (20) for F = F�.
By virtue of (21), the function u� = ũ�|DT

is a solution of problem (19) for F = F�; i.e., Lu� = F� and
u�|ST

= 0. Since u� ∈ W̊ k
2 (DT , ST ) =

{
u ∈ W k

2 (DT ) : u|ST
= 0

}
, it follows from the embedding

theorem [25, p. 84] that u� ∈ C̊2
(
D̄T , ST

)
for sufficiently large k, namely, for k > (n + 1)/2 + 2.

Since the a priori estimate (7) is also valid for a strong generalized solution of problem (19), we have

‖u� − u�′‖W̊ 1
2 (DT ,ST ) ≤

√
e/2T ‖F� − F�′‖L2(DT ) . (22)

Since {F�} is a Cauchy sequence in L2 (DT ), it follows from (22) that {u�} is a Cauchy sequence
in W̊ 1

2

(
D̄T , ST

)
. Since the space W̊ 1

2

(
D̄T , ST

)
is complete, it follows that there exists a function

u ∈ W̊ 1
2 (DT , ST ) such that

lim
�→∞

‖u� − u‖W̊ 1
2 (DT ,ST ) = 0,

and since Lu� = F� → F in the space L2 (DT ), we find that this function, by definition, is a strong
generalized solution of problem (19). The uniqueness of this solution in the space W̊ 1

2 (DT , ST )
follows from the a priori estimate (7). Consequently, for the solution u of problem (19), we can
write out u = L−1F , where L−1 : L2 (DT ) → W̊ 1

2 (DT , ST ) is a linear continuous operator whose
norm, by (7), can be estimated as∥∥L−1

∥∥
L2(DT )→W̊ 1

2 (DT ,ST )
≤

√
e/2T. (23)
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Note that if F ∈ L2 (DT ), 0 < p < 2/(n − 1), then, by virtue of (23) and Remark 1, for the
function u ∈ W̊ 1

2 (DT , ST ) to be a strong generalized solution of problem (4), (5) it is necessary and
sufficient that u is a solution of the functional equation

u = L−1 (−λ|u|pu + F ) (24)

in the space W̊ 1
2 (DT , ST ).

We rewrite Eq. (24) in the form

u = Au := L−1 (K0u + F ) , (25)

where, by Remark 1, the operator K0 in (6) is a continuous compact operator. Consequently,
by virtue of the estimate (23), A : W̊ 1

2 (DT , ST ) → W̊ 1
2 (DT , ST ) is also a continuous compact

operator. At the same time, by Lemma 1, the a priori estimate ‖u‖W̊ 1
2 (DT ,ST ) ≤ c‖F‖L2(DT ) with

a positive constant c independent of u, τ , and F is valid for any parameter value τ ∈ [0, 1] and
for any solution of the parametric equation u = τAu. Therefore, by the Leray–Schauder theorem
[29, p. 375], Eq. (25) and hence problem (4), (5) have at least one solution u ∈ W̊ 1

2 (DT , ST ). The
proof of the theorem is complete.

3. ABSENCE OF THE GLOBAL SOLVABILITY OF THE PROBLEM

Below we restrict our consideration of Eq. (4) to the case in which λ < 0 and the spatial
dimension is n = 2. To simplify the argument, we assume that m = 0 and

S : t = k0|x|, k0 = const > 1. (26)

Obviously, condition (3) is valid for the cone S given by (26). In this case, we have

DT = {(x, t) ∈ R3 : k|x| < t < T}.

For (x0, t0) ∈ DT , we introduce the domain Dx0,t0 = {(x, t) ∈ R3 : k|x| < t < t0 − |x− x0|},
which is bounded below by the cone S and above by the past light cone S−

x0,t0 : t = t0 − |x− x0|
with vertex (x0, t0).

The following assertion is valid for any n ≥ 2.

Lemma 2. Let F ∈ C
(
D̄T

)
, and let u ∈ C2

(
D̄T

)
be a classical solution of problem (4), (5).

If F |Dx0,t0
= 0 for some point (x0, t0) ∈ DT , then u|Dx0,t0

= 0.

Proof. Since the proof of this lemma reproduces, in a sense, the proof of Lemma 1, we only
outline key points of the proof.

We set

Dx0,t0,τ := Dx0,t0 ∩ {t < τ}, Ωx0,t0,τ := Dx0,t0 ∩ {t = τ}, 0 < t < τ.

Then ∂Dx0,t0,τ = S1,τ ∪ S2,τ ∪ S3,τ , where S1,τ = ∂Dx0,t0,τ ∩ S, S2,τ = ∂Dx0,t0,τ ∩ S−
x0,t0 , and

S3,τ = ∂Dx0,t0,τ ∩ Ω̄x0,t0,τ . Just as in the derivation of (13), by multiplying both sides of Eq. (4)
by ∂u/∂t and by integrating the resulting relation over the domain Dx0,t0,τ , 0 < τ < t0, in view
of (4) and the relation F |Dx0,t0

= 0, we obtain

0 =
∫

S1,τ∪S2,τ

1
2ν0

[
n∑

i=1

(
∂u

∂xi

ν0 −
∂u

∂t
νi

)2

+
(
∂u

∂t

)2
(
ν2

0 −
n∑

j=1

ν2
j

)]
ds

+
∫

S2,τ∪S3,τ

λ

p + 2
|u|p+2ν0ds +

∫
S3,τ

[(
∂u

∂t

)2

+
n∑

i=1

(
∂u

∂xi

)2
]
dx. (27)

(Reg. No. 310, 21.3.2007) DIFFERENTIAL EQUATIONS Vol. 43 No. 3 2007
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By virtue of (3), (5), and the relation(
ν2

0 −
n∑

i=1

ν2
i

)∣∣∣∣∣
S1,τ

< 0, ν0|S1,τ
< 0,

(
ν2

0 −
n∑

i=1

ν2
i

)∣∣∣∣∣
S2,τ

= 0, ν0|S2,τ
=

1√
2
> 0,

(
∂u

∂xi

ν0 −
∂u

∂t
νi

)∣∣∣∣
S1,τ

= 0,
(

∂u

∂xi

ν0 −
∂u

∂t
νi

)2
∣∣∣∣∣
S2,τ

≥ 0, i = 1, . . . , n,

we have the inequality∫
S1,τ∪S2,τ

1
2ν0

[
n∑

i=1

(
∂u

∂xi

ν0 −
∂u

∂t
νi

)2

+
(
∂u

∂t

)2
(
ν2

0 −
n∑

j=1

ν2
j

)]
ds ≥ 0, (28)

which, together with (27), implies that

∫
S3,τ

[(
∂u

∂t

)2

+
n∑

i=1

(
∂u

∂xi

)2
]
dx ≤ M

∫
S2,τ∪S3,τ

u2ds, 0 < τ < t0. (29)

Here, by virtue of the inclusion u ∈ C2
(
D̄T

)
, |ν0| ≤ 1, there exists a nonnegative constant M

independent of the parameter τ , which can be taken in the form

M =
|λ|

p + 2
‖u‖p

C(D̄T )
< +∞. (30)

Since u|ST
= 0, it follows from (26) that

u(x, t) =

t∫
k0|x|

∂u(x, σ)
∂t

dσ, (x, t) ∈ S2,τ ∪ S3,τ , (31)

which, after standard considerations, implies the inequality [25, p. 63]∫
S2,τ∪S3,τ

u2ds ≤ 2t0
∫

Dx0,t0,τ

(
∂u

∂t

)2

dx, 0 < τ < t0. (32)

By setting w(τ) =
∫
S3,τ

[
(∂u/∂t)2 +

∑n

i=1 (∂u/∂xi)
2
]
dx, from (29) and (32), one can readily

obtain

w(τ) ≤ 2t0M

τ∫
0

w(δ)dδ, 0 < τ < t0.

This, together with (30) and the Gronwall lemma, readily implies that w(τ) = 0, 0 < τ < t0, and
hence ∂u/∂t = ∂u/∂x1 = · · · = ∂u/∂xn = 0 in the domain Dx0,t0 . Therefore, u|Dx0,t0

= const, and,
by using the homogeneous boundary condition (5), we finally obtain u|Dx0,t0

= 0. The proof of the
lemma is complete.

Let Ga: t > |x| + a be the future light cone with vertex (0, 0, a), where a = const > 0. Then,
by (26), obviously, D\Ga = {(x, t) ∈ R3 : k0|x| < t < |x|+ a, |x| < a/ (k0 − 1)}; moreover,

D\Ḡa ⊂
{
(x, t) ∈ R3 : 0 < t < b

}
, b =

ak0

k0 − 1
. (33)

One can readily see that DT\Ḡa = D\Ḡa for T > b = ak0/ (k0 − 1).

DIFFERENTIAL EQUATIONS Vol. 43 No. 3 2007 (Reg. No. 310, 21.3.2007)
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Lemma 3. Let n = 2, λ < 0, F ∈ C
(
D̄T

)
, T ≥ b = ak0/(k0 − 1) , suppF ⊂ Ḡa, and F ≥ 0. If

u ∈ C2
(
D̄T

)
is a classical solution of problem (4), (5), then u|Db

≥ 0.

Proof. First, let us show that u|DT \Ḡa
= 0. Indeed, let (x0, t0) ∈ DT\Ḡa. Since suppF ⊂ Ḡa,

we have F |Dx0,t0
= 0, and, by Lemma 2, u|Dx0,t0

= 0. Therefore, by using (33), by continuing the
functions u and F by zero outside Db in the strip Σb = {(x, t) ∈ R3 : 0 < t < b}, and by using
the same notation for the resulting functions, we find that u ∈ C2

(
Σ̄b

)
is a classical solution of the

Cauchy problem

∂2u

∂t2
− ∆u = −λ|u|pu + F, u|t=0 = 0,

∂u

∂t

∣∣∣∣
t=0

= 0 (34)

in the strip Σb. It is known that a solution u ∈ C2
(
Σ̄b

)
of problem (34) admits the integral

representation [30, pp. 213–216]

u(x, t) = − λ

2π

∫
Ωx,t

|u|pu√
(t− τ)2 + |x− ξ|2

dξ dτ + F0(x, t), (x, t) ∈ Σb. (35)

Here

F0(x, t) =
1
2π

∫
Ωx,t

F (ξ, τ)√
(t− τ)2 + |x− ξ|2

dξ dτ, (36)

where Ωx,t = {(ξ, τ) ∈ R3 : |ξ − x| < t, 0 < τ < t− |ξ − x|} is a circular cone with vertex (x, t)
and with base in the form of the disk d : |ξ − x| < t, τ = 0 in the plane τ = 0 of the variables ξ1

and ξ2, ξ = (ξ1, ξ2).
Let (x0, t0) ∈ Db and ψ̃0 = ψ̃0(x, t) ∈ C

(
Ω̄x0,t0

)
. Then the linear operator Ψ : C

(
Ω̄x0,t0

)
→

C
(
Ω̄x0,t0

)
acting by the formula

Ψv(x, t) =
1
2π

∫
Ωx,t

ψ̃0(ξ, τ)v(ξ, τ)√
(t− τ)2 − |x− ξ|2

dξ dτ, (x, t) ∈ Ω̄x0,t0 ,

is continuous, and its norm can be estimated as [30, p. 215]

‖Ψ‖C(Ω̄x0,t0 )→C(Ω̄x0,t0 ) ≤
(t0)2

2

∥∥∥ψ̃0

∥∥∥
C(Ω̄x0,t0 )

≤ T 2

2

∥∥∥ψ̃0

∥∥∥
C(Ω̄x0,t0 )

.

Consider the integral equation

v(x, t) =
∫

Ωx,t

ψ0(ξ, τ)v(ξ, τ)√
(t− τ)2 − |x− ξ|2

dξ dτ + F0(x, t), (x, t) ∈ Ω̄x0,t0 , (37)

for the unknown function v. Here

ψ0(ξ, τ) = − λ

2π
|u(ξ, τ)|p ∈ C

(
Ω̄x0,t0

)
, (38)

where u is the classical solution of problem (4), (5) occurring in Lemma 3. Since ψ0, F0 ∈ C
(
Ω̄x0,t0

)
;

and the operator occurring on the right-hand side in (37) is a Volterra type integral equation (with
respect to the variable t) with a weak singularity, it follows that Eq. (37) is uniquely solvable in
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the space C
(
Ω̄x0,t0

)
. In this case, a solution v of Eq. (37) can be obtained by the method of Picard

sequential approximations:

v0 = 0, vk+1(x, t) =
∫

Ωx,t

ψ0(ξ, τ)vk(ξ, τ)√
(t− τ)2 − |x− ξ|2

dξ dτ + F0(x, t), k = 1, 2, . . . (39)

Indeed, let ωτ = Ωx0,t0∩{t = τ}, wm|Ω̄x0,t0
= vm+1−vm (w0|Ω̄x0,t0

= F0), λm(t) = maxx∈ω̄t
|wm(x, t)|,

m = 0, 1, . . . ;

δ =
∫

|η|<1

(
1 − |η|2

)−1/2
dη1dη2 ‖ψ0‖C(Ω̄x0,t0 ) = 2π ‖ψ0‖C(Ω̄x0,t0 ) .

If Bβϕ(t) = δ
∫ t

0
(t − τ)β−1ϕ(τ)dτ , β > 0, then, by taking into account (39) and the relation

[28, p. 206 of the Russian translation]

Bm
β ϕ(t) =

1
Γ(mβ)

t∫
0

(δΓ(β))m(t− τ)mβ−1ϕ(τ)dτ,

we obtain

|wm(x, t)| =

∣∣∣∣∣∣
∫

Ωx,t

ψ0wm−1√
(t− τ)2 − |x− ξ|2

dξ dτ

∣∣∣∣∣∣ ≤
t∫

0

dτ

∫
|x−ξ|<t−τ

|ψ0| |wm−1|√
(t− τ)2 − |x− ξ|2

dξ

≤ ‖ψ0‖C(Ω̄x0,t0 )

t∫
0

dτ

∫
|x−ξ|<t−τ

λm−1(τ)√
(t− τ)2 − |x− ξ|2

dξ

= ‖ψ0‖C(Ω̄x0,t0 )

t∫
0

(t− τ)λm−1(τ)dτ
∫

|η|<1

dη1dη2√
1 − |η|2

= B2λm−1(t), (x, t) ∈ Ωx0,t0 .

It follows that

λm(t) ≤ B2λm−1(t) ≤ · · · ≤ Bm
2 λ0(t) =

1
Γ(2m)

t∫
0

(δΓ(2))m(t− τ)2m−1λ0(τ)dτ

≤ δm

Γ(2m)

t∫
0

(t− τ)2m−1 ‖w0‖C(Ω̄x0,t0 ) dτ =
(δT 2)m

Γ(2m) × 2m
‖F‖C(Ω̄x0,t0 )

=
(δT 2)m

(2m)!
‖F0‖C(Ω̄x0,t0 )

and hence

‖wm‖C(Ω̄x0,t0 ) = ‖λm‖C([0,t0]) ≤
(δT 2)m

(2m)!
‖F0‖C(Ω̄x0,t0 ) .

Therefore, the series v = limm→∞ vm = v0 +
∑∞

m=0 wm is convergent in the class C
(
Ω̄x0,t0

)
, and its

sum is a solution of Eq. (37). In a similar way, one can show that the solution of Eq. (37) is unique
in the space C

(
Ω̄x0,t0

)
.

Since λ < 0, it follows from (38) that

ψ0(ξ, τ) = −(2π)−1λ|u(ξ, τ)|p ≥ 0,
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and, by (36) F0(x, t) ≥ 0, since, by assumption, F (x, t) ≥ 0. Therefore, the successive approxima-
tions vk given by (39) are nonnegative; and since

lim
k→∞

‖vk − v‖C(Ω̄x0,t0 ) = 0,

we have v ≥ 0 in the closed domain Ω̄x0,t0 . Now it remains to note that, by (35), (37), and (38),
the function u is a solution of Eq. (37); and, by virtue of the unique solvability of this equation,
u = v ≥ 0 in Ω̄x0,t0 . Therefore, u (x0, t0) ≥ 0 for any point (x0, t0) ∈ Db, which completes the proof.

Let cR and ϕR(x) be the first eigenvalue and eigenfunction, respectively, of the Dirichlet problem
in the disk ωR : x2

1 + x2
2 < R2. Consequently,

(∆ϕR + cRϕR)|ωR
= 0, ϕR|∂ωR

= 0. (40)

It is known that cR > 0, and, by changing the sign and by performing related normalization, one
can possibly assume that [31, p. 25]

ϕR|ωR
> 0,

∫
ωR

ϕRdx = 1. (41)

Below we suppose that the assumptions of Lemma 3 are valid. As was shown in the proof
of that lemma, by continuing the functions u and F by zero outside Db in the strip Σb =
{(x, t) ∈ R3 : 0 < t < b} and by using the same notation for the resulting function, we have found
that u ∈ C2

(
Σ̄b

)
is a classical solution of the Cauchy problem (34) in the strip Σb.

Remark 2. Without loss of generality, in (4), one can assume that λ = −1, since, by virtue of
the condition p > 0, the case in which λ < 0 and λ 
= −1 can reduced to the case in which λ = −1
by the reduction of the new unknown function v = |λ|1/pu. Therefore, the function v satisfies the
equation

vtt − ∆v = vp+1 + |λ|1/pF (x, t), (x, t) ∈ Σb.

In accordance with this remark, instead of (34), we consider the Cauchy problem

∂2u

∂t2
−∆u = up+1 + F (x, t), (x, t) ∈ Σb, u|t=0 = 0,

∂u

∂t

∣∣∣∣
t=0

= 0, (42)

where u|Σb
≥ 0 and u ∈ C2

(
Σb

)
. In this case, as was shown in the proof of Lemma 3,

u|Σb\Ḡa
= 0. (43)

We choose R ≥ b > a/(k0 − 1), where the number a/(k0 − 1) is the radius of the disk obtained
as the intersection of the domain D : t > k0|x| with the plane t = b. We introduce the functions

E(t) =
∫
ωR

u(x, t)ϕR(x)dx, fR(t) =
∫
ωR

F (x, t)ϕR(x)dx, 0 ≤ t ≤ b. (44)

Since u|Σb
≥ 0, u ∈ C2

(
Σb

)
, and F ∈ C

(
Σb

)
, we have E ≥ 0, E ∈ C2([0, b]), and fR ∈ C([0, b]).

By using (40), (43), and (44) and by integrating by parts, we obtain∫
ωR

∆uϕRdx =
∫
ωR

u∆ϕRdx = −cR

∫
ωR

uϕRdx = −cRE. (45)

Now, by using (41), the inequalities p > 0 and u|Σb
≥ 0, and the Jensen inequality [31, p. 26],

we obtain ∫
ωR

up+1ϕRdx ≥


 ∫

ωR

uϕRdx




p+1

= Ep+1. (46)
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It readily follows from (42)–(46) that

E′′ + cRE ≥ Ep+1 + fR, 0 ≤ t ≤ b, (47)
E(0) = 0, E′(0) = 0. (48)

To study problem (47), (48), we use the method of test functions [14, pp. 10–12]. To this end,
we choose b1, 0 < b1 < b, and consider a nonnegative function ψ ∈ C2([0, b]) such that

0 ≤ ψ ≤ 1, ψ(t) = 1, 0 ≤ t ≤ b, ψ(i)(b) = 0, i = 0, 1, 2. (49)

It follows from (47)–(49) that

b∫
0

Ep+1(t)ψ(t)dt ≤
b∫

0

E(t) [ψ′′(t) + cRψ(t)] dt−
b∫

0

fR(t)ψ(t)dt. (50)

If in the Young inequality

yz ≤ ε

α
yα +

1
α′εα′−1

zα
′
, y, z ≥ 0, α′ =

α

α− 1

with parameter ε > 0 we take α = p+1, α′ = (p+1)/p, y = Eψ1/(p+1), and z = |ψ′′ + cRψ| /ψ1/(p+1)

and use the relation α′/α = 1/(α − 1) = α′ − 1, then we obtain

E |ψ′′ + cRψ| = Eψ1/α |ψ′′ + cRψ|
ψ1/α

≤ ε

α
Eαψ +

1
α′εα′−1

|ψ′′ + cRψ|α
′

ψα′−1
. (51)

By virtue of (51), from (50), we have

(
1 − ε

α

) b∫
0

Eαψ dt ≤ 1
α′εα′−1

b∫
0

|ψ′′ + cRψ|α
′

ψα′−1
dt−

b∫
0

fR(t)ψ(t)dt. (52)

By using the relation inf0<ε<α

[
α− 1
α− ε

1
εα′−1

]
= 1, which is attained for ε = 1, and relation (52),

from (49), we obtain

b1∫
0

Eαdt ≤
b∫

0

|ψ′′ + cRψ|α
′

ψα′−1
dt− α′

b∫
0

fR(t)ψ(t)dt. (53)

Now for the test function ψ, we take the function

ψ(t) = ψ0(τ), τ =
t

b1

, 0 ≤ τ ≤ τ1 =
b

b1

. (54)

Here
ψ0 ∈ C2 ([0, τ1]) , 0 ≤ ψ0 ≤ 1,

ψ0(τ) = 1, 0 ≤ τ ≤ 1, ψ
(i)
0 (τ1) = 0, i = 0, 1, 2.

(55)

One can readily see that

cR =
c1

R2
≤ c1

b2
≤ c1

b2
1

, ϕR(x) =
1
R2

ϕ1

( x

R

)
. (56)
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Since ψ′′(t) = 0 for 0 ≤ t ≤ b1 and fR ≥ 0 (because F ≥ 0), it follows from (54)–(56), the
well-known inequality |y + z|α′ ≤ 2α

′−1
(
|y|α′

+ |z|α′)
, and in (53) that

b1∫
0

Eαdt ≤
b1∫

0

cα
′

R ψα′

ψα′−1
dt +

b∫
b1

|ψ′′ + cRψ|α
′

ψα′−1
dt− α′

b∫
0

fR(t)ψ(t)dt

≤ cα
′

R

b1∫
0

ψ dt + b1

τ1∫
1

∣∣b−2
1 ψ′′

0 (τ) + cRψ0(τ)
∣∣α′

(ψ0(τ))
α′−1 dτ − α′

b1∫
0

fR(t)dt

≤ cα
′

R b1 +
2α

′−1

b2α′−1
1

τ1∫
1

|ψ′′
0 (τ)|

α′

(ψ0(τ))
α′−1

dτ + b1 × 2α
′−1cα

′

R

τ1∫
1

ψ0(τ)dτ − α′

b1∫
0

fR(t)dt

≤ cα
′

1

b2α′−1
1

+
2α

′−1

b2α′−1
1

τ1∫
1

|ψ′′
0 (τ)|

α′

(ψ0(τ))
α′−1

dτ +
2α

′−1cα
′

1

b2α′−1
1

(τ1 − 1) − α′

b1∫
0

fR(t)dt. (57)

Now, by setting R = b = ak0/(k0 − 1) and by choosing a number τ1 > 1 such that

b1 =
b

τ1

= a + 2
b− a

3
=

a + 2b
3

=
a

3

(
3k0 − 1
k0 − 1

)
, (58)

from (57), we obtain

b1∫
0

Eαdt ≤ b1−2α′

1


cα′

1

(
1 + 2α

′−1 (τ1 − 1)
)

+ 2α
′−1

τ1∫
1

|ψ′′
0 (τ)|

α′

(ψ0(τ))
α′−1

dτ − α′b2α′−1
1

b1∫
0

fb(t)dt


 ,

2α′ − 1 = (p + 2)/p.

(59)

By [14, p. 11], the function ψ0 with properties (55) such that the integral

d (ψ0) =

τ1∫
1

|ψ′′
0 (τ)|

α′

(ψ0(τ))
α′−1dτ < +∞ (60)

is finite exists.
By (44) and (56), we have

J(b) =

b1∫
0

fb(t)dt =

b1∫
0

dt

∫
ωb

F (x, t)ϕb(x)dx =

b1∫
0

dt

∫
ωb

F (x, t)
1
b2

ϕ1

(x
b

)
dx

=

b1∫
0

dt

∫
ω1

F (bξ, t)ϕ1(ξ)dξ. (61)

By virtue of (60), the quantity

κ0 = κ0 (c1, α
′, ψ0) =

τ 2α′−1
1

α′

[
cα

′

1

(
1 + 2α

′−1 (τ1 − 1)
)

+ 2α
′−1d (ψ0)

]
(62)

is also finite.
The above-represented considerations imply the following assertion.
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Theorem 2. Let n = 2, m = 0, λ = −1, F ∈ C
(
D̄
)
, F ≥ 0, and suppF ⊂ Ḡa : t ≥ |x| + a,

a = const > 0. If

b(p+2)/p

b/τ1∫
0

dt

∫
ω1

F (bξ, t)ϕ1(ξ)dξ > κ0, b =
ak0

k0 − 1
, τ1 =

3k0

3k0 − 1
, (63)

then for T ≥ b problem (4), (5) cannot have a classical solution u ∈ C2
(
D̄T

)
in the domain DT .

Proof. Indeed, by virtue of (58) and (16)–(63), the right-hand side of inequality (59) is negative,
which is impossible, since the left-hand side of this inequality is nonnegative. Therefore, if T ≥ b,
then problem (4), (5) cannot have a classical solution u ∈ C2

(
D̄T

)
in the domain DT . The proof

of the theorem is complete.
Remark 3. It follows from the proof of Theorem 2 that if its assumptions are valid; and

problem (4), (5) has a solution u ∈ C2
(
D̄T

)
in the domain DT , then the quantity T lies in the

interval (0, b), i.e., 0 < T < b = ak0/(k0 − 1).
If ε = (b− a)/3 > 0, then by

Ga,ε =
{
(x, t) ∈ R3 : |x| < ε/2, a + ε < t < b1

}
we denote the cylinder lying in the domain Db ∩Ga together with its closure, where

Ga =
{
(x, t) ∈ R3 : t > |x|+ a

}
.

For fixed positive constants a and δ for a real number k, we introduce the function space

Cδ,k
a

(
D̄
)
=

{
F ∈ C

(
D̄
)
: F ≥ 0, suppF ⊂ Ḡa, F |Ga,ε

≥ δb−k
}
, (64)

where b = ak0/(k0 − 1) and ε = (b− a)/3.

Corollary 1. Let n = 2, m = 0, λ = −1, and F ∈ Cδ,k
a

(
D̄
)
. Then for k > (p − 2)/2, there

exists a positive number a0 = a0 (κ0, p, k, δ) such that if a < a0, then problem (4), (5) cannot have
a classical solution u ∈ C2

(
D̄T

)
for T ≥ b = ak0/(k0 − 1).

Indeed, if (x, t) ∈ Ga,ε for ε = (b− a)/3, then, by (26), we have

∣∣∣x
b

∣∣∣ < ε

2b
=

b− a

6b
=

1
6k0

< 1. (65)

Further, if we introduce the number

m0 = inf
|η|<1/(6k0)

ϕ1(η),

then, by using the fact that, by (41), ϕ1(x) > 0 in the unit disk ω1 : |x| < 1, we obtain m0 > 0.
Therefore, by taking into account relations (64) and (65) and the inclusion F ∈ Cδ,k

a

(
D̄
)
, from (61)

with ε = (b− a)/3, we obtain

J(b) =

b1∫
0

dt

∫
ωb

F (x, t)
1
b2

ϕ1

(x

b

)
dx ≥ 1

b2

b1∫
a+ε

dt

∫
|x|<ε/2

F (x, t)ϕ1

(x
b

)
dx

≥ m0

b2

∫
Ga,ε

F (x, t)dx dt ≥ m0δ

b2
b−k = m0δb

−(k+2). (66)
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By virtue of (61), (66), and the relation b1 = b/τ1, we obtain

b(p+2)/2

b/τ1∫
0

dt

∫
ω1

F (bξ, t)ϕ1(ξ)dξ = b(p+2)/2J(b) ≥ m0δb
(p+2)/2−(k+2). (67)

Since, by assumption, k > (p − 2)/2 and hence (p + 2)/2 − (k + 2) < 0 and the number κ0

occurring in (62) is independent of the quantity a and b = ak0/ (k0 − 1), it follows from (67) that
there exists a positive number a0 = a0 (κ0, p, k, δ) such that if a < a0, then inequality (63) is valid.
Therefore, by Theorem 2, problem (4), (5) cannot have a classical solution u ∈ C2

(
D̄T

)
for T ≥ b.

Remark 4. It was assumed in Theorem 2 that λ = −1. By using Remark 2, we find that
Theorem 2 with the quantity κ0 on the right-hand side of (63) replaced by |λ|−1/p

κ0 remains valid
in the case in which λ < 0. Similarly, in Corollary 1 one can consider λ < 0 instead of λ = −1.

The following assertion can be proved in an even simpler way.

Corollary 2. Let n = 2, m = 0, λ < 0, F = µF0, where µ = const > 0, F0 ∈ C
(
D̄
)
,

F0 ≥ 0, suppF0 ⊂ Ḡa, and F0|Db

≡ 0. There exists a positive number µ0 such that if µ > µ0, then

problem (4), (5) cannot have a classical solution u ∈ C2
(
D̄T

)
for all T ≥ b.
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